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Interpolating m-refinable functions with compact support:
the second generation class

Lucia Romania,∗

aDipartimento di Matematica, Alma Mater Studiorum Università di Bologna,
Piazza di Porta San Donato 5, 40126 Bologna, Italy

Abstract

We present an algorithm for the construction of a new class of compactly supported interpolating refinable
functions that we call the second generation class since, contrary to the existing class, is associated to
subdivision schemes with an even-symmetric mask that does not contain the submask {0..., 0, 1, 0, ...0}.
As application examples of the proposed algorithm we present interpolating 4-refinable functions that are
generated by parameter-dependent, even-symmetric quaternary schemes never considered in the literature
so far.

Keywords: Subdivision; Interpolation; Even-symmetric mask; Arity m; Refinable function

1. Introduction and purpose of the work

Compactly supported refinable functions for interpolation are of interest in several fields of application
including sampling theory, signal processing, computer graphics and geometric modelling.
Throughout this paper, m denotes a dilation factor (that is an integer greater than 1) and with symmetric,

m-refinable function of compact support we refer to any function ϕ : R → R with supp(ϕ) =
î
0, M

m−1

ó
,

M ∈ N, that satisfies both the symmetry condition

ϕ(x) = ϕ

Å
M

m− 1
− x
ã
, ∀x ∈ R, (1.1)

and the refinement equation

ϕ(x) =
M∑
j=0

aj ϕ(mx− j), ∀x ∈ R. (1.2)

The coefficients in (1.2) are the entries of a finitely supported sequence a = {aj ∈ R, j ∈ Z} that fulfills

a0, aM 6= 0 and aj = 0 for j < 0 and j > M, (1.3)

and is usually called the subdivision mask of the m-refinable function ϕ.
The class of compactly supported functions that, in addition to (1.1) and (1.2), satisfies

ϕ

Å
n+

τa
m− 1

ã
= δ0,n, n ∈ Z with τa =

M

2
, (1.4)
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is called interpolating. Here, δ denotes the Kronecker delta while the real number τa is the so-called shift
parameter. In case of a subdivision mask a satisfying (1.3), τa is computed from the degree-M polynomial

A(z) =
M∑
j=0

ajz
j , z ∈ C \ {0} (1.5)

as τa = A′(1)
m (see, e.g., [5]) where A′(z) denotes the first derivative of A(z). In particular, in [5] it is proven

that, in case of a subdivision scheme with odd-symmetry (see Definition 2.2), τa ∈ Z; conversely, in case of
even-symmetry (see Definition 2.3), τa ∈ Z

2 \ Z.
Symmetric, compactly supported interpolating m-refinable functions that we can find in the literature
always fulfill equation (1.4) in the case τa ∈ Z, i.e., are associated with an odd-symmetric subdivision mask
a satisfying (1.3) for an even integer M (see, e.g., [1, 2, 8, 11, 15, 16, 18, 23, 24]). In addition, for all of
them the odd-symmetric subdivision mask a is such that

amj+M
2

= δ0,j , j ∈ Z ∩
ï
−
õ
M

2m

û
,

õ
M

2m

ûò
, (1.6)

i.e., it contains the submask {0..., 0, 1, 0, ...0}.
The goal of this work is to introduce a novel class of subdivision schemes that, differently from the existing
ones, are associated with symmetric, compactly supported interpolating m-refinable functions satisfying
equation (1.4) with τa ∈ Z

2 \ Z. More precisely, the subdivision schemes gathered in the new class are
defined via an even-symmetric subdivision mask that satisfies (1.3) for an odd integer M . Since condition
(1.6) is not fulfilled, the new class is called the second generation class of interpolating schemes.

In the remainder of the paper, we first recall some background notions about subdivision schemes and
refinable functions (Section 2), then we present our main result (Section 3). Closing remarks are provided
in Section 4.

2. Background notions on subdivision schemes

Subdivision schemes of arity m are iterative methods that, starting from the initial sequence of points
p0 = {p0

j , j ∈ Z}, generate finer and finer sequences of points pk+1 by using the subdivision rules

pk+1
mi+h =

∑
j∈Z

am(i−j)+h p
k
j , h = 0, . . . ,m− 1, (2.1)

at each refinement level k ∈ N0 (with N0 the nonnegative set of integers). If (2.1) are suitably defined, when k
approaches infinity the sequence of piecewise linear functions which interpolate the data at level k converges
uniformly to a continuous (and possibly smooth) limit function (for the theoretical results concerning the
analysis of convergence and smoothness of subdivision schemes, we refer the reader to [10, 12], where the
preparatory binary case is extensively discussed).

Definition 2.1. The limit function generated by a convergent subdivision scheme starting from the data
p0
j = δ0,j, j ∈ Z, is called basic limit function and denoted by ϕ.

The basic limit function of a subdivision scheme Sa of arity m and subdivision mask a = {a0, ..., aM}
has support

î
0, M

m−1

ó
(see, e.g., [5, page 415] or [12, page 78]) and satisfies the refinement equation in (1.2).

Thus, the arity is also equivalently called dilation.

Definition 2.2. The arity-m subdivision scheme Sa with symbol (1.5) is called odd-symmetric if M is an

even positive integer and ai = aM−i for all i = 0, ..., M2 , or equivalently, A(z)z−
M
2 = A(z−1)z

M
2 .

