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a b s t r a c t

A Roman dominating function of a graph G is a labeling f : V (G) −→ {0, 1, 2} such that
every vertex with label 0 has a neighbor with label 2. The Roman domination number
γR(G) of G is the minimum of

∑
v∈V (G) f (v) over such functions. A Roman dominating

function of G of weight γR(G) is called a γR(G)-function. A Roman dominating function
f : V −→ {0, 1, 2} can be represented by the ordered partition (V0, V1, V2) of V , where
Vi = {v ∈ V | f (v) = i}. Cockayne et al. [E.J. Cockayne, P.A. Dreyer, S.M. Hedetniemi,
S.T. Hedetniemi, On Roman domination in graphs, Discrete Math. 278 (2004) 11–22] posed
the following question: What can we say about the minimum and maximum values of
|V0|, |V1|, |V2| for a γR-function f = (V0, V1, V2) of a graph G? In this paper we first show
that for any connected graph G of order n ≥ 3, γR(G) +

γ (G)
2 ≤ n, where γ (G) is the

domination number of G. Also we prove that for any γR-function f = (V0, V1, V2) of a
connected graph G of order n ≥ 3, |V0| ≥ n

5 + 1, |V1| ≤
4n
5 − 2 and |V2| ≤

2n
5 .

© 2008 Elsevier B.V. All rights reserved.

1. Introduction

In this paper, G is a simple graph with vertex set V (G) and edge set E(G) (briefly V and E). The order |V | of G is denoted
by n. For every vertex v ∈ V , the open neighborhood N(v) is the set {u ∈ V (G) | uv ∈ E(G)} and the closed neighborhood of v
is the set N[v] = N(v) ∪ {v}. The degree of v is d(v) = |N(v)|. The minimum degree of G is denoted by δ(G) (briefly δ). The
open neighborhood of a set S ⊆ V is the set N(S) =

⋃
v∈S N(v), and the closed neighborhood of S is the set N[S] = N(S) ∪ S.

The S-private neighbors of a vertex v of S are the vertices of N[v] \ N[S \ {v}]. The vertex v is its own private neighbor if it
is isolated in S. The other private neighbors are external, i.e., belong to V \ S. We call k-path (k-cycle, respectively) a path
(cycle) of G of order k and Pk (Ck) an induced k-path (k-cycle). The corona HoK1 of a graph H is obtained by attaching one
pendent edge at each vertex of H .
A subset S of vertices of G is a dominating set if N[S] = V . The domination number γ (G) is the minimum cardinality of

a dominating set of G. A dominating set of minimum cardinality of G is called a γ (G)-set. Ore proved that every graph of
minimum degree δ ≥ 1 satisfies γ (G) ≤ n/2 and the following theorem gives the characterization of the extremal graphs.

Theorem A ([3]). For a connected graph G with order n ≥ 2, γ (G) = n/2 if and only if G is the cycle C4 or the corona HoK1 of a
connected graph H.

A Roman dominating function (RDF) on a graphG = (V , E) is defined in [6,7] as a function f : V −→ {0, 1, 2} satisfying the
condition that every vertex v for which f (v) = 0 is adjacent to at least one vertex u for which f (u) = 2. Theweight of a RDF
is the value ω(f ) =

∑
v∈V f (v). The Roman domination number of a graph G, denoted by γR(G), equals the minimumweight
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of a RDF on G. A γR(G)-function is a Roman dominating function of G with weight γR(G). A Roman dominating function
f : V −→ {0, 1, 2} can be represented by the ordered partition (V0, V1, V2) of V , where Vi = {v ∈ V | f (v) = i}. In
this representation, its weight is ω(f ) = |V1| + 2|V2|. For a more thorough treatment of domination parameters and for
terminology not presented here see [4,8].
It is known that γR(G) ≤ 2γ (G) for every graph G [2]. If δ(G) ≥ 2 and n ≥ 8, then γ (G) ≤ 2n/5 [5], thus implying

γR(G) +
γ (G)
2 ≤

5γ (G)
2 ≤ n. But if δ(G) = 1, then γ (G) can be as large as n/2 and we can only deduce from γR(G) ≤ 2γ (G)

that γR(G) +
γ (G)
2 ≤ 5n/4. The main purpose of this paper is to prove in Section 2 that the inequality γR(G) +

γ (G)
2 ≤ n

also holds in graphs with minimum degree 1. The technique we use in Theorem 2 also gives another proof of the following
result, already obtained by Chambers, Kinnersley, Prince and West.

