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Abstract

Peer to Peer streaming (P2P-TV) applications have recently emerged as
cheap and efficient solutions to provide real time streaming services over
the Internet. For the sake of simplicity, typical P2P-TV systems are de-
signed and optimized following a pure layered approach, thus ignoring the
effect of design choices on the underlying transport network. This simple
approach, however, may constitute a threat for the network providers, due
to the congestion that P2P-TV traffic can potentially generate. In this paper,
we present and discuss the architecture of an innovative, network cooper-
ative P2P-TV application that is being designed and developed within the
STREP Project NAPA-WINE1. Our application is explicitly targeted to fa-
vor cooperation between the application and the transport network layer.

1NAPA-WINE (http://napa-wine.eu) is a 3 year STREP project started on February 1-st 2008
and supported by the European Commission within Framework Programme 7 (ICT Call 1 FP7-
ICT-2007-1, 1.5 Networked Media, grant No. 214412). This paper reflects its evolution after about
two years.
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1 Introduction
Peer-to-peer (P2P) technology has been recently exploited to offer video service
over IP (P2P-TV), as for example done by PPLive, SopCast, TVAnts, CoolStrem-
ing/UUSee, and TVUplayer to name a few commercial systems. Recently, the
interest of the research community has started to raise thanks to the opportunities
P2P-TV systems offer [1]. In this context NAPA-WINE (Network Aware Peer-
to-peer Application over WIse NEtwork), a three years project (STREP) within
the 7-th Research Framework of the European Commission, focuses on improv-
ing the performance of P2P live streaming distribution, while protecting network
resources from excessive usage. In a traditional P2P-TV system, a video source
chops the video stream into chunks of data, which are then exchanged among
nodes distributing them to all participating peers. Peers form an overlay topol-
ogy at the application layer, where neighbor peers are connected by virtual links,
over which chunks are exchanged using the underlying IP network. Two network-
ing layers can be identified: the overlay layer in which peers exchange content,
and the IP layer, in which routers and links transfer the packets. The main goal of
NAPA-WINE is the study of novel Peer-to-Peer architectures and systems suitable
for High Quality TV live streaming over the Internet: a P2P-HQTV system [2].
NAPA-WINE focuses on overcoming the limitations of today’s approaches, where
the two layers are completely independent and at times antagonists. Instead, we
envision a cooperative paradigm in which the application and network layers in-
teroperate to optimize the service offered to end users, as depicted in Fig. 1.

We believe that an approach where the overlay and the IP network ignore each
other, while acceptable for elastic applications or low-bandwidth streaming ap-
plications, may cause intolerable performance degradations for high-quality real-
time (even for soft real-time) applications such as P2P-TV: If the network gets
heavily congested, the application will never be able to meet its minimum require-
ments. As a consequence, the only successful paradigm for a large scale P2P-TV
architecture is a cooperative paradigm, where the network and the application join
forces to meet the quality of service requirements, and to reach the largest possible
population of users.

Finally, there is an additional push to such cooperation. In traditional P2P
systems, only two main actors can be identified: the network providers and the
application users; and their interests are often in contrast. In the case of P2P-
TV, a new main actor comes into play: the content producer, whose interests
are mainly in distributing its contents through the Internet in the safest possible
way, thus avoiding every possible problem, either technical or legal, which could
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induce users to migrate away. This is a major shift with respect to today P2P
applications, where users provide contents, a shift that provides further incentives
for network operators to cooperate with the content providers and the users to
successfully deliver the video. Note that cooperation between network providers
and P2P applications has been already investigated in the context of file sharing
P2P applications (see for example the pioneering work [3]), but it has never been
applied in the context of P2P-TV system design and performance evaluation.

In this context, the NAPA-WINE project is proposing an innovative network
cooperative P2P-TV architecture that explicitly targets the optimization of the
quality perceived by the users while minimizing the impact on the underlying
transport network. The focus is on the study, design and development of a P2P-
HQTV system, in which peers setup a generic mesh based overlay topology, over
which video chunks are exchanged according to a swarming-like approach. A
source peer produces the video stream, chops it into chunks, and injects them in
the overlay where peers cooperate to distribute them.