Definition 2.3. The arity-m subdivision scheme Sa with symbol (1.5) is called even-symmetric if M is an

odd positive integer and ai = aM−i for all i = 0, ..., M−1
2 , or equivalently, A(z)z−

M−1
2 = A(z−1)z

M+1
2 .
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Definition 2.4. A subdivision scheme is called interpolating if it is convergent and, for any given sequence
p0, produces a limit function that passes through all the vertices of p0.

The basic limit function of an arity-m even/odd symmetric interpolating scheme whose subdivision mask
satisfies (1.3), fulfills (1.4). We conclude this preliminary section by additionally observing that, under the
assumption that the subdivision mask a satisfies (1.3) and is either even or odd symmetric, the subdivision
symbol of Sa is the degree-M polynomial A(z) in (1.5) and its first derivative fulfills A′(1) = mM

2 [5, Remark
5.8]. Thus, the conditions to be satisfied by A(z) for achieving the property of reproduction of the space Πd

of polynomials up to degree d (see [5, Theorem 4.3]) can be formulated in terms of the same shift parameter
τa = M

2 in the unified form

A(1) = m, A(i)(1) = m
i−1∏
h=0

(τa − h) for all i = 1, . . . , d, A(i)(e
2πi
m j) = 0 for all

j = 1, . . . ,m− 1
and

i = 0, . . . , d.
(2.2)

Remark 2.5. Note that when (1.6) is satisfied, then the subdivision rules (2.1) have the property of naturally
retaining the initial data p0

j , j ∈ Z at each iteration. In this way, the initial data will become points of the
limit function itself, thus endowing it with the interpolation property. However, interpolation can be achieved
even without requiring the fulfillment of (1.6). In the latter case, although the given data p0

j , j ∈ Z are still

points of the limit function, the sequences of points pk generated during the iterations will not lie on the
limit function (see, e.g., Figure 4 for an application example to sequences of points in R2).

3. Main result

Since we are interested in even-symmetric subdivision schemes Sa with τa ∈ Z
2 \Z, we focus on arity-m,

convergent subdivision schemes defined by a subdivision mask a as in (1.3) where M is odd and multiple
of m − 1, the symmetry condition aj = aM−j , j = 0, ...,M holds true and the shift parameter is τa = M

2 .
Under such assumptions, the basic limit function ϕ of Sa satisfies

I) supp(ϕ) = [0, M
m−1 ] and ϕ(x) = ϕ(2 τa

m−1 − x) for all x ∈ R.

Property I) means that ϕ is compactly supported and symmetric about the point τa
m−1 .

In our work we additionally require that ϕ satisfies the interpolation condition

II) ϕ(n+ τa
m−1 ) = δ0,n, n ∈ Z.

More precisely, property II) implies that the values of the δ sequence are attained at Z
2 \Z since τa

m−1 ∈
Z
2 \Z.

In fact, in light of the fact that M is odd, we can observe that by assuming m even and such that m − 1
divides M , then M

m−1 turns out to be an odd integer and consequently τa
m−1 = M

2(m−1) ∈
Z
2 \ Z.

Proposition 3.1. The integer translates of a basic limit function ϕ that satisfies property II) are linearly
independent.

Proof. Let F :=
∑
j∈Z cjϕ(· − j) and suppose that F ≡ 0. In light of II), evaluation of F at n+ τa

m−1 , n ∈ Z
implies that c is the zero sequence, so proving the claimed result.

Proposition 3.2. The integer translates of a basic limit function ϕ that satisfies properties I) and II) are
`∞-stable, namely fulfill the stability condition

K1‖c‖∞ ≤

∥∥∥∥∥∥∑j∈Z cjϕ(· − j)

∥∥∥∥∥∥
∞

≤ K2‖c‖∞, c ∈ `∞(Z), 0 < K1 ≤ K2 <∞. (3.1)

3



Proof. Let τa
m−1 ∈ Ω ⊂ R. In light of II),∥∥∥∥∥∥∑j∈Z cjϕ(· − j)

∥∥∥∥∥∥
∞

= sup
x∈R

∣∣∣∣∣∣∑j∈Z cjϕ(x− j)

∣∣∣∣∣∣ ≥ sup
x∈Ω

∣∣∣∣∣∣∑j∈Z cjϕ(x− j)

∣∣∣∣∣∣ = sup
j∈Z
|cj | = ‖c‖∞,

which yields K1 = 1. To show the existence of the upper bound in (3.1) we can write, for all x ∈ R,∥∥∥∥∥∥∑j∈Z cjϕ(· − j)

∥∥∥∥∥∥
∞

≤ sup
x∈R

∑
j∈Z
|cj ||ϕ(x− j)| ≤ ‖c‖∞ sup

x∈R

∑
j∈Z
|ϕ(x− j)| ≤ ‖c‖∞ ‖ϕ‖∞ d|supp(ϕ)|e.

Thus, K2 = ‖ϕ‖∞ d|supp(ϕ)|e where d|supp(ϕ)|e = d M
m−1e in light of the fact that supp(ϕ) = [0, M

m−1 ].

