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Abstract

We introduce balleans as asymptotical counterparts of uniform topological spaces. Using slowly
oscillating functions, for every ballean we define two compact spaces: corona and binary corona.
These spaces can be considered as generalizations of the Higson's coronas of metric spaces and
the spaces of ends of groups, respectively. We consider some balleans related to an infinite group
and prove some results concerning their coronas. At the end we apply these results to describe the
compact right-zero semigroups which are continuous homomorphic images, ¢fie reminder of
the Stone€ech compactification of discrete groGp
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1. Ball structuresand balleans

A ball structureis a tripleB = (X, P, B), whereX, P are honempty sets and, for any
x € X anda € P, B(x,a) is a subset ok which is called aall of radiusa aroundx. It is
supposed that € B(x, «) forall x € X, « € P. The setX is called thesupportof B, P is
called theset of radiuses
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Givenanyx € X, AC X, « € P, we put

B*(x,a)={yeX: x € B(y. o)}, B(A,a) = U B(a, ).
acA

A ball structureB = (X, P, B) is calledlower symmetridf, for any «, 8 € P, there exist
o', B’ € P such that, for every € X,

B*(x,d') € B(x, @), B(x,B) € B*(x, B).

A ball structureB = (X, P, B) is calledupper symmetridf, for any «, 8 € P, there
exista’, B’ € P such that, for every € X,

B(x,a) € B*(x,a), B*(x, B) C B(x, B).

A ball structureB = (X, P, B) is calledlower multiplicativeif, for any «, 8 € P there
existsy € P such that, for every € X,

B(B(x,y),7) S B(x,a) N B(x, ).

A ball structureB = (X, P, B) is calledupper multiplicativef, for any «, 8 € P there
existsy € P such that, for every € X,

B(B(x,a). f) C B(x. ).

Let B = (X, P, B) be a lower symmetric, lower multiplicative ball structure. Then the
family

{U B(x,a) x B(x,a): a € P}
xeX
is a fundamental system of entourages for some (uniquely determined) uniform topological
space. On the other hand Xfis a uniformityl/ C X x X, then the ball structureX, U, B)
is lower symmetric and lower multiplicative, wheBgx, U) = {y € X: (x,y) € U}. Thus,
the lower symmetric and lower multiplicative ball structures can be identified with the
uniform topological spaces.
We say that a ball structure idalleanif B is upper symmetric and upper multiplicative.
Let B1 = (X1, P1, B1), B2 = (X2, P2, B2) be balleans. A mapping : X1 — X» is
called a<-mappingif, for everya € Py, there existg € P, such that, for every € X1,

f(Bai(x,@)) € Bo(f(x), B).

A mappingf : X1 — X» is called a--mappingif, for every 8 € P,, there existe& € Py
such that, for every € X1,

By(f(x), B) € f(Bi(x, ).

A bijection f: X1 — X2 is called anisomorphismbetweenB1 andB; if f is a <-
mapping andf is a>-mapping.

Let B1 andB2 be balleans with common suppdft We say thai31 < B; if the identity
mapping id X — X is a <-mapping ofB; to By. If By < B, andB, < B1 we say that
B1, By are equivalent.
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A propertyP of balleans is called ball propertyif any ballean isomorphic to a ballean
with propertyP also has that propert®?. Now we define some basic ball properties.

LetB = (X, P, B) be a balleany, y € X. We say thaik, y areconnectedf there exists
a € P such thaty € B(x,«). A subsetY C X is calledconnectedf any two elements
from Y are connected. Note that connectedness is an equivalence relati®n smX
disintegrates into connected components. A ballean is cabbedectedf its support is
connected.

A subsetY C X is calledboundedf there existsx € X, « € P such thatt C B(x, «).
We say thafB is boundedf its support is bounded. Lé be connectedyp € X, Y C X.
ThenY is bounded if and only if there existse P such thaty C B(xg, «).

