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Available online 4 November 2008 function of G of weight yx(G) is called a yx(G)-function. A Roman dominating function

f V. — {0, 1, 2} can be represented by the ordered partition (Vy, V4, V) of V, where
Vi = {v € V | f(v) = i}. Cockayne et al. [E.J. Cockayne, P.A. Dreyer, S.M. Hedetniemi,
S.T. Hedetniemi, On Roman domination in graphs, Discrete Math. 278 (2004) 11-22] posed
the following question: What can we say about the minimum and maximum values of
[Vol, V4], | V5] for a yg-function f = (Vp, V4, V3) of a graph G? In this paper we first show
that for any connected graph G of order n > 3, y&(G) + @ < n, where y(G) is the
domination number of G. Also we prove that for any yg-function f = (Vp, V1, V) of a
connected graph G of ordern > 3, |Vo| > 2 +1,|Vq| < & —2and |V,| < 2.

© 2008 Elsevier B.V. All rights reserved.
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1. Introduction

In this paper, G is a simple graph with vertex set V(G) and edge set E(G) (briefly V and E). The order |V| of G is denoted
by n. For every vertex v € V, the open neighborhood N (v) is the set {u € V(G) | uv € E(G)} and the closed neighborhood of v
is the set N[v] = N(v) U {v}. The degree of v is d(v) = |[N(v)|. The minimum degree of G is denoted by §(G) (briefly §). The
open neighborhood of aset S C V is the set N(S) = |, N(v), and the closed neighborhood of S is the set N[S] = N(S) U S.
The S-private neighbors of a vertex v of S are the vertices of N[v] \ N[S \ {v}]. The vertex v is its own private neighbor if it
is isolated in S. The other private neighbors are external, i.e., belong to V \ S. We call k-path (k-cycle, respectively) a path
(cycle) of G of order k and Py (Ci) an induced k-path (k-cycle). The corona HoK; of a graph H is obtained by attaching one
pendent edge at each vertex of H.

A subset S of vertices of G is a dominating set if N[S] = V. The domination number y (G) is the minimum cardinality of
a dominating set of G. A dominating set of minimum cardinality of G is called a y (G)-set. Ore proved that every graph of
minimum degree § > 1 satisfies y (G) < n/2 and the following theorem gives the characterization of the extremal graphs.

Theorem A ([3]). For a connected graph G with order n > 2, y(G) = n/2 if and only if G is the cycle C4 or the corona HoK; of a
connected graph H.

A Roman dominating function (RDF) on a graph G = (V, E) is defined in [6,7] as a functionf : V — {0, 1, 2} satisfying the
condition that every vertex v for which f (v) = 0is adjacent to at least one vertex u for which f (u) = 2. The weight of a RDF
is the value w(f) = >_ ., f (v). The Roman domination number of a graph G, denoted by yz(G), equals the minimum weight
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of a RDF on G. A y(G)-function is a Roman dominating function of G with weight y&(G). A Roman dominating function
f V. — {0, 1, 2} can be represented by the ordered partition (Vy, V1, V5) of V, where V; = {v € V | f(v) = i}.In
this representation, its weight is w(f) = |V;| + 2|V5|. For a more thorough treatment of domination parameters and for
terminology not presented here see [4,8].

It is known that y(G) < 2y (G) for every graph G [2]. If §(G) > 2 and n > 8, then y(G) < 2n/5 [5], thus implying
¥r(G) + @ =< SVT(G) < n.Butif §(G) = 1, then y(G) can be as large as n/2 and we can only deduce from y3(G) < 2y(G)
that yx(G) + @ < 5n/4. The main purpose of this paper is to prove in Section 2 that the inequality yz(G) + @ <n
also holds in graphs with minimum degree 1. The technique we use in Theorem 2 also gives another proof of the following
result, already obtained by Chambers, Kinnersley, Prince and West.