3.1. Even-symmetric, interpolating m-refinable functions with compact support: the second generation class

Assuming that ϕ is generated by the subdivision mask a in (1.3), we can express its values at half-integers
by means of the following relation provided by its m-refinability property

ϕ

Å
i

2

ã
=
∑
j∈Z

ajϕ
(m

2
i− j

)
, i ∈ Z. (3.2)

Equivalently, (3.2) can be reformulated as a bi-infinite linear system of the form

Xa = y (3.3)

where

yi = ϕ

Å
i

2

ã
, i ∈ Z

is the i-th entry of the right-hand side of (3.3) and

Xi,j = ϕ
(m

2
i− j

)
, i, j ∈ Z

is the (i, j)-entry of the bi-infinite matrix X which turns out to be banded due to the compact support of ϕ.
In order to construct an m-refinable function ϕ that satisfies the property in (1.4) in the case τa ∈ Z

2 \ Z,
we assume m even and M odd such that m − 1 divides M . As a consequence, supp(ϕ) = [0, S] with
S = M

m−1 ∈ 2Z + 1 and we require thatß
ϕ

Å
i

2

ã™
i=1,...,2S−1

=

ß
δ0,i−S , i ∈ 2Z + 1 ∩ (0, 2S)
v i

2
, i ∈ 2Z ∩ (0, 2S)

(3.4)

where v = {v1, v2, . . . , vS−1} is a vector with S−1 input values assigned by the user and satisfying
∑S−1
i=1 vi =

1 since convergence of the subdivision scheme Sa requires ϕ to enjoy the property of reproducing constants.
Since S ∈ 2Z + 1 then S − 1 ∈ 2Z and v could be viewed as the insertion rule of an odd-symmetric, binary
interpolating scheme defined by the subdivision mask ṽ = {ṽi = ϕ

(
i
2

)
, i = 1, . . . , 2S − 1} of the form

ṽ = {0, v1, 0, v2, 0, . . . , 0, vS−1
2
, 1, vS+1

2
, 0, . . . , 0, vS−2, 0, vS−1, 0}.

For instance, v could be defined by the coefficients of the insertion rule of the Dubuc-Deslauriers (2N)-point
scheme with N = S−1

2 , given by (see [9])

vj+N+1 =
N

24N−3

Ç
2N − 1

N − 1

å
(−1)j

2j + 1

Ç
2N − 1

N + j

å
, j = −N, . . . , N − 1.

Hence, once v is assigned, we can exploit the equations of the linear system in (3.3) to derive the constraints
to be fulfilled by the entries of the even-symmetric subdivision mask a in such a way that its m-refinable
function ϕ satisfies the properties

4



P1) supp(ϕ) = [0, S];

P2) ϕ(n2 ) = ṽn, n = 1, . . . 2S−1 or, equivalently, ϕ
(
n+ S

2

)
= δ0,n, n ∈ Z and ϕ(n) = vn, n = 1, . . . , S−1.

Remark 3.3. It is not difficult to see that, when m = 2, the equation obtained from (3.2) by setting i = 1
and assuming ϕ(0) = 0, reads as

ϕ

Å
1

2

ã
= a0ϕ(1). (3.5)

Therefore, excluding the subdivision mask a = {1, 1} for the trivial case M = 1, which yields a 2-refinable
function ϕ that is the characteristic function of the interval (0, 1] and thus verifies (3.5) with the values
ϕ
(

1
2

)
= ϕ(1) = 1, equation (3.5) can never be satisfied when M > 1. In fact, in light of our assumptions,

when M > 1 neither a0 nor ϕ(1) can be zero, whereas ϕ( 1
2 ) = 0 is required in order to satisfy (3.4) with

S > 1. Thus, the linear system of equations in (3.2) has no solutions in the case m = 2, M > 1.

In light of Remark 3.3 in what follows we perform all computations with dilation factor m = 4. In
fact, quaternary schemes in addition to allowing for a quicker generation of curves than binary and ternary
schemes [14], have still a reasonable cost.

3.2. Even-symmetric, interpolating 4-refinable functions: a constructive algorithm

Let m = 4. Since, according to our assumptions, M must be odd and multiple of 3, we set M =
2(3N + 1) + 1, N ∈ N. In this way M

m−1 = 2N + 1 for all N ∈ N. Then, we consider the finite mask
a = {a0, ..., a6N+3} whose entries satisfy

ai =

ß
b3N+1−i, if 0 ≤ i ≤ 3N + 1,
bi−(3N+2), if 3N + 2 ≤ i ≤ 6N + 3,

(3.6)

where b0, . . . , b3N+1 denote 3N + 2 unknown weights.

Proposition 3.4. Let Sa be a quaternary subdivision scheme defined by the even-symmetric mask in (3.6).
If Sa is interpolatory, then it is a true quaternary scheme and not an iterated, two-step binary scheme.

Proof. The proof is obtained by contradiction. Suppose there exists a symbol Ã(z) of a convergent, binary
scheme Sã such that

A(z) = Ã(z) Ã(z2).

Since deg(A(z)) = 3(2N + 1) and A(z) is even-symmetric, then deg(Ã(z)) = 2N + 1 and Ã(z) is even-
symmetric. In light of Remark 3.3, for all N ∈ N the subdivision scheme Sã defined by Ã(z) is not
interpolatory. Thus, Sa is also not interpolatory, so contradicting the assumption.

