strator can reduce the risk. In so far as practical it is best
that one person set up an experiment alone, especially when
reflecting elements must be manipulated. Different output
levels, of course, call for different levels of caution, but, in
all cases, users should be knowledgeable about applicable
regulations and the nature of the type of injury that can
result not only from exposure to the coherent beam itself
but from associated electrical, chemical, and other dan-
gers.

Sources of appropriate information should be available
to all laser users, chosen from the list below or other
sources.

186. Teaching Physics Safely: Some Practical Guidelines in Seven Areas
of Common Concern in Physics Classrooms, A. W. Peterson
(AAPT, Stony Brook, NY, 1979). “Specific practical suggestions
on working safely with electrical hazards, lasers and light, pres-
surized and vacuum systems, ionizing radiation, fires, toxic ma-
terials, and mechanical dangers.” (E)

*187. “Laser Safety in the Laboratory,” H. Weichel, W. A. D. Donne,
and L. S. Pedrotti, Am. J. Phys. 42, 1006 (1974). An excellent
introduction to the types of hazards associated with the use of
lasers together with suggestions for a safe laser laboratory. Written
before current regulations were established. (E)

188. Laser Safety Handbook, A. Mallow and L. Chabot(Van Nos-
trand-Reinhold, New York, 1978). A comprehensive volume
covering biological effects, laser measurements, protective stan-
dards, control of laser radiation and associated hazards, public
laws and regulations, and more. Includes a chapter on classroom
safety. Certainly not everyone will need all of this material, but
just about everything that is needed is there. (I)

189. Safety with Lasers and other Optical Sources, D. Sliney and M.
L. Wolbarsht (Plenum, New York, 1980). A handbook that “re-
views current knowledge of biological hazards from optical ra-
diation and lasers, presents current exposure limits, and provides

. information required for the control of health hazards.
Chapters are included on specialized applications of lasers. . . .”
4

190. Laser Safety Guide (Laser Safety Committee, Laser Institute of
America, Cincinnati, OH, 1975). Laser hazards, calculations, and
measurements are included. (I)

191. The ANSI Laser Safety Guide (American National Standards
Institute, 1430 Broadway, NY 10018, 1976). Lists maximum
permissible exposure levels and safety measures to be employed
in using lasers. (1)

192. HEW (FDA) Publication 76-803: Laser Regulations (Director,
Division of Compliance, Bureau of Radiological Health, 5600
Fishers Lane, Roelsville, MD 20852). These regulations are in-
tended for the manufacturer of lasers and systems incorporating
lasers. It is, however, also the defining document for laser classi-
fications and measurements. (A)

XI. LASERS AND ESTHETICS

Fascination with lasers extends far beyond the realms
of science and technology, as is obvious to anyone who
regularly views contemporary films or visits modern art
galleries.

193. Laser Art and Optical Transforms, T. Kallard (Optosonic, New
York, 1979). Kallard has produced a book that illustrates the
range of potential of laser light as an art form. While the section
on optical transforms may be useful to teachers of physical optics,
its greater value may be in suggesting to students possibilities of
special project work that could combine elements of science and
art. The organizing intelligence of the artist is seen in a few ex-
amples. (E)

We add a cautionary note for those who may be asked
to “contribute” a laser display for some purpose beyond the
needs of the physics classroom. No one ever wants a modest
laser display. And a nonmodest, safe laser display may re-
quire an expenditure of time and money beyond that which
the unwary volunteer may wish to donate.

The laser is indeed a “wonderful” device, in the true sense
that it can invoke our capacity to wonder. And it is in
wondering about the world that science has its roots. With
a small laser and a hologram or two the physics teacher can
be a wizard, invoking this sense of wonder, and a scientist,
formulating and exploring the questions raised by his or her
wizardry.

Interaction-free quantum measurements: A paradox?