The architecture we envision is schematically represented in the Fig 1. An
important element of the cooperative P2P-HQTV system is represented by the
built-in distributed monitoring tool that allows the application to continuously
gather real time information both on network conditions and users’ perceived
performance. Information collected by the monitoring tool can be used to trig-
ger reconfiguration algorithms acting both at the level of the chunk distribution
mechanism (scheduling) and at level of the overlay topology reconfiguration. In
addition, potentially useful information on the system state can be also exported
to the network, so that it is aware of the status of the P2P-HQTV system.

The architecture we propose also allows the network layer to expose useful in-
formation to the application layer. As pursued by the IETF in the ALTO [6] work-
ing group with the contribution of NAPA-WINE partners, the network provider
is given the capability to guide the P2P application, for example by explicitly
publishing information about the status of its network, like link congestion or AS
routing preferences.

2 The High Level Architecture
This section describes the main functions and requirements of a P2P-TV system,
proposing the high-level architecture for the NAPA-WINE system, whose block
diagram is depicted in Fig. 2.
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2.1 User Module
The “user module” (blue block in Fig. 2) implements the interface between the
user and the application. Besides the Graphical User Interface (GUI), it is respon-
sible of video coding and decoding. If the considered peer is the source node, the
input video signal has to be converted into a sequence of chunks, which are the
atomic unit of data that will be exchanged in the P2P overlay. Depending on the
type of video source this may include analog/digital conversion, encoding, adding
forward error correction (FEC) information, etc. User module supports any avail-
able CODEC thanks to a standard interface. Furthermore, it implements flexible
chuncking mechanism which can explicitly consider the nature of the video, e.g.,
forming chunks considering frame boundaries and types. When the peer acts as
receiver only, the user module reassembles the audio and video stream from re-
ceived chunks, so that, after decoding and resynchronization, the video can be
displayed.

The user module runs also video quality monitoring algorithms constantly
monitoring the quality of experience the user is perceiving. Finally, several in-
stances of the user module can run at the same time, allowing to watch a channel
while recording another one, or maintaining pre-views of other channels with re-
duced quality.

2.2 Scheduler Module
The “scheduler module” (the yellow block in Fig. 2) is the core of the informa-
tion distribution engine. It is responsible for receiving and sending chunks, both
from/to other peers via the network, and to/from the local “user modules”. Dif-
ferent instances of this module might run at the same time, each taking part in
one overlay serving one channel. Cross-channel information diffusion is under
consideration and may help to optimize service and channel switching, but is not
under development so far.

The scheduler module hosts the chunk and peer scheduling algorithms, which
select both what should be offered (or requested) and to (from) whom. The deci-
sion is based on distributed information —a local database of the status of other
peers stored in the active peers database. Options for designing the scheduler and
the impact on overall system performance are detailed Sect. 4.
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2.3 Overlay Module
We recall that in unstructured systems peers form a generic highly mesh topology,
this guarantees good resilience to churn and great flexibility.

The “overlay module” (the top-right red block in Fig. 2) selects and updates
the peer Neighborhood, i.e., the set of peers the local peer exchanges information
with. A fairly large number of neighboring peers are maintained to form a well
connected overlay structure, as peers may leave an overlay at any time, e. g., when
the user switches channel. Discovering new peers and establishing connections to
them, as well as forwarding information about them to other peers is the task of
the overlay module.

The selection of peers may be based on the information stored in the reposito-
ries, which, as detailed later, store information about both peers and the transport
network. The overlay and the scheduler modules are interdependent, and for this
reason they are detailed together in Sect. 4.