We now provide an algorithm that, for any N ∈ N, takes as input the values vi = ϕ(i), i = 1, . . . , 2N and
provides as output all the 2N + 1 equations to be satisfied by the unknowns b0, . . . , b3N+1 of the subdivision
mask a in such a way that, if convergent, it generates a 4-refinable function ϕ satisfying properties P1) and
P2) with S = 2N + 1. The set of 2N + 1 equations is obtained by suitably cutting the bi-infinite linear
system in (3.3) to obtain a finite linear system

X̄ā = ȳ (3.7)

of size (2N + 1)× (4N + 2) where

X̄ = [Xi,j+1]i=1,...,2N+1, j=0,...,4N+1 , ā = [aj ]j=0,...,4N+1 , ȳ = [yi]i=1,...,2N+1

5



and

Xi,j+1 =

 ϕ(2i− j), if 0 < 2i− j ≤ 2N+1
2

ϕ(2N + 1− 2i+ j), if 2N+1
2 < 2i− j < 2N + 1

0 otherwise
for i = 1, . . . , 2N+1, j = 0, . . . , 4N+1

(3.8)

aj =

ß
b3N+1−j , if 0 ≤ j ≤ 3N + 1,
bj−(3N+2), if 3N + 2 ≤ j ≤ 4N + 1,

yi =

 ϕ( i2 ), if i ∈ 2Z,
1, if i = 2N + 1,
0, otherwise

for i = 1, . . . , 2N + 1.

Note that, the definition of X̄ takes into account that the function ϕ has support [0, 2N + 1] and is
symmetric with respect to the center of its support. Thus, the values required as input are indeed vi = ϕ(i),
i = 1, . . . , N .

Proposition 3.5. The (2N + 1)× (4N + 2) coefficient matrix X̄ in (3.8) is full rank and the undetermined
linear system X̄ā = ȳ in (3.7) is consistent.

Proof. The 2N non-zero entries on each row of X are the entries of v satisfying vi = ϕ(i), i = 1, . . . , 2N .
Moreover, the entries of X satisfy

Xi+1,j+1 = ϕ
(
2(i+ 1)− j

)
= ϕ

(
2i− (j − 2)

)
= Xi,j−1, ∀i, j ∈ Z,

namely the non-zero entries of the (i+1)-th row of X are shifted forward by two places with respect to those
of the i-th row. As a consequence each of the rows of X̄ are linearly independent. Thus rank(X̄) = 2N + 1,
i.e., the coefficient matrix of the linear system in (3.7) is full rank.
Finally, in light of the fact that y2i 6= 0 for all i ∈ Z whereas y2i+1 = 0 for all i 6= N , it follows that

rank([X̄, ȳ]) = 2N + 1

where [X̄, ȳ] denotes the augmented matrix, i.e., the coefficient matrix X̄ with the column vector ȳ added.

For the sake of clarity, we include two examples of the coefficient matrix X̄ and the corresponding known
term ȳ in the cases N = 2 and N = 3. Precisely,

• when N = 2:

X̄ =


ϕ(2) ϕ(1) 0 0 0 0 0 0 0 0
ϕ(1) ϕ(2) ϕ(2) ϕ(1) 0 0 0 0 0 0

0 0 ϕ(1) ϕ(2) ϕ(2) ϕ(1) 0 0 0 0
0 0 0 0 ϕ(1) ϕ(2) ϕ(2) ϕ(1) 0 0
0 0 0 0 0 0 ϕ(1) ϕ(2) ϕ(2) ϕ(1)

 , ȳ =


0

ϕ(1)
0

ϕ(2)
1

 ;

• when N = 3:

X̄ =



ϕ(2) ϕ(1) 0 0 0 0 0 0 0 0 0 0 0 0
ϕ(3) ϕ(3) ϕ(2) ϕ(1) 0 0 0 0 0 0 0 0 0 0
ϕ(1) ϕ(2) ϕ(3) ϕ(3) ϕ(2) ϕ(1) 0 0 0 0 0 0 0 0

0 0 ϕ(1) ϕ(2) ϕ(3) ϕ(3) ϕ(2) ϕ(1) 0 0 0 0 0 0
0 0 0 0 ϕ(1) ϕ(2) ϕ(3) ϕ(3) ϕ(2) ϕ(1) 0 0 0 0
0 0 0 0 0 0 ϕ(1) ϕ(2) ϕ(3) ϕ(3) ϕ(2) ϕ(1) 0 0
0 0 0 0 0 0 0 0 ϕ(1) ϕ(2) ϕ(3) ϕ(3) ϕ(2) ϕ(1)


, ȳ =



0
ϕ(1)

0
ϕ(2)

0
ϕ(3)

1


.

6



The following algorithm summarizes in three steps how to set up a consistent linear system that can yield
at least one set of values for the unknowns b0, . . . , b3N+1 of the subdivision mask a of an even-symmetric,
4-refinable function ϕ satisfying P1) and P2) with S = 2N + 1.

Algorithm 1 (Constructive algorithm). Select the desired value of N ∈ N and provides as input the first
N entries vi = ϕ(i), i = 1, . . . , N of the vector v satisfying v2N+1−i = vi, i = 1, . . . , N and

∑2N
i=1 vi = 1.