Theorem B ([1]). If G is a connected n-vertex graph, then yg(G) < 4n/5, with equality if and only if G is Cs or is the union of
§P5 with a connected subgraph whose vertex set is the set of centers of the components of gPS.

Section 3 is related to a problem posed by Cockayne et al. in [2]:

Problem 1. What can we say about the minimum and maximum values of |Vy|, |V1], | V]| for a yg-function f = (Vg, V1, V)
of a graph G?

In Theorem 3 we present an answer to this question.

2. Bound on the sum yg(G) + 22
The following definitions will provide the extremal families for Theorems 2 and 3.

Definition 1. - F is the family of graphs obtained from a connected graph H by identifying each vertex of H with the
central vertex of a path Ps or with an internal vertex of a path P, where the |V (H)| paths are vertex-disjoint.
- G is the family of graphs of # such that each vertex of H is identified with the central vertex of a Ps.
- ¢/ is the family of graphs of ¢ constructed from a graph H having a vertex of degree |V (H)| — 1.

Theorem 2. For any connected graph G of order n > 3,

(@) w(G) + @ < n with equality if and only if G is C4, Cs, C40K; or G belongs to F.
(b) [1] wr(G) < ‘;—” with equality if and only if G is Cs or belongs to §.

Proof. Let f = (Vp, V1, V) be a yx(G)-function such that |V, | is maximum. It is proved in [2] that for such a function no
edge exists between V; and V, and every vertex v of V, has at least two V,-private neighbors, one of them can be v itself if it
is isolated in V5 (true for every yz(G)-function), the set V; is independent and every vertex of V; has at most one neighbor in
V1. Moreover we add the condition that the number . (f) of vertices of V, with only one neighbor in V; is minimum. Suppose
that Ny, (v) = {w} for some v € V5. Then the partition Vy = (Vo \{w}) U{v}UNy, (w), V] = Vi\Ny, (w), V5 = (Vo \{v}) U{w}
is a Roman dominating function f’ such that w(f') = w(f) — 1if Ny, (w) # @, or o(f") = w(f), V5] = |V2| but u(f") < u(f)
if Ny, (w) = ¥ since then, G being connected of order at least 3, w is not isolated in Vy. Therefore every vertex of V; has at
least two neighbors in V. Let A be a largest subset of V, such that for each v € A there exists a subset A, of Ny, (v) such that
the sets A, are disjoint, |A,| > 2 and | J,c4 Av = U,ea Ny, (v). Note that A, contains all the external V,-private neighbors of
v.LetA =V, \ A

Case 1.A’ = (. In this case |Vp| > 2|V5| and |V4]| < |V, since every vertex of V; has at most one neighbor in V;.
Since Vjp is a dominating set of G and |V,| < |Vj|/2 we have

1 1
Yr(G) + EV(G) < Vil +2|Va| + 5|Vo| < Vil + V2| + Vol =n.
If yr(G) 4 37 (G) = nthen |Vy| = 2|V,| and Vy is a y (G)-set.
On the other hand,
5yr(G) = 5|Vi| + 10|V,| = 4n — 4|Vp| + [V1] + 6|Va| = 4n — 3(|Vo| — 2|V2|) — (Vo] — [V1]) < 4n.

Hence yz(G) < £ and if yz(G) = %, then |Vo| = 2|V,| and |Vo| = |V1].
Case2.A' # 0.
Let B = | J, .4 Ay and B' = V, \ B. Every vertex x in A" has exactly one V,-private neighbor x" in V, and Ng (x) = {x'} for
otherwise x could be added to A. This shows that
|A'l = |B|. (1)

Moreover since [Ny, (x)| > 2, each vertex x € A’ has at least one neighbor in B. Let x3 € B N Ny, (x) and let x4 be the vertex
of A such that xz € A,,. The vertex x, is well defined since the sets A, with v € A form a partition of B.