R. H. Dicke
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In Heisenberg’s famous discussion of the measurement of a particle’s position using a
microscope, the momentum transferred to the particle by the scattered photon makes
the particle’s momentum uncertain. It is shown that momentum is also transferred
when the lack of a scattered photon is used to discover that the particle is absent from
the field of view of the microscope {i.e., located outside the light beam). This apparent
paradox, a transfer of momentum and/or energy to a missing particle by a light beam
(without the scattering of a photon), is discussed and “resolved” using quantum

measurement theory.

I. INTRODUCTION

Heisenberg’s famous microscope experiment!-2 is dis-
cussed in many elementary textbooks on quantum me-
chanics. This beautiful “thought experiment” shows clearly
that the observation of the position of a particle with an
accuracy Ax is accompanied by a momentum transfer to
the particle with an uncertainty Ap and that AxAp > h/2.
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When a particle is “seen” in the microscope (Fig. 1) the
recoil momentum of the photon scattered by the particle is
uncertain by the amount ~psin@ (with p = h/A) and the
resolving power of the microscope is Ax ~A/sinf. Here A
is the photon wavelength. It is presently believed that an
essential feature of any determination of a particle’s position
is some interaction with the particle that leaves its mo-
mentum uncertain.
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Photon
_~Detector

Fig. 1. “Heisenberg
microscope.” The un-
certainty of the recoil
direction of the photon
scattered into the mi-
croscope makes the
particle’s momentum
uncertain,

But what if we fail to see a scattered photon (a null re-
sult)? The simple act of not detecting a scattered photon
provides new knowledge that affects the probability dis-
tribution of the particle’s position by reducing the proba-
bility of the particle being found in the field of view of the
microscope. And this seems to imply a change in the par-
ticle’s wave function and as a result, according to quantum
mechanics, possible changes in the particle’s momentum
and/or energy.

The paradox of such a quantum measurement without
a corresponding scattering of a photon raises several ques-
tions:

(a) Does the absence of a scattered photon imply a
change in the particle’s wave function?

(b) Can a properly constructed experiment yield this
type of null result?

(c) Does a change in the particle’s momentum (and/or
energy) without any change in the state of the radiation field
imply a violation of conservation laws?

(d) How can the paradox of a change in the particle’s
momentum or energy without an “interaction” be re-
solved?

If there really is a paradox we have every reason to believe
that the root cause must be some conceptual problem not
an inadequacy of quantum mechanics itself.

In addressing these questions our first task is to modify
the Heisenberg microscope to make it more suitable for
answering the simple query: “Is the particle located in the
light beam or not?”’ This modified microscope is shown in
Fig. 2. Using the optics shown, a light beam is brought to
a focus of diameter 2a > A. This light beam, moving in the
z direction, passes through two transparent paraliel walls
[(1) and (2)] that confine the particle in the z direction to
z ~ 0 while permitting it to move freely in the x and y di-
rections. The light beam is then absorbed by being focused
on a stop. The photons scattered by the particle generally
miss the stop and are detected by the photon counter (ide-
ally a 47 solid angle counter).

If a scattered photon is not detected by the counter an
originally motionless particle’s wave function is reduced
over the beam (r < a) and this reduction continues for
roughly ~Ma?/h seconds, where M is the particle’s mass.
Thus a meaningful position measurement requires a light
pulse of duration 7 << Ma?/h.

This light pulse must be sufficiently intense that a particle
found in the light beam almost certainly scatters at least one
photon. But then, conversely, the absence of a scattered
photon implies the absence of the particle from the beam,
implying that the particle is “elsewhere.”
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We shall now address the above four questions:

(a) If the light pulse shows the particle to be absent from
the beam, a second pulse (immediately following the first)
should almost certainly, find it absent. With the usual
meaning of the wave function this implies that after the first
light pulse

Y20 forr2=x2+y2<aq?
{b) According to the usual interpretation of the wave

function the probability of the particle lying outside the
focus (hence not scattering photons) should be

{ 1vi2axay <o,

where the integral is over the domain r2 > a2.