2.4 Monitoring Module
Both the chunk scheduler and the overlay manager can greatly benefit of infor-
mation about the quality of the connectivity with other peers. This includes, but
is not limited to, the distance and the available bandwidth between two peers, or
the presence of Network Address Translation (NAT). The “monitoring module”
(the green block in Fig. 2) gathers this kind of information. It basically has two
modes of operation: Passive measurements are performed by observing the mes-
sages that are exchanged anyway between two peers, e. g., when exchanging video
chunks or signaling information; Active measurements, in contrast, craft special
probe messages which are sent to other peers at the discretion of the monitoring
module. The design of this monitoring module is one of the most innovative goals
of NAPA-WINE and it will be documented in Sec. 3 in detail.

2.5 Repositories and Repository Controller
“Repositories” (in the center of Fig. 2) are databases where information about each
peer is shared with all other peers. Indeed, the information generated by the moni-
toring module is not only useful for the local peer, but also for other peers that can
benefit from it. Therefore, mechanisms for exchanging measurement values with
other peers are useful. Furthermore, it may be useful to have access to information
from entities that are not part of the P2P overlay, such as the so-called “network
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oracles”, through which, for example, network providers can share information
about the status of the network.

The information acquired by each peer is locally stored and readily available,
and it is summarized and exported (published) to the (logically) central repository.
The contents of the repository, and data import and export are managed by the
repository controller which implements a set of API to push and fetch information
from the repository database.

2.6 Messaging Layer
The “messaging layer” (the orange block in Fig. 2) offers primitives to the other
modules for sending and receiving data to/from other peers. It abstract the access
to transport (UDP/TCP) protocols and the corresponding service access points
offered by the operating system by extending their capabilities and providing an
overlay level addressing, i.e., assigning a unique identifier to each peer. For ex-
ample, it provides the ability to send a chunk of data to another peer, which has
to be segmented and then reassembled to fit into UDP segments. The messaging
layer also provides an interface to the monitoring module, which is used for pas-
sive measurements: whenever a message is sent or received an indication will be
given to the monitoring module, which can then update its statistics.

Another important feature of the messaging layer is the presence of mecha-
nisms for the traversal of NAT boxes. Network Address Translation allows to at-
tach several computers to the Internet using only one public IP address. Therefore
it is very popular with private customers, who are also the main target audience
for P2P TV. However, the presence of a NAT device may prevent peers from es-
tablishing connections to other peers, therefore, special NAT traversal functions
are offered by the messaging layer.

3 The monitoring Module and Repositories
The monitoring module is conceived to collect and share information useful for
the construction and maintenance of the P2P overlay topology and for the schedul-
ing process of video chunks. The main objective is to maintain up-to-date infor-
mation on the quality of peers end-to-end path, and to infer information on the
network’s available resources. Repositories, both local and global, are used to
store metrics, estimates, and measured data requiring additional elaboration. Fur-
thermore, a certain number of functions act on these data to produce up-to-date es-
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timates of various parameters that can be published on global repositories through
an interface named “Repository Controller”. Particular care is taken to optimize
both the computational and the memory requirement of the previously mentioned
functionalities. The repository controller limits the amount of information that is
exchanged among peers through the network to avoid waste of bandwidth. It also
verifies that a peer can access the information it is requesting. Indeed, each repos-
itory stores data that can remain private and local to the peer, or information that is
made publicly available. The distinction between public and private information
could be based on security considerations, and also on its usefulness and the cost
of its dissemination. For example, the ISP can share information about the status
of its network only with clients connected to its network.

In the following, we detail the functionalities implemented in the monitoring
module.

3.1 Monitoring components
Measurements are available at the chunk and segment levels, i.e., above and below
the messaging layer. Several network layer metrics can be monitored: i) delay
between peers (e.g., Round Trip Times (RTT), Delay Jitter), ii) loss probability,
iii) path capacity and available bandwidth, iv) number of hops traversed. Other
more sophisticated measures are under study. Thanks to a simple and modular
architecture, measurements can be added as (compile-time) plugins, and activated
on demand. The monitoring layer is implemented at every peer, and information
it collects is made available to the all peers. Table 1 summarizes the network layer
measurements that are currently available in the monitoring module.