For an arbitrary balleal® = (X, P, B), we define a reordering on the setP by the
rule:a < g ifand only if B(x, «) C B(x, B) for everyx € X.

A subsetP’ C P is calledcofinal if, for every « € P, there exists$8 € P’ such that
a < B. Thecofinalitycf B of B is the minimal cardinality of cofinal subsets Bf

Let (X, d) be a metric spac®&* = {« € R: « > 0}. Given anyx € X, r ¢ RT, we put

By(x,r)={yeX: d(x,y)<r}.

The ballearB(X, d) = (X, RT, By) is called ametricballean. We say that a balle@n
is metrizable ifB is isomorphic tdB(X, d) for some metric spaceX, d). By [9], a ballean
B is metrizable if and only i is connected and & < Ro.

Formally, the notion of ballean is an asymptotic duplicate of the notion of uniform
topological space. It is well known [3, Chapter 8] that every uniform topological space
can be approximated by metric spaces. Now we describe the ballean analogue of such an
approximation.

Let {B, = (X;, P, By): A € I} be a family of balleans with pairwise disjoint supports
and common set of radiuses and let=(_J,.; X,. For everyx € X, x € X; and every
a € P, we putB(x,a) = B, (x,a). The ballean® = (X, P, B) is called adisjoint union
of the family {B,: A € I}. A ballean is callegpseudometrizablié it is a disjoint union of
metrizable balleans.

Let {By = (X, Py, B,): X € I} be a family of balleans with common support. Suppose
that, for anyiq, A2 € I, there exists. € I such thafB,, < B,, By, < B,,. Foreveryr € I,
we choose a copy’; = f,.(Py) such that the family{P;: A e I} if disjoint. Put P =
User Py Foranyx € X, B € P, B € P;, we putB(x, B) = B (x, f;l(ﬁ)). The ballean
B = (X, P, B) is called arinductive limitof the family{B;: A € I}.

By [10], every ballean is isomorphic to the inductive limit of some family of
pseudometrizable balleans.

Now we describe a ballean analogue of normality. lRet (X, P, B) be a ballean. We
say that the subset§ Z of X areasymptotically disjoin{and writeY L Z) if, for every
o € P, there exists a bounded subsgt < X such that

B(Y \ Uy, @) N B(Z\ Uy, &) = 0.

We say thatr, Z areasymptotically separatethnd writeY LI Z) if, for everyo € P,
there exists a bounded sub$gt C X such that, for everg € P,

B(Y\Uq, @) N B(Z\Ug, B) = 0.
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A balleanB is callednormalif, for all subsetst, Z of X, Y 1 Z impliesY LI Z.

To formulate the balleans counterparts of Urysohn’s lemma and the Tietze—Urysohn
theorem we need the following definition.

LetB = (X, P, B) be a ballean and l&t, /) be a uniform topological space. A map-
pingh: X — Y is calledslowly oscillatingif, for every entourag®/ € U and everyx € P,
there exists a bounded sub3gbf X such that, for every € X \ V,

h(B(x,)) x h(B(x,a)) S U.

If Y =R with the uniformity determined by standard metric, thenX — R is slowly
oscillating if and only if, for every > 0 and everyx € P, there exists a bounded sub$et
of X such that, for every € X \ V,

diamh(B(x, a)) <e,

where diamA = suf{|a — b|: a,b € A}.

Let B = (X, P, B) be a normal ballean and I&p, Y1 be disjoint and asymptotically
disjoint subset ofX. By [11, Theorem 2.1], there exists a slowly oscillating function
h:X — [0,1] such that:|y, =0, hly, = 1.

By [11, Theorem 2.2], a ballea is normal if and only if, for every subsét C X
and every bounded slowly oscillating functianY — R, there exists a bounded slowly
oscillating functiong : X — R such thalg|y = h.

The notion of ball structures and balleans were motivated by combinatorics [1]. Similar
notions were defined and investigated in asymptotic topology [2]. We describe the most
general of them.