(c) The uncertainty in the transverse momentum of the
radiation pulse is > h/a (because of the focus and also the
large number of photons). For the energy the uncertainty
is > h/1. Thus the total momentum and energy of the sys-
tem are not well enough defined to permit direct tests of the
conservation of momentum and energy.

(d) A change in the (well-defined) momentum or energy
of a free particle (without some external disturbance) is
incompatible with mechanics. Presumably some sort of
interaction with the radiation field must be occurring
without the scattering of a photon.

A weakness in the above discussion is the implied
equivalence of “interaction” with “photon scattering.” The
distinction between the presence and absence of an inter-
action can be hardened by letting the interaction destroy
the particle. The “particle” could be an atom and the photon
energy could be great enough to “destroy” the atom by
ionizing it. The criterion for the absence of an interaction
between the radiation and the particle now need not be
photon scattering. It could be the survival of the particle.

For purposes of discussing this case we introduce another
thought experiment. (See Fig. 3.) The particle is an ion in
a uniform magnetic field. It is trapped in a quadratic elec-
trostatic potential and oscillates along the magnetic axis
with the frequency w.

In the lowest energy state this oscillation contributes Eg
= (1/2)hw to the ion’s energy. The corresponding wave
function Yo(x) is plotted in Fig. 3(c). Now imagine a short
(7w « 1) intense pulse of energetic photons illuminating
the region — a < x < a where

a 1
2 = =
f-a IVol?dx = .

Scattered
Photon
Counter

L (2)
——-{:—-\—\2(;)
Momentum
——A— """ cut-off
Beom

Aperture

Fig. 2. Modified Heisenberg microscope.
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Fig. 3. Particle (ion) trapped in a uniform magnetic field by a parabolic
electrostatic potential well (b). Its initial z-component wave function (c)
is modified by the intense radiation pulse in the range — a <z <a to (d),
which gives the probability distribution of the surviving ion.

It should be emphasized that the frequency w could be
extremely low and the distance a very large compared with
a wavelength. Thus there could be a quite sharply defined
boundary between the interior and exterior of the radiation
beam.

If the ion is found in the radiation beam (probability 0.5)
it is multiply ionized (hence destroyed) and the photoelec-
trons are detected.

If the photoelectrons are not detected the ion survives and
it is presumably located outside the radiation beam. Thus
the particle’s wave function is changed to y with

{wiz=o

[See Fig. 3(d).] But then the expectation value of the energy
{E) > Ey. Again an energy change of the particle occurs
without any obvious interaction with the radiation beam.

If the wave function after the result “ion intact” were to
be left unchanged (i.e., ¥o) we would face a dilemma, for
a quick sequence of n pulses would then leave the ion intact
with a probability (1/2)". But such a series of pulses is
equivalent to a single complex pulse for which this proba-
bility should be (1/2).

II. QUANTUM MEASUREMENT THEORY
AND THE NULL EXPERIMENT

In trying to find a possible conceptual error in the
above discussion we now examine the formal measurement
theory (due primarily to von Neumann3) as applied to a
simple example of a null experiment. The quantum-me-
chanical system will be an atom with a nondegenerate
ground state. We shall use resonant fluorescence scattering
of a photon by the atom to decide if the atom is in or out of
a radiation beam.

The measuring apparatus is that shown in Fig. 2 and the
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photon wave packet (of wavelength A) is considered to be
part of the apparatus. In making the measurement the
electromagnetic field of the wave packet acts on the atom
and the presence or absence of scattered photons is used as
an indicator for the presence or the absence of the atom
from the radiation beam. The interaction between the atom
and the field is treated quantum mechanically, but the
photon counting is treated nonquantum mechanically as an
irreversible process.?