The monitoring module is build of three main components.

3.1.1 The Passive Measurements Component (PaM)

implements the set of measurement functionalities needed to passively monitor
exchanges between peers. This function is passive as it relies on peers’ commu-
nications to reduce as much as possible any overhead. Each measure is initiated
by the sender, and the receiver cooperates to complete it, e.g., sending back ac-
knowledgment messages. Results of each measurement are then fed to the sender
Monitoring Controller, which possibly elaborate them before pushing results in
the P-REP (Peer-Repository) and N-Rep (Network-Repository).
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3.1.2 The Active Measurement Component (AcM)

performs active measurements, i.e., it can inject pure measurement messages and
data that do not carry any user information. This function possibly runs a number
of different measurement probes, either periodically or on request. For example,
it may be invoked to estimate the end-to-end status between the local peer and a
remote peer to which no chunk is being sent. Therefore, AcM may be also seen
as a bootstrap function when limited knowledge of the peers and the network is
stored in the P-REP. Active measurement results in a waste of bandwidth, and
therefore care must be taken when activating them.

3.1.3 The Monitoring Controller (MON-Controller)

is in charge of managing all the measurements performed by the PaM and the
AcM. It implements the algorithms to decide when to trigger a particular mea-
surements, and to process the results of each end-to-end measurements. For ex-
ample, the MON-Controller can evaluate average, standard deviation and confi-
dence intervals of a given index; it can identify and possibly discard wrong sam-
ples, etc. Considering the global network knowledge, it is supposed to implement
the algorithms that infer the network status, e.g., by implementing some network
tomography or virtual coordinate systems that are then stored in the N-REP. It
is also responsible to push locally cached measurement results into the central-
ized repository, by summarizing them to avoid excessive traffic overhead. The
communication of MON-Controller with the repositories is granted by the Rep-
Controller.

3.2 Monitoring Example
Fig. 3 provides a simple example of measurements obtained with the current im-
plementation of the monitoring module. It shows the measurements of the Capac-
ity and of Available Bandwidth (top plot), and the measurements of Round Trip
Time and of Loss Probability (bottom plot). A controlled test bed has been used,
in which 10Mbps Ethernet link connects a source peer to a receiver peer, while in-
terfering traffic is injected. In particular, a 4Mbps CBR source is active from time
300s to 600s; at time 600s, a 7Mbps CBR source is active up to time 900s. Then
from time 1200s and up to time 1500s, TCP connections are started every 60s.
From the Figure, it is possible to observe the variation of available bandwidth, the
increase of the RTT and the losses induced by interfering traffic.
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3.3 Repositories
In the NAPA-WINE architecture, repositories are envisioned as global databases,
containing information to aid peer selection decisions.

Repositories are key elements in the design to achieve network awareness.
They have one additional important role in solving the bootstrapping problem of
P2P systems: namely, upon startup, a peer needs to obtain a list of neighbor can-
didates. Repositories are well suited for this role: the peer only needs to have
access to a few well-known repository servers in its initial configuration. To in-
crease repository resilience, various approaches (such as database replication and
DHT-like technologies) can be studied, which are outside of the NAPA-WINE
prototype design scope.