Theorem B ([1]). If G is a connected n-vertex graph, then γR(G) ≤ 4n/5, with equality if and only if G is C5 or is the union of
n
5P5 with a connected subgraph whose vertex set is the set of centers of the components of

n
5P5.

Section 3 is related to a problem posed by Cockayne et al. in [2]:

Problem 1. What can we say about the minimum and maximum values of |V0|, |V1|, |V2| for a γR-function f = (V0, V1, V2)
of a graph G?

In Theorem 3 we present an answer to this question.

2. Bound on the sum γR(G)+
γ(G)
2

The following definitions will provide the extremal families for Theorems 2 and 3.

Definition 1. – F is the family of graphs obtained from a connected graph H by identifying each vertex of H with the
central vertex of a path P5 or with an internal vertex of a path P4 where the |V (H)| paths are vertex-disjoint.

– G is the family of graphs of F such that each vertex of H is identified with the central vertex of a P5.
– G′ is the family of graphs of G constructed from a graph H having a vertex of degree |V (H)| − 1.

Theorem 2. For any connected graph G of order n ≥ 3,

(a) γR(G)+
γ (G)
2 ≤ n with equality if and only if G is C4, C5, C4oK1 or G belongs to F .

(b) [1] γR(G) ≤ 4n
5 with equality if and only if G is C5 or belongs to G.

Proof. Let f = (V0, V1, V2) be a γR(G)-function such that |V2| is maximum. It is proved in [2] that for such a function no
edge exists between V1 and V2 and every vertex v of V2 has at least two V2-private neighbors, one of them can be v itself if it
is isolated in V2 (true for every γR(G)-function), the set V1 is independent and every vertex of V0 has at most one neighbor in
V1. Moreover we add the condition that the numberµ(f ) of vertices of V2 with only one neighbor in V0 is minimum. Suppose
thatNV0(v) = {w} for some v ∈ V2. Then the partition V

′

0 = (V0\{w})∪{v}∪NV1(w), V
′

1 = V1\NV1(w), V
′

2 = (V2\{v})∪{w}
is a Roman dominating function f ′ such that ω(f ′) = ω(f )− 1 if NV1(w) 6= ∅, or ω(f

′) = ω(f ), |V ′2| = |V2| butµ(f
′) < µ(f )

if NV1(w) = ∅ since then, G being connected of order at least 3, w is not isolated in V0. Therefore every vertex of V2 has at
least two neighbors in V0. Let A be a largest subset of V2 such that for each v ∈ A there exists a subset Av of NV0(v) such that
the sets Av are disjoint, |Av| ≥ 2 and

⋃
v∈A Av =

⋃
v∈A NV0(v). Note that Av contains all the external V2-private neighbors of

v. Let A′ = V2 \ A.
Case 1. A′ = ∅. In this case |V0| ≥ 2|V2| and |V1| ≤ |V0| since every vertex of V0 has at most one neighbor in V1.
Since V0 is a dominating set of G and |V2| ≤ |V0|/2 we have

γR(G)+
1
2
γ (G) ≤ |V1| + 2|V2| +

1
2
|V0| ≤ |V1| + |V2| + |V0| = n.

If γR(G)+ 1
2γ (G) = n then |V0| = 2|V2| and V0 is a γ (G)-set.

On the other hand,

5γR(G) = 5|V1| + 10|V2| = 4n− 4|V0| + |V1| + 6|V2| = 4n− 3(|V0| − 2|V2|)− (|V0| − |V1|) ≤ 4n.

Hence γR(G) ≤ 4n
5 and if γR(G) =

4n
5 , then |V0| = 2|V2| and |V0| = |V1|.

Case 2. A′ 6= ∅.
Let B =

⋃
v∈A Av and B

′
= V0 \ B. Every vertex x in A′ has exactly one V2-private neighbor x′ in V0 and NB′(x) = {x′} for

otherwise x could be added to A. This shows that

|A′| = |B′|. (1)

Moreover since |NV0(x)| ≥ 2, each vertex x ∈ A
′ has at least one neighbor in B. Let xB ∈ B ∩ NV0(x) and let xA be the vertex

of A such that xB ∈ AxA . The vertex xA is well defined since the sets Av with v ∈ A form a partition of B.
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Fig. 1.