A setX is called acoarse spacég] if there is a distinguished collectiaf of subsets of
productX x X calledentouragesuch that:

Any finite union of entourages is contained in an entourage.
The union of all entourages is the entire space X.
e Theinverseof an entouragé/

Mt={(,x)eX x X: (x,y) e M}

is contained in an entourage.
e Thecompositiorof entouraged/; and M

MiMp = {(x,2) € X x X: (x,y) € M1, (y,2) € M2 for somey € X}
is contained in an entourage.

Every coarse spadg, £) can be considered as the connected baliéaif, B), where
B(x,E) ={y: (x,y) € E}U {x}, E € £. On the other hand, every connected ballean
(X, P, B) can be considered as the coarse spatef), where& = {{J, .y B(x,a) x
B(x,a). o € P}.
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2. Coronas

Fix a balleanB = (X, P, B), endow X with the discrete topology and consider the
Stone€ech compactificatiop X of X. We take the points o X to be the ultrafilters
on X with the points ofX identified with the principal ultrafilters. For every subget X,
we putA = {g € BX: A € q}. The topology of8 X can be defined by stating that the family
{A: A C X}is abase for the open sets. For every fifien X, the subsep = ({A: A € ¢}
is closed ins X, and, for every nonempty closed subke g X, there exists afiltep on X
such thatk = ¢. Let Y be a compact Hausdorff space. For every mappin — Y,
denote byf# the Stone€ech extension of ontoBX.

Denote byX* the set of all ultrafilters on X such that every e r is unbounded ifB,
and putx” = X \ X%. Clearly, X" is a closed subspace g .

Given anyr, ¢ € X*, we say that, ¢ areparallel (and writer || ¢) if there existsx € P
such that, for everR € r, we haveB(R, @) € ¢q. By [11, Lemma 4.1]|| is an equivalence
on X*. We denote by- the minimal (by inclusion) closed (i&* x X*) equivalence ork*
such that| < ~. By [3, Theorem 3.2.11], the quotieit’ /~ is compact Hausdorff space.
It is called thecoronaof B and is denoted by (B). To clarify the virtual equivalence-,
we use the following two observations.

e If r,q € X* andr| ¢, then, for every slowly oscillating functidgn X — [0, 1], we have
WP (r)y = hP (q).

Indeed, pickx € P such that, for evengr € r, we haveB(R, @) € g. Let ¢ be an arbi-
trary positive real number. We put

Re={xeX: [n(x) —hP ()] <e}

and note thatR, € r. Since’ is slowly oscillating, there exists a bounded subget
of X such that, for everyw € X\V, we have diam(B(x,a)) < . Then R,\V € r,
B(R,\V,a) € g and|h(x) — hP(r)| < 2¢. It follows thath? (q) = hP (r).

e LetB be connected and lét: X — [0, 1] be a function such that? (r) = hf(g) for
any two parallel ultrafilters-, ¢. Thenk is slowly oscillating.

Suppose the contrary. Sin@eis connected, the family of all bounded subsets of
is closed under finite unions, Sois directed by inclusion. Choosec P ande > 0 such
that, for everyF € 3, there existsc(F) € X \ F such that, diam(B(x(F),«)) > ¢. For
every F € 3, we takey(F) € B(x(F), «)) such thath(x(F)) — h(y(F))| > . Then we
gettwo netdx(F): F € 3} and{y(F): F € J}.

Endow 3 with the discrete topology and fix an arbitrary ultrafiliere 83 such that
{HeJ FCH}epforeveryFeg. Let f1:3 — X, f2:3 — X be the mappings
defined by f1(F) = x(F), fa(F) = y(F). We putr = f{(p), ¢ = f5 (p). Thenr | g
but|hf (r) — hB(q)| > ¢, a contradiction.