• Step 1: Write the 2N + 1 equations obtained from X̄ā− ȳ = 0 in (3.7).

• Step 2: Add to the 2N + 1 equations from Step 1 the adequate number of consistent equations (not
larger than N + 1) to be satisfied by a in such a way that Sa generates polynomials of a certain degree
d. In this regard we recall that generation of polynomials of degree d is a necessary condition for Cd

smoothness of the function ϕ (see Appendix A) and its fulfillment requires the input vector v to collect
the samples at integers of an interpolating function reproducing Πd.

• Step 3: Solve the linear system obtained by assembling the equations obtained in Step 1 and 2 in
order to get the even-symmetric mask a in (3.6) for the desired quaternary interpolating subdivision
scheme Sa.

In the next two Subsections we illustrate the outcomes of Algorithm 1 in the case S = M
m−1 = 5 (i.e.,

N = 2) and S = M
m−1 = 7 (i.e., N = 3).

3.2.1. Example 1: even-symmetric quaternary counterpart of the interpolating DD 4-point scheme

We denote by ϕDD4 the interpolating 2-refinable function (shown in Fig. 1-left) that is obtained from the
binary Dubuc-Deslauriers 4-point scheme (DD4 for short) [8, 9] and satisfies the conditions

• supp(ϕDD4) = [0, 6] and ϕ(x) = ϕ(6− x) for all x ∈ R;

• ϕDD4(n+ 3) = δ0,n, n ∈ Z;

• ϕDD4

(
n+ 3

2

)
=

®
0, n = −1, 4
3
16

(−1)n

2n−3

(
3
n

)
, n = 0, ..., 3.

0 1 2 3 4 5 6

0

0.2

0.4

0.6

0.8

1

0 2 4 6 8 10

0

0.2

0.4

0.6

0.8

1

Figure 1: Left: C1 interpolating 2-refinable function provided by the binary DD 4-point scheme. Right: C2 interpolating
2-refinable function provided by the binary DD 6-point scheme.

When M
m−1 = 5, i.e., N = 2, we look for a subdivision mask of the form

a = {ai}15
i=0 = {b7, b6, b5, b4, b3, b2, b1, b0, b0, b1, b2, b3, b4, b5, b6, b7}, (3.9)

7



that is associated to a 4-refinable function ϕ having support [0, 5]. In order to apply Algorithm 1, we require
ϕ to meet the values {

ϕ
(n

2

)}
n=1,...,9

=

ß
0,− 1

16
, 0,

9

16
, 1,

9

16
, 0,− 1

16
, 0

™
(3.10)

attained at the half-integers by the interpolating 2-refinable function provided by the binary DD 4-point
scheme (see Fig. 1-left). With such an input, Step 1 of Algorithm 1 provides the following constraints

9

16
b7 −

1

16
b6 = 0,

− 1

16
b7 +

9

16
b6 +

9

16
b5 −

1

16
b4 = − 1

16
,

− 1

16
b5 +

9

16
b4 +

9

16
b3 −

1

16
b2 = 0,

− 1

16
b3 +

9

16
b2 +

9

16
b1 −

1

16
b0 =

9

16
,

− 1

16
b1 +

9

16
b0 =

1

2
,

to be satisfied by the entries of the subdivision mask (3.9).
Recalling that ϕDD4 reproduces Π3 with the shortest possible support [8] and pointing out that supp(ϕ) =
[0, 5] ⊂ supp(ϕDD4), we can infer that there is no suitable choice of the mask entries to achieve reproduction
of Π3. Thus, we perform Step 2 by requiring Π2-reproduction, i.e., the fulfillment of conditions (2.2) with
d = 2 and τa = 15

2 . What we get by the solution of the linear system in Step 3 is a one-parameter mask
with coefficients

b7 = α
16 , b6 = 9

16α, b5 = − 9
16α−

15
128 , b4 = − α

16 −
7

128 ,

b3 = 9
128 −

3
16α, b2 = 33

128 −
27
16α, b1 = 27

16α+ 55
64 , b0 = 3

16α+ 63
64

α ∈ R. (3.11)

In light of (3.10), we call the subdivision scheme Sa defined by (3.9)-(3.11) the even-symmetric quaternary
counterpart of the interpolating DD 4-point scheme.

Proposition 3.6. The basic limit function ϕ of the even-symmetric quaternary subdivision scheme with
mask (3.9)-(3.11) has symbol

A(z) =
1

128
(z3+z2+z+1)3 (8αz6+48αz5−3(88α+5)z4+2(208α+19)z3−3(88α+5)z2+48αz+8α) (3.12)

and satisfies the following properties:

i) supp(ϕ) = [0, 5] and ϕ(x) = ϕ(5− x) for all x ∈ R;

ii) ϕ(n+ 5
2 ) = δ0,n, n ∈ Z;

iii) ϕ(n+ 1) = 3
16

(−1)n

2n−3

(
3
n

)
, n = 0, ..., 3;

iv) {ϕ(· − i)}i∈Z reproduces Π2 for all values of α;

v) ϕ ∈ C2(R) for all α ∈ [−0.0862,− 15
208 ) ≈ [−0.0862,−0.0721).