The NAPA-WINE architecture defines three different repositories based on the
information they contain:
1) P-REP.: The peer repository is a distributed repository storing information
about the peers’ status and end-to-end measurements performed by the peers’
monitoring modules, for instance, average bandwidth over different periods of
time, round-trip time, download/upload success rates etc. Each peer measures
and stores locally these quantities, for instance as an N ×N matrix, N being the
number of neighbor peers (those discovered and selected by the topology man-
ager). Measures can be exported in an aggregated form to a global (distributed or
centralized) database, the global P-REP, for performance monitoring and statisti-
cal analysis, possibly including information on obtained quality, visited channels,
etc. A centralized prototype has been developed and is used to display on a web-
service the swarm topology, its characteristics, and how different architectural
choices affect the P2P-TV application.
2) N-REP. Network repositories store network-wide information inferred from
P-REP values. The information stored by P-REP is hardly complete about all
possible N2 peers end-to-end paths. Indeed, each peer typically collects measure-
ment over a subset of all peers. In particular, when joining a given channel, the
new peer has little or no information on the status of other peers, and of the end-to-
end path characteristics. To solve this problem, “virtual coordinate” [4] systems
and network tomography [5] have been studied in the research community, whose
goal is to map peers to nodes into a virtual space, in which distances among nodes
reflect the actual distances in the real system, or to infer network properties from
a subset of measurements. Both allow, for example, to “predict” the quality of an
end-to-end path which has never been tested in the past. The N-REP stores results
these systems generate. The topology manager uses this information together with

9



distributed algorithms like Tman to achieve the desired topological properties.
3) E-REP. The external repository is dedicated to store out-of-the-box, semi-static
information on the network. It is conceived for network operators that can fill
it with non public information, e.g., AS graph and peering points, the ranking
of routing paths, routing tables, information on the routing optimization and the
network topology. It can also store intra-domain information of one or multiple
AS. Clearly, access to this information must be protected and granted only to
a subset of peers, e.g., to only clients in the AS of the ISP. Therefore, the E-
REP runs on dedicated equipments installed and managed directly by the network
operator or content provider. For example, in the ideal case, the E-REP stores the
full knowledge on the AS network; the whole ISP topology is therefore exposed
to the P2P application.

The E-REP also has an interface for connecting to Application Layer Traffic
Optimization (ALTO) servers. The goal of an ALTO service —as currently being
standardized in the IETF— is to provide applications with information they can
use to optimize their peer selection [6]. The kind of information that is meaningful
to convey to applications via an out-of-band ALTO service is any information that
applications cannot easily obtain themselves (e.g., through measurements) and
which changes on a much longer time scale than the instantaneous information
used for congestion control on the transport layer. Examples for such information
are operator’s policies, geographical location or network proximity (e.g., the topo-
logical distance between two peers), the transmission costs associated with send-
ing/receiving a certain amount of data to/from a peer, or the remaining amount
of traffic allowed by a peer’s operator (e.g., in case of quotas or limited flat-rate
pricing models). ALTO services can be provided by network operators, third par-
ties (e.g., entities which have collected network information or have arrangements
with network operators that enable them to learn such information), or even by
user communities. The ALTO-interface gives such parties a concrete method for
making this kind of information available to the E-REP: The E-REP can use the
standard interface of ALTO servers, providing such ALTO-information to NAPA-
WINE peers.
4) Rep-Controller. The peer accesses repositories via its Repository Controller
(Rep-Controller) modules. This software component implements the repository
protocol and exposes it over a client API. A single Rep-Controller is able to com-
municate to multiple repository servers concurrently, and has advanced services
like data caching and batch publishing of measurement data (to save precious
bandwidth).

The repository access protocol is designed for the following basic use cases.
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A) Publish measurement results made by peers’ monitoring modules (or N-
REP processors) into the global database. This is a simple operation, publishing
an (originator, peer1, peer2,measurementID, value) record. originator is typ-
ically a peer (whose Monitoring Module has generated the data), equal to peer1;
peer2 is non null only for peer-pair measurements.

B) Retrieve the list of “best” Peer IDs according to given criteria. This is
the main “retrieval” primitive, designed to support the topology manager in the
neighborhood selection and ranking. The operation is specified as

(maxPeers, constr1, . . . , constrn, weight1, . . . , weightm)

where constraints are specified on measurement values, and weights form a utility
function the result list is ordered by. This allows formulating queries such as
“return a list of at most 10 peer IDs which are closer to peer2 than 5 TTL hops
and have smaller round trip time to peer3 than 500ms and sort the list by the peers’
own reported upload bandwidth”.