The following example, suggested by the referee, shows that the connectedness assump-
tion cannot be omitted in the second observation.
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LetB1 = (X1, P, B1),Bo = (X2, P, B») be connected balleans such tlatis bounded,
B, is unbounded|X1| > 1 andX1 N X2 =¢. Let B = (X, P, B) be the disjoint union of
B1 andB2. We take two points; € X1, x2 € X5 and define the functioh: X — [0, 1] by
the rule:i(x1) = h(x2) = 1 andh(x) = 0 for everyx € X \ {x1, x2}. Since every bounded
subset ofX is contained either irk1 or in X5, & is not slowly oscillating. On the other
hand,X* = Xﬁ. It follows that, for anyr, ¢ € X* (in particular, for any parallel ultrafilters
r,q € X%), we haveh? (r) =0, hP (q) = 0 soh® (r) = hP (g).

Proposition 1. Let B = (X, P, B) be a connected balleag, » € X*. Theng ~ r if and
only if n# (q) = hP (r) for every slowly oscillating functioh: X — [0, 1].

Proof. Let us consider the closed equivaleneg 1; on X* defined by the ruler ~0.1) ¢
if and only if 18 (r) = h# (q) for every slowly oscillating functior : X — [0, 1]. We have
to prove that~ = ~(g 1. By the above observation$ < ~[o,1}, SO~ € ~[0,1]-

To show the reverse inclusion we ptit= X* U v(B) and define the topology ofi as
follows. If y € X" then a subsel/ C Y is a neighborhood of if and only if U contains
a neighborhood of in X" as a subspace ¢fX. Assume thaty € v(X). Sincey is a
closed subset gf X, there exists a filtep on X such thaty = ¢. Then a subseW C Y
is a neighborhood of if and only if there exist a neighborhodd of y in v(B) and an
elementF € ¢ such thatV U {z € X": F €z} C W. Itis easy to verify that is a compact
Hausdorff space an& € X" is a dense subset 6f.

Now suppose that, ¢ € X* and[r] # [¢] where[r] € v(B), [¢] € v(B) are the cor-
responding~-equivalence classes. Then there exists a continuous fungti@n— [0, 1]
such thatf([r]) = 0, f([g]) = 1. Puth = f|x and note that?(r) = f([t]) for every
t € X*. It follows that# is slowly oscillating andi? (r) # hf(¢). O

If a balleanB is normal and connected we can go far in the clarification of the equiva-
lence~. By [11, Lemma 4.2]r ~ ¢ if and only if, for anyR € r, Q € ¢ there exists € P
such thatB(R, o) N B(Q, «) is unbounded. Hence, g are non-equivalent if and only if
there existR € r, Q € g such thatrR L Q. It should be remarked that the connectedness
assumption is missing in the formulation of Lemma 4.2 of [11].

Let (X, d) be a metric space and I8t Q be unbounded subsets ¥fsuch thatrR L Q.

By [11, Example 2.3], there exists a continuous slowly oscillating fundiioki — [0, 1]
such thatz|z =0, h|p = 1. In view of Proposition 1, for, ¢ € X*, we haver ~ ¢ if and
only if 1 (r) = hP (g) for every continuous slowly oscillating functidrt X — [0, 1].

A metric space X, d) is called perfect if every balB;(x, r) is compact. It is worth
mentioning that the category of metric spaces (with the appropriate morphisms) is the
main subject of large scale topology [2].

Now let (X, d) be a perfect metric space and $&tX) be the set of all continuous slowly
oscillating functionsi: X — [0, 1]. Put f = [, cx) # and note thayf is an embedding
of X into [0, 113, Following [2, §6], we identifyX with f(X). The closure off (X) in
[0, 113X s called theHigson’s compactificationf X, and the remaindef (X)\ f (X) is
called theHigson'’s coronaof X. Denote byX gisc the setX with the discrete topology and
put / = f oid, where id Xgisc— X is the identity mapping. Thefi(X) can be identified
with the quotieni8 X gis¢/~, Wherer ~ g if and only if f2(r) = f#(q). Clearly, f# (X*)
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FXO\f(X). Since(X, d) is perfect, we havg? (X?) = £(X), so fA(X%) = F(X)\ f(X).
Let r,qg € X*. By above remark; ~ ¢ if and only if » & ¢g. Hence, the Higson’s corona
f(X)\ f(X) can be identified with the corondB(X, d)) of the ballearB(X, d).