Proof: Properties i), ii), iii), iv) follow by construction. Property v) follows from the Hölder regularity

analysis relying on the computation of the joint spectral radius of the set of matrices {D[3]
0 , D

[3]
1 , D

[3]
2 , D

[3]
3 }

(see Appendix A) with

D
[3]
0 =



d
[3]
0 d

[3]
2 0 0 0 0

0 d
[3]
3 0 0 0 0

0 d
[3]
2 d

[3]
0 0 0 0

0 d
[3]
1 d

[3]
1 0 0 0

0 d
[3]
0 d

[3]
2 0 0 0

0 0 d
[3]
3 0 0 0


, D

[3]
1 =



0 d
[3]
3 0 0 0 0

0 d
[3]
2 d

[3]
0 0 0 0

0 d
[3]
1 d

[3]
1 0 0 0

0 d
[3]
0 d

[3]
2 0 0 0

0 0 d
[3]
3 0 0 0

0 0 d
[3]
2 d

[3]
0 0 0


,
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D
[3]
2 =



0 d
[3]
2 d

[3]
0 0 0 0

0 d
[3]
1 d

[3]
1 0 0 0

0 d
[3]
0 d

[3]
2 0 0 0

0 0 d
[3]
3 0 0 0

0 0 d
[3]
2 d

[3]
0 0 0

0 0 d
[3]
1 d

[3]
1 0 0


, D

[3]
3 =



0 d
[3]
1 d

[3]
1 0 0 0

0 d
[3]
0 d

[3]
2 0 0 0

0 0 d
[3]
3 0 0 0

0 0 d
[3]
2 d

[3]
0 0 0

0 0 d
[3]
1 d

[3]
1 0 0

0 0 d
[3]
0 d

[3]
2 0 0


,

that are associated with the symbol

D[3](z) =
43A(z)

(z2 + 1)3(z + 1)3
= d

[3]
0 z6 + d

[3]
1 z5 + d

[3]
2 z4 + d

[3]
3 z3 + d

[3]
2 z2 + d

[3]
1 z + d

[3]
0

of the 3rd-order difference scheme of Sa defined by the coefficients

d
[3]
0 = 4α, d

[3]
1 = 24α, d

[3]
2 = −132α− 15

2
, d

[3]
3 = 208α+ 19.

By using the modified invariant polytope algorithm proposed in [17] we can compute the exact value of the
joint spectral radius ρ, which turns out to satisfy the constraint ρ < 4 for all α ∈ [−0.0862,− 15

208 ). Thus,
for all these values of α the Hölder regularity of the subdivision scheme Sa is ν = 3− log4(ρ) > 2 (see Fig.
2-right).

Remark 3.7. Sa belongs to the family of even-symmetric de Rham-type quaternary schemes (see [6]) since
its symbol A(z) can be written as the product of the odd sub-symbol Codd(z) = 1

4 (z + 1)(z2 + 1) of a binary

subdivision scheme Sc defined by C(z) = 1
4 (z+ 1)2

(
z4 + 2(2σ− 1)z3 + 4(1− 2σ)z2 + 2(2σ− 1)z+ 1

)
, σ ∈ R

and

B(z) =
1

32
(z3 + z2 + z + 1)2 (8αz6 + 48αz5 − 3(88α+ 5)z4 + 2(208α+ 19)z3 − 3(88α+ 5)z2 + 48αz + 8α).

The latter is the symbol of an odd-symmetric quaternary scheme Sb that is C1-convergent for all α ∈
[−0.0862,− 15

208 ) and Π1-reproducing. In contrast to [6] where only examples of even-symmetric approxi-
mating de Rham-type schemes are presented, A(z) is the symbol of the first example of interpolating de
Rham-type scheme. Note that, Sa is smoother than the odd-symmetric scheme it is built upon, since Codd(z)
is a smoothing factor for Sb.

Remark 3.8. Sa provides a parameter-dependent, interpolating 4-refinable function with the properties of
Π2-reproduction, C2-smoothness and support width 5 exactly as the ternary 4-point scheme defined by the
interpolating symbol [19]

1

9
(z2 + z + 1)3

(
9γz4 − (36γ + 1)z3 + (54γ + 3)z2 − (36γ + 1)z + 9γ

)
, γ ∈ R. (3.13)

Indeed, the ternary scheme in (3.13) yields a basic limit function ϕ characterized by:

• supp(ϕ) = [0, 5] and ϕ(x) = ϕ(5− x) for all x ∈ R;

• ϕ
(
n+ 5

2

)
= δ0,n, n ∈ Z;

• {ϕ(· − i)}i∈Z reproduces Π2 for all values of γ;

• ϕ ∈ C2(R) for all γ ∈ (− 2
45 ,−

1
27 ) ≈ (−0.0444,−0.0370).
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Figure 3 shows a graphical illustration of the interpolating refinable functions with symbols (3.12) and
(3.13). Note that we do not center them at the axes origin (as it is consuetude), but we plot them in [0, 5], to
be consistent with the notation previously used to denote the support interval. Although their shape is very
similar, it is worthwhile to point out the remarkable differences between the underlying subdivision schemes.
In particular, the basic limit function of the subdivision scheme with symbol (3.13) is associated with the
standard type of odd-symmetric maskß

γ, −γ − 1

9
, 0,

2

9
− 3γ, 3γ +

8

9
, 1, 3γ +

8

9
,

2

9
− 3γ, 0, −γ − 1

9
, γ

™
. (3.14)

Since its length is 11 and the arity is 3, the shift parameter is integer and precisely τa = 5. Differently, the
basic limit function of the subdivision scheme with symbol (3.12) is associated with the new type of even-
symmetric mask in (3.9). Since its length is 16 and the arity is 4, its shift parameter is not integer, but
given by τa = 15

2 .