Prior to the measurement, the atom and the radiation are
independent and the wave function of the combined system
is a simple product function of the states of these two
components. The interaction leads to a superposition of
product states. Each of these product states represents some
definite state of the electromagnetic field and the corre-
sponding state of the atom.

The “measurement,” an irreversible process, determines
the state of the radiation (and the atom) by destroying the
superposition and projecting out one of the various product
states with the appropriate probability. By observing the
presence or absence of scattered photons the state of the
radiation is determined and the associated atomic state is
also determined (or “measured”).

The radiation lifetime 7, of the excited state of the atom
is assumed to be so short that 7, < Ma?/h. The atom is
excited by a radiation pulse of length 7 « 7,. With these
inequalities the measurement can be divided into a sequence
of well-defined intervals and events: (a) prior to the inter-
action of the light pulse with the atom, (b) the interaction
interval, (c¢) after the interaction but before an absorbed
photon is emitted, (d) after the emission of the absorbed
photon but before the recoiling atom can move appreciably,
and (e) the detection of an emitted photon, if any.

We assume that the atom is confined to a rectangular box
that is large in the x and y directions and very small iri the
z direction (<< A). It is located at z = 0. The center-of-mass
wave function of the atom is written v(x,y,z). For simplicity
we assume that the atom is initially in its internal ground
state and also in the lowest energy state of its center-of-mass
motion.

The excited state of the atom is degenerate but for an
exciting light pulse of definite polarization a definite spin
state of the atom is excited. Thus we can consider the atom
to be a two-energy-level system if all nonresonant transitions
are ignored. We designate these two internal energy states
by m = 0 and 1, respectively.

Instead of quantizing the electromagnetic field in the
usual set of plane waves we introduce an orthonormal set
of “focused waves,” focused at z = 0 with a discrete fre-
quency spectrum. Waves of different frequency can be su-
perposed to form a second orthonormal set, describing fo-
cused wave packets. The initial state of the radiation pulse
is a state of n photons created in a particular wave packet.
(In the following, units are chosen toset A and ¢ = 1.)

As a first step we choose a hypothetical, large, perfectly
reflecting enclosure that has the z axis as a symmetry axis
and z = 0 as a symmetry plane. It is so shaped that the wave
amplitude function generated at the plane z = 0 by the
optical system of Fig. 2 is obtained as one of the normal
modes of the enclosure. This hypothetical idealized optical
resonator replaces the lens system of Fig. 2. The resonator
has a nearly spherical surface of radius r ~ b with b >> a
> A. This acts as a perfect reflector to reverse the wave
received from the focus at z = 0. Owing to the large size of
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the enclosure there are many (even) normal modes of dif-
ferent frequency having substantially the same function at
the focal plane and they are separated in frequency by the
corresponding odd modes (with nodal surfaces at z = 0).

To determine the shape of the resonator that generates
these focused standing waves as normal modes we start with
the (real) amplitude distribution u(r,¢,z = 0) at the focal
plane. This function describes the wave at the focal plane
generated by the optical system (Fig. 2) for @ = wy, the
resonance frequency of the atom. Using the two-dimen-
sional Fourier transform of u,

iy = —ik » 2
Ulky ky) = . fuexp( ik« x)d?x, n
we obtain
u(koX) =517; f Ulx, k) exp (i kex) cos k, zd% (2)

[with ky = v/(k§— k2) as the (even) standing wave asso-
ciated with the amplitude function in the focal plane]. We
now choose the shape of the perfectly reflecting resonator
to permit its surface to coincide with a nodal surface of
u.
The optical system of Fig. 2 employs a circular aperture
to define the light beam followed by a circular aperture in
Fourier transform space that cuts off waves with large
transverse momenta, k > k,,. This is followed by another
Fourier transform back to x, y space. The resulting wave
amplitude over the focal plane (z = 0) is

_ 1 km - n -
u(r,d),O)—%-j; J, (ka) Jo (kr) dk.  (3)

(See Fig. 4)
The normal modes satisfy

Vu+k?u=0, (4)

and are orthogonal for different values of k. Owing to the
symmetry axis (z) some modes are degenerate and we use
two indices, k and g, to designate the mode u(k,g,x).