Now we define a more coarse corona of a ballBan (X, P, B) using slowly oscillating
functions taking values,.

We say that the ultrafilters, ¢ € X* are binary equivalent(and write r ~0,1 q) if
hP(r) = hP(q) for every slowly oscillating functiorh: X — {0, 1}. Clearly, ~(0.1) is @
closed equivalence ok*. The quotientx*/~/o 1, is called thebinary coronaof B, it is
denoted by (B) and the elements @fB) are called thendsof B.

A subsetA of X is calledalmost invariantif B(A, «)\A is bounded for every € P.
We use the following observations.

e Every bounded subset is almost invariant
e If A C X is almost invariant, them \ X is almost invariant

We use the proof suggested by the referee. d-et p be given. Picka’ € P such
that, for allx € X, B(x,a) € B*(x,a’). Pickd € P andz € P such thatB(A, a')\A C
B(z,8). Pick y € P such that, for allx € X, B(B(x,4),a) C B(x,y). We claim that
B(X\A,a)\ (X \ A) C B(z,y). To see this, lety € B(X \ A,a) \ (X \ A) and note
thaty € A. Pickx € X \ A such thaty € B(x,«). Theny € B*(x,a) sox € B(y,a’).
Thereforex € B(A, o)\ A, soB(x,a) C B(z, y) and hence € B(z, y).

e If afunctionk: X — {0, 1} is slowly oscillating therk —1(0) is almost invariant.

PutA = 2~1(0) and lete € P be given. Choose a bounded subgeif X such that, for
everyx € X \ V, diamh(B(x,a)) < 1. ThenB(A\V,a) C A, B(A,a) CAUB(V,®) SO
B(A, )\ A is bounded and henctis almost invariant.

e Leth:X — {0, 1} be a function such that —1(0) is almost invariant. Then is slowly
oscillating.

We putA = ~~1(0) and assume tha is connected. Le € P be given. Sinced and
X \ A are almost invariant, the subséts= B(A,ax) \ A, Vo=B(X \ A,a) \ (X \ A) are
bounded. By connectednesskfV; U Vs, is bounded. Pul/ = B*(V1U Vo, @) and note that
U isbounded. Ift € A\ U thenB(x,a)NVy =@ soB(x,«) C A anddiamh(B(x,«a)) =0.
Analogously, ifx € X \ A then dianhi(x, ) = 0. Therefore: is slowly oscillating.

Now let B be the disjoint union of the familyB, = (X, P, By): A € I} of connected
balleans. Since every bounded subsekois contained in some subs&t, there exists
Ao € I such that, for every. € I, A # Ao, eitherX, C A or X, = X\A. By the above
paragraphk is slowly oscillating.

Proposition 2. LetB = (X, P, B) be a balleanr, g € X*. Thenr, g are binary equivalent
if and only if, for every almost invariant subs¢tC X, A € r impliesA € q.
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Proof. Assume that, g are binary equivalentd be an almost invariant subset &fand
A € r. Take the slowly oscillating functioh : X — {0, 1} defined by the rulé:|4 =0,
hlx\a = 1. Sinceh® (r) = h#(q) we getA e q.

Assume that, g are not binary equivalent and take a slowly oscillating funcioX —
{0, 1} such thak? (r) £ hP(g). Leth? (r) = 0, hP (¢) = 1. Thenh~1(0) is almost invariant,
h~10)erbuth=1(0) ¢gq. O

In view of Proposition 2 we can identify(B) with the setE of all maximal filters in
the family A of all unbounded almost invariant subsetsXoendowed with the topology
defined by the family{{p € E: A € ¢}: A € A} as a base for the open sets. In particular,
this identification shows thatB) is zero-dimensional.