Claim 1. |AxA | = 2 for each x ∈ A
′ and each xB ∈ B ∩ NV0(x).

Proof of Claim 1. If |AxA | > 2, then by putting A
′
xA = AxA \ {xB} and Ax = {x

′, xB} we can see that A1 = A ∪ {x} contradicts
the choice of A. Hence |AxA | = 2, xA has a unique external V2-private neighbor x

′

A and AxA = {xB, x
′

A}. Note that the vertices
xA and x are isolated in V2 since they must have a second V2-private neighbor. �

Claim 2. If x, y ∈ A′ then xB 6= yB and AxA 6= AyA .

Proof of Claim 2. Let x′ and y′ be respectively the unique external V2-private neighbors of x and y. Suppose that xB = yB, and
thus xA = yA. The function g : V (G)→ {0, 1, 2} defined by g(xB) = 2, g(x) = g(y) = g(xA) = 0, g(x′A) = g(x

′) = g(y′) = 1
and g(v) = f (v) otherwise, is a RDF of G of weight less that γR(G), a contradiction. Hence xB 6= yB. Since {x′A, xB} ⊆ AxA and
|AxA | = 2, the vertex yB is not in AxA . Therefore AyA 6= AxA . �

Let A′′ = {xA|x ∈ A′ and xB ∈ B ∩ NV0(x)} and B
′′
=

⋃
v∈A′′ Av . By Claims 1 and 2,

|B′′| = 2|A′′| and |A′′| ≥ |A′|. (2)

Let A′′′ = V2 \ (A′ ∪ A′′) and B′′′ =
⋃
v∈A′′′ Av = V0 \ (B

′
∪ B′′). By the definition of the sets Av ,

|B′′′| ≥ 2|A′′′|. (3)

Claim 3. If x ∈ A′ and xB ∈ B ∩ NV0(x), then x
′, xB and x′A have no neighbor in V1. Hence B

′′′ dominates V1.

Proof of Claim 3. Letw be a vertex of V1. Ifw has a neighbor in B′ ∪ B′′, let g : V (G)→ {0, 1, 2} be defined by
g(x′A) = 2, g(w) = g(xA) = 0, g(v) = f (v) otherwise ifw is adjacent to x

′

A,
g(x′) = 2, g(w) = g(x) = 0, g(v) = f (v) otherwise ifw is adjacent to x′,
g(xB) = 2, g(w) = g(xA) = g(x) = 0, g(x′A) = g(x

′) = 1, g(v) = f (v) otherwise ifw is adjacent to xB.
In each case, g is a RDF of weight less than γR(G), a contradiction. Therefore N(w) ⊆ B′′′. �

We are now ready to establish the two parts of the theorem.

(a) By Claim 3, B′′′ ∪ A′ ∪ A′′ is a dominating set of G. Therefore, by (1)–(3),

γ (G) ≤ |B′′′| + |A′| + |A′′|
≤ |B′′′| + |B′′|
≤ (2|B′′′| − 2|A′′′|)+ (2|B′′| − 2|A′′|)+ (2|B′| − 2|A′|).

Hence γ (G) ≤ 2|V0| − 2|V2| and γR(G)+ 1
2γ (G) ≤ (|V1| + 2|V2|)+ (|V0| − |V2|) = n.

If γR(G) + 1
2γ (G) = n then |A

′′
| = |A′|, |B′′′| = 2|A′′′| and B′′′ ∪ A′ ∪ A′′ is a γ (G)-set. We note that these conditions of

equality include that of Case 1 since in Case 1, A′ = A′′ = ∅, A′′′ = V2 and B′′′ = V0.
The first condition, |A′′| = |A′|, implies that each vertex x of A′ has exactly one neighbor xB in B. Hence the vertices of

A′∪A′′∪B′∪B′′ (in Case 2) can be partitioned into 5-paths x′xxBxAx′A with x
′
∈ B′, x ∈ A′, xA ∈ A′′ and xB, x′A ∈ B