0. Favaron et al. / Discrete Mathematics 309 (2009) 3447-3451 3449

[— - I o I I *—» I\)
e o *—¢ *—¢ -
G, G, G; G, G

Fig. 1.

Claim 1. |A,,| = 2 foreachx € A’ and each xg € B N Ny, (x).

Proof of Claim 1. If [A,,| > 2, then by putting A;A = Ay, \ {xg} and A, = {x’, x5} we can see that A; = A U {x} contradicts
the choice of A. Hence |A,,| = 2, x4 has a unique external V,-private neighbor x; and A, = {xz, x}}. Note that the vertices
x4 and x are isolated in V; since they must have a second V,-private neighbor. O

Claim 2. If x,y € A then xg # yg and A, # Ay,

Proof of Claim 2. Let X' and y’ be respectively the unique external V,-private neighbors of x and y. Suppose that xg = y, and
thus x4 = y4. The functiong : V(G) — {0, 1, 2} defined by g(xg) = 2,8(x) = g(¥) =gxa) =0,8(x,) =g(x) =g@¢/) =1
and g(v) = f(v) otherwise, is a RDF of G of weight less that y&(G), a contradiction. Hence xz # ys. Since {x), x5} € A, and
|Ax,| = 2, the vertex yg is not in Ay,. Therefore A,, # Ay,. O

Let A” = {xa|x € A'andxg € BN Ny, (x)} and B” = J,c4» Av. By Claims 1 and 2,
IB"| =2|A"] and |A"| > |A']. (2)
LetA” =V, \ (A’ UA") and B” = |J,c4n Av = Vo \ (B’ U B”). By the definition of the sets A,,

IB”] = 2|A"|. (3)

Claim 3. If x € A" and x € BN Ny, (x), then X', xz and X, have no neighbor in V;. Hence B” dominates V;.

Proof of Claim 3. Let w be a vertex of V;. If w has a neighbor in B U B”,let g : V(G) — {0, 1, 2} be defined by
g(xy) =2,g(w) = g(xa) =0, g(v) = f(v) otherwise if w is adjacent to x/,,
g(x)=2,g(w) =gkx) =0, g(v) =f(v) otherwise if w is adjacent to x/,
glxg) =2,g8(w) =gx) =g(x) =0,8(x,) =g) =1, g(v) =f(v) otherwise if w is adjacent to xz.
In each case, g is a RDF of weight less than & (G), a contradiction. Therefore N(w) € B”. O

We are now ready to establish the two parts of the theorem.
(a) By Claim 3, B” UA’ UA” is a dominating set of G. Therefore, by (1)-(3),

y(G) = [B"| +|A] + |A"|
E |B///|+|B//|
< @IB"| = 21A"]) + (2|B"] — 2|A"]) + (2IB'] — 2|A"]).

Hence y (G) < 2|Vo| —2|V5| and y&(G) + 3¥(G) < (Vi + 2|Va]) + (IVo| — [V2|) = n.

If yr(G) + %y(G) = nthen |A”| = |A'|, |IB”| = 2|A”| and B” UA" U A” is a y (G)-set. We note that these conditions of
equality include that of Case 1 since in Case 1,A' = A" = @,A” =V, and B” = V.

The first condition, |[A”| = |A’|, implies that each vertex x of A’ has exactly one neighbor xz in B. Hence the vertices of
A'UA” UB'UB" (in Case 2) can be partitioned into 5-paths x'xxpx,x, withx’ € B',x € A',x4 € A” and x3, X, € B”. The second
condition, |B”’| = 2|A"|, implies that |A,| = 2 for each v € A. Hence the vertices of A”” U B” can be partitioned into 3-paths
vivv, with v € A” and vy, v, € B”. The third condition, A" U A” U B” is a y (G)-set, implies that for each v € A", at least
one of vy, v, has a neighbor in V; for otherwise (A’ UA” UB” U {v}) \ {v1, v,} is a dominating set of order y (G) — 1. Hence
the vertices of A” U B” U V; are partitioned into 4-paths wv;vv, or 5-paths w;v vvyw,.