To motivate the end-terminology we consider a discrete giGup subsetA C G is
called almost invariant iAg \ A is finite for everyg € G. Denote byE (G) the set of all
maximal filters in the family of all infinite almost invariant subsetsfThen E(G) is
the reminder of the Freudental-Hopf compactificatiozodind every element of (G) is
called an end of; (for this approach to definitions of ends see [7]). In the next section we
define the balleaiB, (G, Rg) with the supportG such thats(B, (G, ¥¢)) = E(G). Thus,
the binary corona of ballean can be considered as a generalization of the space of ends of
group.

We conclude this section with the following example, showing that the connectedness
assumption cannot be omitted in Proposition 1.

Let (X,,,d,),n=1,2,..., be metric spaces such th&, = {y,, zx}, du(Vn,zx) =n
and, forn #m, X, NY, =@. Let B = (X,R", B) be the disjoint union of the fam-
ily {B(X,,dy): n=1,2,...} of metric balleans. Ifi: X — [0, 1] is a slowly oscillat-
ing function, then there exista such thati(y,) = h(z,) for all n # m. It follows that
hB(r) = hP(g) for any two ultrafilters, ¢ € X*.

On the other hand, let, ¢ € X* andr|lq. Pick @ € RT such that, for evenr e r,
B(R,a) € q. Since B(R, ®)\R is finite, we haveR € ¢ andr = ¢. Hence|| = ~ and
v(B) = X%,

3. Group balleans

Let G be an infinite group with identity, « be an infinite cardinal such that< |G|.
Denote by3(G, k) the family{F C G: |F| <k, e F} and, foranyg € G, F € 3(G, k),
put

Bi(g, F)=gF, B.(g, F)=Fg.
Thus, we get two balleans
Bi(G, k)= (G,3(G,x), B)),  By(G,«)=(G,3(G,«), B).
Note that the mapping — x 1 is an isomorphism betweé) (G, ) andB, (G, ).

Proposition 3. For every infinite groups of regular cardinality, the cardinality of corona
v(B,(G. |G)) is 227,
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Proof. LetG = {gu: @ < |G|}, go=e. Foreveryx < |G|, we putF, = {gg: 8 < a}. Then
we can construct inductively the subSet {xq: @ < |G|} of G such thatF,x, N Fgxg =
for all « > B. Since|G| is regular, for every € J(G, |G|), there exists < |G| such that
F C F,. Hence, there exists a subsetf cardinality< |G| such thatFx N Fy = ¢ for any
two distinct elements € X\V, y € X\ V. It follows that any two disjoint subsets af of
cardinality |G| are asymptotically disjoint. Now consider the familyof all ultrafiltersr
on G suchX er and|R| = |X| for everyR e r. Clearly,|U| = 22°' Take any two distinct
ultrafiltersr, g € U, chooseR € r, Q € ¢ such thatR N Q =@. ThenR L Q. By [11,
Proposition 1.1], the balledh, (G, |G|) is normal. Hence, there exists a slowly oscillating
function/ : G — [0, 1] such thak? (r) # h? (¢). It follows thatr, ¢ define distinct elements
[r], [g] of v(B, (G, |G[)). O

Proposition 4. Let G be an Abelian group and let be an infinite regular cardinal such
thatkx < |G|.Then the corona(B, (G, «)) is a singleton.

Proof. It suffices to show that every slowly oscillating functibnG — [0, 1] is constant
at infinity. More precisely, there existse [0, 1] such that, for every > 0, there exists a
subsetV of G suchthalV| <« and|h(x) —c¢| < ¢ foreveryx e G\ V.