′′. The second
condition, |B′′′| = 2|A′′′|, implies that |Av| = 2 for each v ∈ A. Hence the vertices of A′′′ ∪ B′′′ can be partitioned into 3-paths
v1vv2 with v ∈ A′′′ and v1, v2 ∈ B′′′. The third condition, A′ ∪ A′′ ∪ B′′′ is a γ (G)-set, implies that for each v ∈ A′′′, at least
one of v1, v2 has a neighbor in V1 for otherwise (A′ ∪ A′′ ∪ B′′′ ∪ {v}) \ {v1, v2} is a dominating set of order γ (G)− 1. Hence
the vertices of A′′′ ∪ B′′′ ∪ V1 are partitioned into 4-pathswv1vv2 or 5-pathsw1v1vv2w2.
In this partition of V , each 4-path and 5-path has exactly two vertices in the γ (G)-set A′ ∪ A′′ ∪ B′′′ and contributes for 2

to γ (G). Each 4-path has one vertex in V2, one in V1 and two in V0 and contributes for 3 to γR(G). Each 5-path has either two
vertices in V2 and three in V0 or one vertex in V2, two in V0 and two in V1, and thus contributes for 4 to γR(G). Hence each
4-path and 5-path of the partition induces in G a P4, C4, P5 or C5.
If a 4-path induces a C4 and G 6= C4, then there exists an edge between the C4 and a 4-path or 5-path. The contribution of

the two paths to γ (G) and γR(G) should be respectively 4 and 6 or 7. Fig. 1, where the dotted lines may exist or not, shows
that this is impossible because γ (Gi) = 3 for 1 ≤ i ≤ 4 and γR(G5) = 6 < 7. Similarly Fig. 2 shows that it is not possible
that a 5-path induces a C5 and G 6= C5 because γ (G1) = 3 < 4, γR(G2) = 6 < 7 and γR(Gi) = 7 < 8 for 3 ≤ i ≤ 5.
We suppose that G is different from C4 and C5. The set of the k ≥ 0 P4’s of the partition induces a subgraph J such that

γ (J) = 2k = |V (J)|/2. By Theorem A, each component of J is the corona of a connected graph. Thus all the endvertices of
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Fig. 2.

Fig. 3.

Fig. 4.

the P4’s have degree 1 in J and every edge between two P4’s joins vertices of degree 2 in each P4. Similarly Fig. 3 shows that
the only possibility for the extremity of an edge between a P5 and a P4 or P5 is to be the central vertex of a P5 or a vertex of
degree 2 of a P4 (because γ (Gi) = 3 < 4 for 1 ≤ i ≤ 2, γR(Gi) = 6 < 7 for 3 ≤ i ≤ 5 and γR(Gi) = 7 < 8 for 6 ≤ i ≤ 10).
Finally Fig. 4 shows that the two internal vertices of a P4 cannot be adjacent to vertices of two different P4 or P5, nor

to the same internal vertex of another P4, nor to the central vertex of a P5 (because γR(G1) = 8 < 9, γR(G2) = 9 < 10,
γR(G3) = 10 < 11, γR(G4) = 5 < 6, γR(G5) = 6 < 7). Therefore either G contains two P4’s xyzt , x′y′z ′t ′ together with the
edges yy′, zz ′, or G consists of paths P4 and P5 joined by edges between the central vertex of each P5 and one internal vertex
of each P4. Since G is connected, G = C4oK1 in the first case and G belongs to Family F in the second case.
Conversely, it is easy to check that each of C4, C5, C4oK1 satisfies γR(G)+ 12γ (G) = n. Let now G be a graph ofF composed

of k1 paths P4 and k2 paths P5. Then γ (G) = 2k1 + 2k2, γR(G) = 2k1 + 3k2 and γR(G)+ 1
2γ (G) = 4k1 + 5k2 = n.

(b) By Claim 3 and since each vertex of V1 has at most one neighbor in V0, |V1| ≤ |B′′′|. Using this inequality and (1)–(3) we
get

5γR(G) = 5|V1| + 10|V2|
= 4n− 4|V0| + |V1| + 6|V2|
≤ 4n− 4|B′| − 4|B′′| − 4|B′′′| + |B′′′| + 6|A′| + 6|A′′| + 6|A′′′|
≤ 4n+ 2(|A′| − |A′′|)+ 3(2|A′′′| − |B′′′|)
≤ 4n.

Hence γR(G) ≤ 4n
5 .