-0.044 -0.043 -0.042 -0.041 -0.04 -0.039 -0.038
2

2.02

2.04

2.06

2.08

2.1

2.12

2.14

2.16

2.18

-0.086 -0.084 -0.082 -0.08 -0.078 -0.076 -0.074

2

2.02

2.04

2.06

2.08

2.1

2.12

2.14

Figure 2: Left: Hölder regularity ν of the odd-symmetric subdivision scheme with mask in (3.14) for γ ∈ (− 2
45
,− 1

27
). Right:

Hölder regularity ν of the even-symmetric subdivision scheme with mask in (3.9)-(3.11) for α ∈ (− 9
104

,− 15
208

).

0 1 2 3 4 5

0

0.2

0.4

0.6

0.8

1

0 1 2 3 4 5

0

0.2

0.4

0.6

0.8

1

Figure 3: Left: C2 interpolating 2-refinable function provided by the odd-symmetric ternary (m = 3) 4-point scheme having
symbol in (3.13) with γ = −0.0404 (such that the Hölder regularity reaches the maximum value ν = 2.18 highlighted in Fig.
2-left). Right: C2 interpolating 4-refinable function provided by the even-symmetric quaternary (m = 4) scheme having symbol
in (3.12) with α = −0.0773 (such that the Hölder regularity reaches the maximum value ν = 2.14 highlighted in Fig. 2-right).
Blue circles and red bullets mark the interpolated values assigned by the binary mask in (3.10).

Figure 4 shows an application example of the new even-symmetric, quaternary subdivision scheme and
compares it with the existing ternary, odd-symmetric subdivision scheme featured by the same properties.
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(a) (b) (a) (b)

Figure 4: First column: given data and first step of subdivision; second column: given data and limit curve. In (a) the C2

ternary 4-point scheme in (3.13) with γ = −0.0404; in (b) the C2 even-symmetric quaternary 4-point scheme in (3.12) with
α = −0.0773.

3.2.2. Example 2: even-symmetric quaternary counterpart of the parameter-dependent interpolating 6-point
scheme

Following the lines of reasoning previously used in Subsection 3.2.1, that is, deriving first the conditions
on the mask coefficients provided by Step 1 of Algorithm 1, and successively requiring the subdivision mask
to meet the desired degree of polynomial reproduction (according to Step 2), we can also construct even-
symmetric interpolating subdivision schemes for the cases M

m−1 = 2N + 1, N ≥ 3.

For instance, when M
m−1 = 7 (i.e., N = 3), if we take as input the values{

ϕ
(n

2

)}
n=1,...,13

=

ß
0, θ, 0,−

Å
3θ +

1

16

ã
, 0,

Å
2θ +

9

16

ã
, 1,

Å
2θ +

9

16

ã
, 0,−

Å
3θ +

1

16

ã
, 0, θ, 0

™
(3.15)

attained at the half-integers by the interpolating 2-refinable function provided by the parameter-dependent,
binary, 6-point scheme in [13], the output of Step 1 of Algorithm 1 are the constraints

b9θ − b10

(
3θ + 1

16

)
= 0,

b7θ − b8
(
3θ + 1

16

)
+ (b9 + b10)

(
2θ + 9

16

)
= θ,

(b5 + b10)θ − (b6 + b9)
(
3θ + 1

16

)
+ (b7 + b8)

(
2θ + 9

16

)
= 0,

(b3 + b8)θ − (b4 + b7)
(
3θ + 1

16

)
+ (b5 + b6)

(
2θ + 9

16

)
= −

(
3θ + 1

16

)
,

(b1 + b6)θ − (b2 + b5)
(
3θ + 1

16

)
+ (b3 + b4)

(
2θ + 9

16

)
= 0,

(b0 + b4)θ − (b0 + b3)
(
3θ + 1

16

)
+ (b1 + b2)

(
2θ + 9

16

)
=
(
2θ + 9

16

)
,

b0
(
2θ + 9

16

)
− b1

(
3θ + 1

16

)
+ b2θ = 1

2 .

(3.16)

The 7 equations in (3.16) have to be fulfilled by the entries of the subdivision mask

a = {ai}21
i=0 = {b10, b9, b8, b7, b6, b5, b4, b3, b2, b1, b0, b0, b1, b2, b3, b4, b5, b6, b7, b8, b9, b10} (3.17)

in order to get a family of 4-refinable functions satisfying the properties

i) supp(ϕ) = [0, 7] and ϕ(x) = ϕ(7− x) for all x ∈ R;

ii) ϕ(n+ 7
2 ) = δ0,n, n ∈ Z;