C) Retrieve measurement results or inferred values for fine-tuning trading al-
gorithms. This primitive allows the direct query of published (measurement or
other) values relevant to a given peer.

D) Retrieve repository meta-data such as the list of measurementIDs the
repository has records for. This allows client peers to parameterize their peer
listing queries accordingly.

Since information stored in the repositories is sensitive, the repository con-
troller enforces security and policies so that only authorized peers can retrieve
information. For example, access to the information about ISP topology or AS
routing stored in the E-REP is granted only to peers actually connected to that
ISP.

4 Scheduler and Overlay Modules
A P2P-TV client needs to communicate very efficiently with other peers to receive
and redistribute the huge amount of information embedded in a video stream. In
addition, TV being a real time application, information must arrive in short time
and with small delay variation. The application goal is then to deliver all the video
information to all peers in the system in the smallest possible amount of time. To
reach this goal, a distributed system and algorithm must be adopted. The key
enabling factors for efficient communication by a peer are: who are the peers to
communicate with, i.e., its neighboring peers, and what data is exchanged within
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this neighborhood. The first factor drives the overlay management strategy, while
the second one dictates the goals of the scheduling algorithms at each peer.

Fig. 4 sketches the relationship between the functions that compose the over-
lay management, and the functions that compose the overall strategy for offering
and searching information within the neighborhood of each NAPA-WINE node.
Interfaces toward the repositories, the user module and the messaging layer are
also indicated.

The design architecture followed allows flexibility and adaptivity, so that, for
instance, chunk and peer selection strategies can be tuned even at run time based
on feedback received from other peers either via gossiping or through the reposi-
tories.

The Neighborhood database (in green in Fig. 4) is populated as soon as a peer
participate in the distribution of a TV channel. For the sake of clarity we describe
both scheduling and overlay management as if only one channel is present, but we
are also studying the extension to the joint management of multiple channels.

Always referring to Fig. 4, the components in yellow are related to chunk
scheduling, transmission and reception, while those in blue refer to topology man-
agement and signaling in general (exchange of buffer maps, i.e., the list of chunks
available at each peer, availability to service chunks, etc.). The two functionalities
interact through the Neighborhood database as well as the chunk buffer (i.e., the
structure where chunks are stored for trading and before play-out), and the related
buffer maps of neighbors.

4.1 Building and Maintaining Neighborhoods
The overlay network in P2P systems is the result of a distributed algorithm that
builds and maintains the neighborhood at each peer. When a peer joins the system,
it selects an initial set of neighbors (we call this phase bootstrapping); then the
set of neighbors of every node in the system is dynamically optimized over time
(overlay maintenance).

The bootstrapping phase is most naturally helped by the Repositories. For
the maintenance phase, basing everything only on the Repositories could result in
limited scalability and resilience. This is the reason why topology maintenance is
performed exploiting information retrieved from the repositories as well as infor-
mation locally distributed via a gossiping-based mechanism (the latter mechanism
will allow the system to work even with Repositories absent).

Culling of neighbors is mainly based on the perceived “quality” of the neigh-
bors; indices that impact this choice are the inter-peer throughput, the measured
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RTT, the chunk loss rate, etc. Addition of neighbors is instead based on a mixed
strategy of optimization (e.g., adding the most stable and resourceful peers) and
randomization to avoid fragile topologies (e.g., group of peers with too few con-
nections toward the rest of the overlay).

Our architecture will make overlay creation and maintenance algorithms much
more effective since it offers through the repositories continuously fresh informa-
tion to the peers about the presence of new resourceful peers. As an example,
Fig. 5 shows different overlay topologies obtained using different neighbor selec-
tion algorithms: In A), a complete random choice is performed; In B), peers are
selected according to the Autonomous Systems they belong to, as reported by the
E-REP; In C) peers prefer to selected nodes with large upload bandwidth, as re-
ported by the P-REP; Finally, in D) high upload bandwidth peers within the same
AS are preferred.