We prove the following auxiliary statement. LEtbe a subset of; such thai X| =«.
Then there exists a subgrodp of G such thatX € H, |H| =« and the restrictior|
is constant for every € G\H. Let X = {x,: a < «}. Put Hy = {xo}, Fo = . Suppose
that, for some ordingB < «, we have chosen the subséfé,: o < 8} and{F,: a < B}
of cardinality < «. If B is a limit ordinal, we puttg = {xg} U, 4 Ho, Fg = Uy-p Fa-
Sincex is regular we haveHg| < «, |Fg| < «. If g is a non-limit ordinal, we choose the
limit ordinal g and the natural numbersuch thap = Bo+n. PutW = {xg} U Hgyy—1U
Fgy+n—1. Clearly,|W| < k. Denote byHg the set of all elements @ which can be written
as the group words of lengtd » in the alphabet. Since#r is slowly oscillating and
|Hg| < «, there exists a subsél of G such that Fg| < «, Fg,1,—1 € F and, for every
x € G\ Fg,

. 1
diamh(Hgx) < —.
n

After « steps we putf = J,,_, H,. By the construction we conclude thdtis a subgroup
of G, |X|C H,|H|=«x andF, C H for everya <. Now lety € H, yY € H andg €
G\ H. Take an arbitrary > 0 and choose the limit ordingbh < « and the natural number
such thatt < e andy € Hgyn—1, ¥’ € Hpgn—1. PUtS = Bo+n. Sincey € Hg, y' € Hg
andg ¢ Fg, we have

1
|h(yg) —h(y'9)| < ~<e

It follows that/ |y, is constant.

At last, suppose thdt is not constant at infinity. Then there exist- 0 and injective
K-SequUeNcesyy )u<x and (zq)e<, such thatlh(yy) — h(zq)| > ¢ for everya < k. Put
X = {ya, zo: @ < k}. By the auxiliary statement, there exists a subgréupf G such that
X C H, |H| =« and the restrictiork |y, is constant for everg € G \ H. Fix an arbitrary
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go€ G\ H and putY = {e, go}. Sinceh is slowly oscillating, there exists a subgéof G
such thaiU| < « and, for everyy € G\ U,

diami(Yx) < %
Choosex < « such thaty, ¢ U, z, ¢ U. Then we have

|h(Ye) = h(za)| < |h(ya) — B(g0Ya)| + |1 (g0Ya) — h(g02a) | + |P(2a) — h(g0Z)|.

SinceG is Abelian,goys = Y4 £0, £0Za = Za&0- Sincey, € H, 7z, € H andgo € G\ H,
we haveh(yy,go) = h(z4g0)- Hence|h(yy) — h(z4)| < € and we get a contradiction to the
choice of(ya)o<icr (Za)a<k. O

The above proposition remains true (with only slight modification of the proof) under
some weaker assumptions instead of commutativitgg ofn particular, it is true if either
the cente{x € G: xg = gx for everyg € G} of G is of cardinality> « or every subgroup
of G of cardinalityx is contained in some invariant subgroup of cardinatit{on the other
hand, every free group of rank 1 has infinitely many ends. It follows tha{B, (F, Ro))
is infinite so Proposition 4 is not true fdt.

4. Applicationsto G

Let G be a discrete grou,G be the StoneSech compactification af, G* = BG\ G.
Using the universal property of the Storzeeh compactification, the group multiplication
on G can be extended t6G in such a way that, for everye G, the right shiftx > xr is
continuous, and, for evegye G, the left shiftx — gx is continuous. Formally, the product
rq of the ultrafiltersr, g € G is defined by the rule: given any subsgetf G,

Aerqg < {geG: g_lAeq}er.

For more information about the compact right topological semig@gpand its com-
binatorial applications see [5].

In what follows we suppose thdt is infinite andk is an infinite cardinal such that
k <|G|. We putG®) = {r € BG: |R| > « for everyR € r} and note that the subsemigroup
G of BG coincides with the sef* of all unbounded ultrafilters in the balle@ (G, «).
If kK = 8o thenG®) = G*. If k = |G| we use the notatio" instead ofG ).

If r € G, g € G then the ultrafilters-, gr are parallel in the ballea; (G, ). If
k = Ng thenr, g € G* are parallel inB, (G, ) if and only if ¢ = gr for some element
g € G. It follows that every element of(B, (G, «)) is a closed left ideal 0BG.