In this partition of V, each 4-path and 5-path has exactly two vertices in the y (G)-set A" U A” U B” and contributes for 2
to ¥ (G). Each 4-path has one vertex in V5, one in V; and two in Vj and contributes for 3 to y&(G). Each 5-path has either two
vertices in V5 and three in Vj or one vertex in V,, two in V and two in V7, and thus contributes for 4 to yx(G). Hence each
4-path and 5-path of the partition induces in G a P4, C4, Ps or Cs.

If a 4-path induces a C4 and G # C4, then there exists an edge between the C4 and a 4-path or 5-path. The contribution of
the two paths to ¢ (G) and yz(G) should be respectively 4 and 6 or 7. Fig. 1, where the dotted lines may exist or not, shows
that this is impossible because y (G;) = 3 for 1 < i < 4 and y&(Gs) = 6 < 7. Similarly Fig. 2 shows that it is not possible
that a 5-path induces a Cs and G # Cs because y(Gy) = 3 < 4, yr(G2) =6 < 7and »,(G) =7 < 8for3 <i <5.

We suppose that G is different from C, and Cs. The set of the k > 0 P,4’s of the partition induces a subgraph J such that
y(J) = 2k = |V(J)|/2. By Theorem A, each component of ] is the corona of a connected graph. Thus all the endvertices of
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the P4’s have degree 1inJ and every edge between two P4’s joins vertices of degree 2 in each Py4. Similarly Fig. 3 shows that
the only possibility for the extremity of an edge between a Ps and a P4 or Ps is to be the central vertex of a Ps or a vertex of
degree 2 of a P4 (because y(G;)) =3 < 4for1 <i<2,y,(G) =6 <7for3 <i<5andp(G)=7 <8for6 <i<10).

Finally Fig. 4 shows that the two internal vertices of a P, cannot be adjacent to vertices of two different P4 or Ps, nor
to the same internal vertex of another Py, nor to the central vertex of a P; (because y(G1) = 8 < 9, r(G2) = 9 < 10,
Yr(G3) = 10 < 11, yr(G4) = 5 < 6, ¥r(Gs) = 6 < 7). Therefore either G contains two P4's xyzt, x'y'z't’ together with the
edges yy', zZ/, or G consists of paths P4 and Ps joined by edges between the central vertex of each Ps and one internal vertex
of each Py. Since G is connected, G = C40K; in the first case and G belongs to Family F in the second case.

Conversely, it is easy to check that each of Cy4, s, C40K satisfies y(G) + %y (G) = n.Let now G be a graph of ¥ composed

of kq paths P4 and k; paths Ps. Then y (G) = 2k; + 2k,, yr(G) = 2k; + 3k, and y&(G) + %y(G) = 4k, + 5k, = n.

(b) By Claim 3 and since each vertex of V; has at most one neighbor in Vj, |V;| < |B”'|. Using this inequality and (1)-(3) we
get

5yr(G) = 5|Vq| + 10|V,
= 4n — 4|Vo| + |V + 6|V, |

< 4n —4|B/| _4|B//| _4|B///| + |B///| +6|A/| +6|AN| +6|A///|
< 4n+2(JA"| — |A"]) + 3(214"] — [B"])
< 4n.

Hence y(G) < 2.

If yr(G) = % then |A”| = |A'|, IB”| = 2]A”| and |V;| = |B”’|. We note that these conditions of equality include that of
Case 1.

The first two conditions of equality, |A”| = |A’|, [B”| = 2|A”|, are the same as in Part (a) and imply that V, U V,
can be partitioned into 5-paths and 3-paths. The third condition, |V;| = |B”|, implies that the edges between B” and
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V; form a matching covering B” and V;. Thus the 3-paths partitioning A” U B” can be prolonged to 5-paths partitioning
A" UB"” UVy.Hence V is partitioned into 5-paths, each of them contributes for 4 to yz(G) and thus induces Ps or Cs in G. Also
the configurations shown by Gs, G4, Gs in Fig. 1 and Gg to Gy in Fig. 2, for which the global contribution of the two 5-paths
to yg(G) is too small, are impossible. Therefore G € {Cs} U 4.