We designate the orthonormal modes based on (1) by g
= 0. For conciseness we designate the set of all orthonormal
modes by u(k,x) with k representing both g and k. The
incident radiation pulse is assumed to be based on a su-
perposition of the waves given by g = 0. For these waves,
u is approximately constant over the focus (r < a). (See Fig.
4.)

We assume some definite polarization state for the ra-
diation field and an expansion of the electromagnetic vector
potential A, which is based on the normal modes u(k,x).
The quantum state of the electromagnetic radiation is then
a superposition of the states |. . . ,n(k),n(k’),n(k”),...).
Here n(k) is the number of photons in the mode u(k,x). [If
the orthogonal polarization state of the electromagnetic
field were also to be excited we would require two photon
numbers for each of the radiation modes u(k.x).]

Introducing the annihilation operator a(k) for the kth
mode and the corresponding creation operator a*(k) [the
Hermitian adjoint of a(k)] gives

]
I. L 0n(k),0,.. ) = W [a*(k)]"l ...,0,0,0,...).
(5)

The Hamiltonian of the free field is

928 Am.J. Phys., Vol. 49, No. 10, October 1981

H, = %‘ wa*(k)a(k), (6)

where the eigenvalues of a*(k)a(k) are n(k).
The classical wave packet describing the incident ra-
diation pulse (moving upward) is defined by

W) = %‘, C(0.k)u(k,x) exp(—iwt), (7

with w = k. Here the sum is over all values of g and k but
C(0,k) vanishes for g 0. C(0,k) is chosen to yield a time
dependence of W(0) at the focus (z = 0) of the form f(¢)
exp(—iwopt), where Eg = wy is the excitation energy of the
atom and f(z) is the envelope function of the wave packet.
Thus in the focal plane (z = 0),

W(0) = u(ko,x,p)f(t) exp(—iwgt) (8)

with g = 0.
We adopt (7) as the first member of an orthonormal set
of focused wave packets defined by

W(jx,t) = Zk: C{k)u(k.x) exp(—iwt), )

where the matrix C(j,k) is assumed to be unitary.
The creation operator for creating a photon in the wave
packet state j is

b*(j) = ; CG.k)a* (k). (10)

Hence, since C(j,k) is unitary

a*(k) = L.C(k)b* (). (1)

Instead of expanding the electromagnetic field in the
modes u(k) we shall now use the wave packet modes W(j).
With this new orthonormal basis the wave function

|....n(),...) =7];E[b*(j)]"*| 0,000, (12)

represents a state of n(j) photons in the W(j) wave
packet.
The Hamiltonian of the atom is

H, = p%2M + woo*a, (13)

where p = —iV and g* = (0| + i{0,)/2 is the Pauli operator
that excites the atom (m = 0 — 1). The eigenvalues of a*¢

a*xU (r)

T
"

@ 5 W 1.5
Y’\/O

Fig. 4. Wave amplitude u(r) at the focal plane for the incident radiation
pulse. Calculated for k,, = 16/a.
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are m = 0,1. The wave function of the free atom is of the
form

3 vm(x,p,2)|m). (14)

For the combined system, atom plus radiation, the wave
function is in general of the form

Zo(x,y,z)|m,n(0),n(1), ... .), (15)

where the sum is over all m,n(0), ..., and the indices
m,n(0), . .. of v have been suppressed.