4.2 Scheduling chunks and peers
Once a topology has been setup, each peer participates in the chunk exchange
procedure, with the twin goal of receiving the stream smoothly and in time and
cooperate in the distribution procedure. We do not discuss the problems of fair-
ness and security here, because they are not the main focus of NAPA-WINE, and
therefore we assume peers are honest and cooperative.

Scheduling the information transfer is probably the single function that most
affects performance and network friendliness. This function includes protocol as
well as algorithmic problems. First of all, peers need to exchange information
about their current status to enable scheduling decisions. This is a requirement in
an unstructured system, where the stream flow does not follow strictly the overlay
topology (e.g., a tree). The information exchanged refers to the state of the peer
with respect to the flow, i.e., a map of which chunks are “owned” by a peer,
and which are missing. This task is carried out by the Information Signaling
Strategy block in Fig. 4. This block is in charge of i) sending buffer maps to other
nodes with the proper timing, ii) receiving them from other nodes and merging
the information in the local buffer map data base, iii) negotiating if this and other
information should be spread by gossiping protocols or not, and to which depth
it should spread in the topology. Besides the buffer map exchange, the signaling
includes Offer/Request/Select primitives used to trade chunks. These messages
can be piggybacked on chunks for efficiency.

Another key protocol decision is about Pushing or Pulling information. A
chunk is pushed when the peer owning the chunk decides to send it to some other
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peer, while it is pulled when a peer needing the chunk requests it from another
peer. From a theoretical point of view, as shown in [8], pushing is more effective:
assuming a synchronous system in which peers coordinate to avoid sending more
than one copy of the same chunk, in [8] we have demonstrated the existence of
an optimal distributed scheduling that achieves the minimum delivery time to all
peers td = dlog2(N)e + 1 chunk times, where N is the number of peers, while
no such algorithms are known for pulling systems. Practical implementations,
however, often prefer a pull based mechanism, because it guarantees that no con-
flicts arise at the receiver. Other options include mixed Push/Pull strategies [10],
and Offer/Select chunk trading [11] that can be associated to both Push and Pull
strategies.

Regardless of the protocol and the signaling strategy used, the core of a sched-
uler is the algorithm to choose the chunk to be pulled or pushed and the peer to
communicate with. During the project we have developed many algorithms and
strategies that optimize the performance of the system and that are being imple-
mented in our prototype [7, 8, 9].

For example, Fig. 6 reports the 95th percentile of the delivery delay of all
chunks to all peers in an overlay topology in which each peer has 20 neighbors
selected at random. 1000 peers are considered (with different upload bandwidth),
chunks last 1s, so that propagation delay is negligible compared to chunk trans-
mission time. We report the performance of five schedulers:

RUc/RUp: a random chunk is sent to a random peer that needs it;

RUc/BAp: a random chunk is preferentially sent to high upload bandwidth peers
that needs it;

LUc/RUp: the youngest chunk is sent to a random peer that needs it;

DLc/ELp: deadline based algorithm that diffuse the chunk with the smallest
deadline (see [8] for details) to a peer that is in the best possible state to
further diffuse it.

DLc/BAELp: same as above, but preferentially selecting high upload bandwidth
peers.

As it can be seen, more advanced schedulers allow to reduce the chunk delivery
time, with improvements up to a factor of 5 at high load. Notice that information
provided by the P-REP, such as the peer upload bandwidth, leads to a significant
improvement.
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Immediate Pushing of chunks may have drawbacks in some scenarios (e.g.,
when the RTTs is not negligible compared to chunk transmission time) and ex-
plicit acceptance of the chunk transfer may guarantee better usage of resources.
We have investigated signaling mechanisms where the transmitters and the re-
ceivers peers explicitly exchange signaling messages to agree on the chunk to be
transferred; the scheme requires the sender to maintain a local queue of already
scheduled chunks to seamlessly exploit peer upload bandwidth [11].