If γR(G) = 4n
5 then |A

′′
| = |A′|, |B′′′| = 2|A′′′| and |V1| = |B′′′|. We note that these conditions of equality include that of

Case 1.
The first two conditions of equality, |A′′| = |A′|, |B′′′| = 2|A′′′|, are the same as in Part (a) and imply that V2 ∪ V0

can be partitioned into 5-paths and 3-paths. The third condition, |V1| = |B′′′|, implies that the edges between B′′′ and
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V1 form a matching covering B′′′ and V1. Thus the 3-paths partitioning A′′′ ∪ B′′′ can be prolonged to 5-paths partitioning
A′′′∪B′′′∪V1. Hence V is partitioned into 5-paths, each of them contributes for 4 to γR(G) and thus induces P5 or C5 in G. Also
the configurations shown by G3, G4, G5 in Fig. 1 and G6 to G10 in Fig. 2, for which the global contribution of the two 5-paths
to γR(G) is too small, are impossible. Therefore G ∈ {C5} ∪ G.
Conversely, every graph G in {C5} ∪ G obviously satisfies γR(G) = 4n

5 . �

3. Bounds on |V0|, |V1| and |V2| for a γR(G)-function (V0,V1,V2)

Theorem 3. Let f = (V0, V1, V2) be any γR(G)-function of a connected graph G of order n ≥ 3. Then

1. 1 ≤ |V2| ≤ 2n
5 and a graph G admits a γR(G)-function such that |V2| =

2n
5 if and only if G belongs to G ∪ {C5}.

2. 0 ≤ |V1| ≤ 4n
5 − 2 and a graph G admits a γR(G)-function such that |V1| =

4n
5 − 2 if and only if G belongs to G′ ∪ {C5}.

3. n5 + 1 ≤ |V0| ≤ n− 1 and a graph G admits a γR(G)-function such that |V0| =
n
5 + 1 if and only if G belongs to G′ ∪ {C5}.

Proof. By Theorem B, |V1| + 2|V2| ≤ 4n/5.

1. If V2 = ∅, then V1 = V and V0 = ∅. The RDF (0, n, 0) is not minimum since |V1| + 2|V2| > 4n/5. Hence |V2| ≥ 1. On the
other hand, |V2| ≤ 2n/5− |V1|/2 ≤ 2n/5.

If |V2| = 2n/5, then 4n/5 ≤ |V1| + 2|V2| = γR(G) ≤ 4n/5. Therefore γR(G) = 4n/5 and by Theorem B, G is C5 or
belongs to G. Conversely define the function f by giving the value 2 to the vertices adjacent to leaves when G ∈ G and to
two non-adjacent vertices when G = C5, and the value 0 to the other vertices. Then f is a γR(G)-function with |V2| = 2n/5.

2. Since |V2| ≥ 1, |V1| ≤ 4n/5− 2|V2| ≤ 4n/5− 2.

If |V1| = 4n/5− 2, then 4n/5 ≤ |V1| + 2|V2| = γR(G) ≤ 4n/5. Therefore γR(G) = 4n/5, i.e., G ∈ {C5} ∪ G, and |V2| = 1.
When G ∈ G, let G be obtained by identifying each vertex of a graph H with the central vertex of a P5 and let V2 = {x}. Then
V0 = N(x), V1 = V \ N[x] and 4n/5− 2 = |V1| = n− d(x)− 1. Hence d(x) = n/5+ 1. The unique vertex x of V2 belongs to
H and must be adjacent to all the other vertices of H . Therefore G ∈ {C5} ∪ G′.
Conversely if G ∈ G′, the function f defined by f (x) = 2 for some vertex x ofH of degree |V (H)|−1, f (v) = 0 for v ∈ N(x)

and f (v) = 1 elsewhere is a γR(G) function with |V1| = 4n/5 − 2. Similarly, there exists a γR(C5) function with |V2| = 1
and |V1| = 2 = 4n/5− 2.

3. The upper bound comes from |V0| ≤ n−|V2| ≤ n−1. For the lower bound, adding side by side 2|V0|+2|V1|+2|V2| = 2n,
−|V1| − 2|V2| ≥ −4n/5 and−|V1| ≥ −4n/5+ 2 gives 2|V0| ≥ 2n/5+ 2. Therefore |V0| ≥ n/5+ 1.

If |V0| = n/5+ 1 then |V1| = 4n/5− 2 and thus G ∈ {C5} ∪ G′. Conversely if G ∈ G′ then the γR(G) function described in
Part 2 is such that |V0| = d(x) = |H|+1 = n/5+1. Also for the γR(C5)-function with |V2| = 1, we have |V0| = 2 = n/5+1.
Note that the lower bounds 1 and 0 on |V2| and |V1| and the upper bound n − 1 on |V0| cannot be improved since they

are attained by stars. �
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