A semigroups is called right-zero ifty = y for all x, y € S. In what follows we assume
thatv(B, (G, «)) is endowed with the structure of a right-zero semigroup.

The above observation shows that the factor-mapping 6f to v(B, (G, «)) is a ho-
momorphism. The next proposition states théb, (G, X)) is the maximal continuous
right-zero homomorphic image @f*.

Proposition 5. If a compact right-zero semigroup is a continuous homomorphic image
of G*, thensS is a continuous homomorphic imagewd, (G, Ro)).
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Proof. We use the following observation. If the semigroGp is partitioned into closed
left ideals of G* then every membef of the partition is a left ideal oBG. It suffices to
show thatc/ < I for everyx € G. Suppose the contrary and chogse G, r € I such that
gr ¢ 1. Choose the elemedtof the partition such thair € J. SinceJ is a leftideal ofG*
we haver(gr) € J and get a contradiction tog)r € I.

Now let f be a continuous homomorphism@f onto S. By definition ofv (B, (G, Ro)),
it suffices to show that, for everyq € G*, f(r) = f(q). Sinces is a right-zero semigroup,
every element of the partitioff ~1(s): s € S} of G* is a left ideal ofG*. Hence,f ~1(s)
is a left ideal of 3G for everys € S. Sincer | ¢, there existg € G such thaly = gr, so
q,r belong to the same member of the partition &ig) = f(r). O

The same argument shows that a functiorG — [0, 1] is slowly oscillating in the
balleanB, (G, Ro) if and only if the restrictiorz* of ## to G* is a homomorphism of;*
to the right-zero semigrouj, 1].

Proposition 6. If a compact zero-dimensional right-zero semigrdujs a continuous ho-
momorphic image ofi*, thensS is a continuous homomorphic image of the binary corona
e(B,(G, Ro)).

Proof. Let f be a continuous homomorphism 6&ff onto S. It suffices to show that
f(r) = f(g) for any two binary equivalent ultrafilters ¢ € G*. Suppose the contrary
and choose the binary equivalent ultrafilterg € G* such thatf (r) # f(q). SinceS is
zero-dimensional, there exists a continuous mapging — {0, 1} such thatf’'(f (r)) #
f'(f(@)). We putg = f’ f and note thap is a continuous homomorphism 6f* to the
right-zero semigroug0, 1}. Then we take a mapping: G — {0, 1} such that the restric-
tion »* of h? to G* coincides withg. Thenh is slowly oscillating inB, (G, ¥o) and
hB(r) # hP(g). Thus we get a contradiction to the assumption thatare binary equiva-
lent. O

We conclude the paper with some illustrations of our considerations.

e By Propositions 3 and 5, for every infinite groGpof regular cardinality, there exists a
compact right-zero semigroup of cardinalit%‘/cé which is a continuous homomorphic
image of GY". On the other hand, i& is an uncountable Abelian group, by Proposi-
tions 4 and 5, the only continuous right-zero homomorphic imagg*as a singleton.

e A groupG is calledlocally finiteif every finite subset o is contained in some finite
subgroup.

By [11, Lemma 4.3], ifG is either uncountable or a countable locally finite group,
thenv(B, (G, |G|)) = ¢B, (G, |G|)). By [6], every uncountable locally finite group
has one end se(B, (G, Rp)) is a singleton in this case.

e By the Freudental-Hopf theorem (see [4, Chapter 2]), every infinite gébhas one,
two or infinitely many ends. In view of Proposition 6, this theorem describes all pos-
sible finite right-zero continuous homomorphic image@f. This is a step to the
following general problem.
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Given an infinite groupz, determine all finite semigroups which are continuous homo-
morphic images of;*.

The first step is this direction was done in [12]. A finite graafis a continuous homo-
morphic image ofG* if and only if F is a homomorphic image af.
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