It is assumed that the initial states of the electromagnetic
field and the atom are independent of each other. The wave
function is then a simple product function of the atom in its
ground state (m = 0) and the electromagnetic field in the
wave-packet state n(0) = n:

Yo = v(x,,2)]0,1,0,0, . . .). (16)
The interaction-free Hamiltonian is
Ho = p?2M + woo*o + Y wa*(k)a(k). (17)

The first (kinetic energy) term can be neglected in the in-
terval 0 <t < 7,. The interaction term is

H, =V][o* ; alukx)+ o %‘, a*(k)u(k,x)], (18)

wheére V is a constant and only the resonance terms are in-
cluded. (The excitation of the atom is accompanied by the
annihilation of a photon.)

The time evolution of the wave function ¥ can be ob-
tained from Schrodinger’s equation written in interaction
representation:

Ay =iag/ot (19)

with
H, = exp(iHot)H exp(—iHot) (20)

and
¥ = exp(iHot)y. (21)

The operator o*a(k) destroys a photon of energy w = k and
excites the atom with an energy wy. Hence

H, = Vio* %‘, a(k)u(k,x) expli(wo — w)t]
+0 % a*(k)u(k,x) exp[—i(wo — w)t])}. (22)
Substituting (11) in (22) yields
H\ = V]eivotg* {_: C(y,k)u(k x)e=i“th(j)
j

+ Hermitian adjoint]. (23)

The solution to Schrodinger’s equation can be written
~ t . ~
Y= exp(— i J; H, dt)¢0. (24)

The principal physically interesting point about (24) can
be made with a perturbation carried to second order,

¢=(1 —ij;tﬁldt
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- fo "HA() j; tlﬁy(t")dz’dt”*)%. (25)

With the assumption that the radiation pulse is very short
(T « 7,) there are no scattered photons at the time ¢ = 7.
The wave function is then a superposition of the original
state vector |0,n,0,0, . . .) with the single state vector |1,n
—1,0,0,...) representing the excited atom and n — 1
photons in the excited pulse. This latter state vector has its
origin in the term that is first degree in H, and contains the
factor o* and b(0). All other terms vanish.

By the time ¢ >> 7, the excited state of the atom has de-
cayed generating a photon [b*(j)] in some state other than
W(0), for the wave packet j = 0 departs from the surface
z=0att=171.

In accordance with the usual interpretation of a quantum
measurement as discussed above, if the photon counting
measurement (¢ >> 7,) shows no scattered photon, the re-
sulting new state of the electromagnetic field is the same
as the original state and is obtained from v in the form Py,
where P is the projection operator for states without scat-
tered photons

P =TI [1 = 6*()b()I (26)
=0
The nonvanishing terms in Py’ are found in (25) only in

the zeroth and second degree terms in H,. We first eval-
uate

j;t Hodt
t
v f expliwot) X C(0,k)u(k,x) exp(—iwt)dt
0 k
X a*b(0)v(x)]0,1,0,0, . ..)

= /nV J; ' f(0ydtukox)o()|1n = 1,00, ...). (27)
[See Egs. (23), (7), and (8).] In evaluating the second in-

tegral the only nonvanishing term in Py is the one con-
taining the factor ab*(0):

Pj;'ﬁl [T marar g
= ni? j; S0 j; “femyder dv
X |u(kox)|20(x)]0,n,0, ...). (28)
f(t) vanishes after t = 7, hence for t = 7,,
Py = (1 — nV2|u(kox)|? j; 0 j; 'f(t’)dt’dt)
X 0(x)[0,n,0,...). (29)

The atom is in its ground state and the expression in
brackets is a correction factor to the center of mass wave
function. The correction factor for the probability density

is
— T 2
[ I*[ 1= (1 — nV?|u(ko,x)|? j; f(t)dt| ) (30)
The reduction factor for the probability density inside »

= a, namely,
NG b@n G

nV?|u(ko,x)|?
is identical with the absolute square of (27) for ¢t = 7,
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namely, the probability density for the distribution of the
excited atom right after excitation by the radiation
pulse.