Conversely, every graph G in {Cs} U § obviously satisfies yx(G) = %. O

3. Bounds on |Vy|, |V;] and |V;| for a yg (G)-function (Vp, V4, V5)

Theorem 3. Let f = (Vy, V1, Vo) be any yg(G)-function of a connected graph G of order n > 3. Then

1.1< |V < %“ and a graph G admits a yg(G)-function such that |V,| = 2?“ if and only if G belongs to § U {Gs}.

2.0< |V < 4?” — 2 and a graph G admits a yr(G)-function such that |V;| = 4?” — 2ifand only if G belongs to §' U {Cs}.

3. g 4+ 1 < |Vo| < n — 1and a graph G admits a yg(G)-function such that |Vy| = g + 1ifand only if G belongs to §' U {Cs}.
Proof. By Theorem B, |V;| + 2|V,| < 4n/5.

1. If V; = @, then V; = V and Vy = @. The RDF (0, n, 0) is not minimum since |V;| + 2|V,| > 4n/5. Hence |V,| > 1. On the
other hand, |V5| < 2n/5 — |V4|/2 < 2n/5.

If [V5] = 2n/5, then 4n/5 < |Vq| 4+ 2|V,] = y(G) < 4n/5. Therefore yr(G) = 4n/5 and by Theorem B, G is Cs or
belongs to . Conversely define the function f by giving the value 2 to the vertices adjacent to leaves when G € 4 and to
two non-adjacent vertices when G = Cs, and the value 0 to the other vertices. Then f is a yx(G)-function with |V;| = 2n/5.

2. Since |V5| > 1, |V4| < 4n/5 —2|V,| <4n/5 — 2.

If |V1] = 4n/5 — 2, then 4n/5 < |V1| 4+ 2|V5| = y&(G) < 4n/5. Therefore yx(G) = 4n/5,i.e,G € {Cs} U 4, and |V,| = 1.
When G € 4, let G be obtained by identifying each vertex of a graph H with the central vertex of a Ps and let V, = {x}. Then
Vo = N(x),V; = V\ N[x]and 4n/5 — 2 = |V;| = n — d(x) — 1. Hence d(x) = n/5 + 1. The unique vertex x of V, belongs to
H and must be adjacent to all the other vertices of H. Therefore G € {Cs} U §/'.

Conversely if G € ¢/, the function f defined by f (x) = 2 for some vertex x of H of degree |V (H)|—1,f(v) = Oforv € N(x)
and f(v) = 1 elsewhere is a y&(G) function with |V;| = 4n/5 — 2. Similarly, there exists a yz(Cs) function with |V;| = 1
and |V{| =2 =4n/5 - 2.

3. The upper bound comes from |Vy| < n—|V;| < n— 1. For the lower bound, adding side by side 2|V, |+ 2|V1|+2|V>| = 2n,
—|Vi| = 2|V3| = —4n/5 and —|V;| > —4n/5 + 2 gives 2|Vy| > 2n/5 + 2. Therefore |Vy| > n/5 4+ 1.

If Vo] = n/5 + 1then |Vi| = 4n/5 — 2 and thus G € {Cs} U §’. Conversely if G € ¢’ then the y(G) function described in
Part 2 is such that |Vy| = d(x) = |H|+ 1 = n/5+ 1. Also for the yR(Cs)-function with |V,| = 1,we have |Vy| =2 =n/5+ 1.

Note that the lower bounds 1 and 0 on |V5| and |V;| and the upper bound n — 1 on |Vy| cannot be improved since they
are attained by stars. O
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