5 Conclusions and On-Going Work
TV applications exploiting the P2P communication paradigm are taking momen-
tum and are already a commercial reality. Their overall architecture is however
imprinted by file-sharing applications and they operate without any coordination
with the IP network, often resulting in poor, even wasteful resource usage, to the
detriment of both network and users, and preventing them from the possibility to
scale to High Quality (let alone High Definition) TV.

We have presented in this paper the architecture of a P2P-TV system as being
developed in the NAPA-WINE project, that is designed with the goal of efficiency
and cooperation between the application and both the network operator and the
content provider, aiming at optimizing resource usage and minimize the P2P-TV
application impacts on the transport network.

The key features are: i) the development of algorithms for topology manage-
ment and information scheduling that, starting from network measures, minimize
the usage of network resources while preserving the application performance; and
ii) the presence of shared repositories that can be used to exchange information
between the network and the application, so that the decisions taken by peer re-
garding connectivity, topology, signaling, and information transfer can be taken
with the appropriate knowledge-base.

The overlay topology management and the chunk scheduling of information
has been identified as key features for the application to be network-friendly. The
first function enables building efficient and rational overlay topologies that are cor-
rectly mapped on top of the transport network structure (e.g., considering minimal
number of hops between neighbors, locality w.r.t. Autonomous Systems, etc.).
The second function guarantees that the network capacity is exploited without
waste (e.g., by minimizing retransmissions and pursuing an efficient distribution
of chunks, etc.).

These key features must however be supported by measurements, that in most
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cases are dynamic and can only be implemented in the application overlay itself.
As a consequence, the Measurement Module assumes a central role in the sys-
tem, and the development of efficient algorithms and methods for measurement is
just as fundamental to the overall system as efficient topology management and
scheduling.

The described architecture is being implemented in the NAPA-WINE project
and is made publicly available as software libraries under LGPL license, freely
downloadable from the project web site.
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Table 1: Summary of the network layer measurement available in the Monitoring
Module.

Index Accuracy Usage / Criticalities
Hop Count High Topology optimization

Packet Loss High
Triggering scheduling & topology update and
QoE monitoring

Chunk Loss High
Triggering scheduling & topology update and
QoE monitoring

Delay Measurements

Latency > 10ms
Source and stream absolute time alignment /
Clock synchronization below NTP precision is
hard to obtain

RTT < 1ms
Chunk and peer scheduling / Timestamping ac-
curacy limits precision

Jitter < 1ms Delay jitter may be an indication of congestion
Bandwidth Measurements

Mid term
Throughput High

Neighborhood selection and chunk/peer
scheduling

Capacity Low
Pacing chunk scheduling for altruistic peers
to avoid clogging a PHY bottleneck (e.g.,
ADSL links beyond a LAN)

Available
Bandwidth Low

Fundamental to avoid congestion in the network
/ Difficult to achieve high accuracy due to cor-
relations and the lack of efficient algorithms to
perform the measure
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Figure 1: Schematic representation of the NAPA-WINE approach. Nodes at the
network layer (L3) and peers at the application layer (L7) form the network and
overlay topology respectively. Cooperation among the two layers is possible
thanks to Monitoring and Control capabilities offered by the NAPA-WINE ar-
chitecture.

21



Figure 2: Global NAPA-WINE architecture. User, Scheduler, Overlay, Messag-
ing, Monitoring, and Repository modules are highlighted using different colors.
Arrows represent the relationship among modules, distinguishing data path (gray),
signaling path (black) and internal communication (brown).
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Figure 3: Measurements obtained from the monitoring module.

23



Figure 4: Logical organization of the scheduling and topology management mod-
ules, around the neighborhood data-base
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Figure 5: A) completely randomly chosen neighbors, B) neighbors chosen based
on locality information provided by E-REP, C) neighbors chosen based on upload
bandwidth peer information, D) combination of B) and C).
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Figure 6: Performance of several scheduling policies for immediate Push. 95th
percentile of the chunk delivery delay versus load.
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