Consistent with the earlier discussion we find that the
observation that a photon is not scattered results in a
modification of the center-of-mass wave function of the
atom. The resulting reduction in the probability density of
finding the atom in the beam (r < a) when the photon is not
scattered is identical with the probability density of ob-
taining a scattered photon, hence finding the atom in the
beam. »

With the assumptions that 7 << 7, and that ¢ < 7, the
calculation can be carried out to all orders. The only state
vectors appreciably excited are |0,n,0,...) and |1,n
-1,0,...). Adopting a real envelope function f(¢) and
defining a new element of time dr* such that '

dr* = f(t)dt, (32)
gives the two equations
~ 1 dn = § I /%
ST Hyp = i 9y,/0r*, (33)

STV W =i f/ork,
where ¥ = Yo + ¥, and P{ = {. Here, f~'H, is time in-
dependent. The equation (33) yields the equation

nV2|u(ko,x)| 20,1 + 8%0,1/01*2 = 0, (34)
with the solution
gfo = cos(0/2)v(x)|0,1,0, . ..), (35)

Y1 = sin(6/2)v(x)|1,n — 1,0, .. .),

where 0 = 24/nV|u(kg,x)|t*. For t > 7 the atom can no
longer create or destroy a photon with j = 0. Hence Y is
constant for ¢ > 7. The measurement projection P carried
out at ¢ > 7, gives this result. To the extent that |u(ko,x)|
is uniform over the focus the pulse intensity # can be ad-
justed to yield a pulse with 8 = 180° for r < a. (# = 0 for r
> a.) For this choice of n the absence of a scattered photon
implies the absence of the atom from the radiation beam.

III. SUMMARY AND CONCLUSION

We now seem to have at least a partial resolution of the
paradox. The deduction that (after the observation) the
atom is not located in the radiation beam is based on the
absence of a scattered photon. This apparently correctly
implies that the quantum state of the electromagnetic field

Albert Einstein in Japan: 1922

has not been affected. Nonetheless, the center-of-mass wave
function of the atom has been changed to eliminate the atom
from the beam and in the process the expectation value of
the atom’s center-of-mass motional energy has been in-
creased. .

The apparent lack of an interaction between the atom and
the electromagnetic field is only illusionary. In lowest order
the perturbation calculation shows that the change in the
atomic center-of-mass wave function is associated with the
absorption of a photon from the incident wave packet and
the subsequent return of the photon to the packet. If the
absorbed photon could have been assumed to have had a
well-defined momentum and energy (as is usually the case)
this type of photon absorption and re-emission would not
result in the transfer of either momentum or energy to the
atom. But, as we have seen, the observation requires the
photons to be initially in a state for which neither the mo-
mentum nor the energy of the photon is well defined. Con-
sequently, the photon exchange can result in a momentum
or energy transfer.

The position measurement of the atom is self consistent
in the sense that an immediate repetition of the measure-
ment finds the atom to be missing from the beam if the first
one found it missing. But there is an important difference
between the two measurements. The second one is not ac-
companied by any additional transfer of translational en-
ergy to the atom. The first one appears to be more than a
position measurement. It generates a state of definite po-
sition and determines that position (r > a or r < a). The
second measurement only confirms the result.
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TRANSLATOR’S INTRODUCTION

In 1922 Albert Einstein accepted an invitation to visit
Japan. Welcomed by the Japanese public with an excite-
ment and enthysiasm reserved in most countries for the idols
of stage and screen, he spent most of November and De-
cember of that year on lecture tour.

Dr. Einstein was warmly and sincerely admired in Japan,
not only for his scientific genius, of which his Japanese hosts
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had been well aware before his arrival, but also for the ex-
traordinary human qualities he manifested in person, which
the Japanese were able to perceive at once, across all bar-
riers of language and culture.

Einstein’s trip was extravagantly covered by the press;
his itinerary and his speeches were reproduced; and several
people who were close to him during those months published
their reminiscences. None of these publications, however,
surpasses the small masterpiece produced by Ippei Okamoto
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