iii) ϕ(n+ 1) =


θ, n = 0, 5,

(−1)n−1

2n−5

((
3
16 − 16θ

)(
3

n− 1

)
+ 5θ

(
5
n

))
, n = 1, ..., 4,

which allow us to call it the even-symmetric quaternary counterpart of the parameter-dependent interpo-
lating 6-point scheme. Since the interpolating 2-refinable function obtained from the 6-point scheme with
mask in (3.15) reproduces Π3 for all values of θ ∈ R, according to Step 2 of Algorithm 1, we can also require
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that the family of even-symmetric interpolating 4-refinable functions has the property of cubic polynomial
reproduction. Doing this, the solution to the linear system in Step 3 yields for (3.17) a one-parameter mask
with

b10 = − 3
256 λ, b9 = − 9

256 λ− µ+ 127
8192 , b8 = − 3

64 λ− η, b7 = − 3
64 λ− η −

21
1024 ,

b6 = 3
256 λ− µ−

313
8192 , b5 = 33

256 λ+ 4µ− 257
2048 , b4 = 3

16 λ+ 4η − 35
1024 , b3 = 3

16 λ+ 4η + 135
1024 ,

b2 = 9
128 λ+ 4µ+ 731

2048 , b1 = − 21
128 λ− 6µ+ 3241

4096 , b0 = − 9
32 λ− 6η + 945

1024 ,
(3.18)

and

λ = − θ(520192 θ2 + 152160 θ + 67)

12(32 θ + 5)(64 θ + 1)
, µ =

1203− 62752 θ

214 (32 θ + 5)(64 θ + 1)
, η =

8278016 θ2 − 48992 θ − 603

214 (32 θ + 5)(64 θ + 1)
.

The associated symbol is

A(z) =
(z2 + 1)4(z + 1)5(c0z

8 + c1z
7 + c2z

6 + (c3 − c1)z5 + (c1 − c4)z4 + (c3 − c1)z3 + c2z
2 + c1z + c0)

214 (32θ + 5) (64θ + 1)

where
c0 = 16θ(520192θ2 + 152160θ + 67), c1 = (1− 32θ)(520192θ2 + 152160θ + 67),

c2 = −4(2719744θ2 + 177952θ − 67), c3 = 8(4833280θ2 + 188960θ − 411),

c4 = 55832576θ2 + 1706848θ − 6613.

Analyzing its Hölder regularity via the analysis technique described in Appendix A, we find that the
corresponding interpolating 4-refinable function ϕ is C2-continuous for all θ ∈ [−0.00111, 0.00723] (see Fig.
5-left).
We point out that, when θ = 0, the input values in (3.15) coincide with those in (3.10). However, in this
case, the subdivision scheme reproduces Π3 (instead of Π2 only) and is also C2-continuous. Differently,
when θ = 3

256 , the input values in (3.15) are exactly those of the Dubuc-Deslauriers 6-point scheme which
reproduces Π5, but the subdivision scheme in (3.17) with M = 21 reproduces Π4 only. In order to reach
the property of Π5-reproduction we should consider a subdivision mask a with more entries. In fact, the
interpolating 2-refinable function obtained from the DD 6-point scheme reproduces Π5 with the shortest
possible support (whose width is exactly 10, see Fig. 1-right), and all the 4-refinable functions in our family
have support width smaller than 10 (see i)). Figure 5-right shows the 4-refinable function obtained with the
choice of θ yielding the highest Hölder regularity (see Fig. 5-left).

-1 0 1 2 3 4 5 6 7

10-3

2

2.1

2.2

2.3

2.4

2.5

2.6

0 1 2 3 4 5 6 7

0

0.2

0.4

0.6

0.8

1

Figure 5: Left: Hölder regularity ν of the even-symmetric subdivision scheme with mask in (3.17)-(3.18) for θ ∈
(
− 1

800
, 3
400

)
.

Right: C2 interpolating 4-refinable function provided by the quaternary (m = 4) scheme having mask in (3.17)-(3.18) with
θ = 0.0042 (such that the Hölder regularity reaches the maximum value ν = 2.67). Blue circles and red bullets mark the
interpolated values assigned by the binary mask in (3.15).
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4. Closing remarks

This paper addresses the construction of a novel generation of compactly supported interpolating refinable
functions and offers an insight of interpolatory schemes that is lacking in existing literature. In particular,
it shows that interpolating refinable functions with even dilation factor m > 2 can be obtained as basic
limit functions of even-symmetric subdivision schemes. A constructive algorithm for generating subdivision
schemes belonging to the new class is proposed, and two application examples are illustrated. From the
point of view of applications, the new class of interpolatory subdivision schemes can be used to generate a
rich family of even-symmetric interpolating refinable functions, that allow the user to meet various demands
for balancing polynomial reproduction, regularity and support size.

Acknowledgements

The author would like to thank Malcolm Sabin for having suggested the open problem treated in this paper.
Special thanks also go to the referees for their constructive comments.

References

[1] C. Beccari, G. Casciola, L. Romani, Shape controlled interpolatory ternary subdivision. Appl. Math. Comput. 215 (2009)
916–927.

[2] C. Beccari, G. Casciola, L. Romani, A unified framework for interpolating and approximating univariate subdivision.
Appl. Math. Comput. 216 (2010) 1169–1180.

[3] M. Charina, Finiteness conjecture and subdivision, Appl. Comput. Harmon. Anal. 36 (2014) 522–526.
[4] D.R. Chen, R.Q. Jia, S.D. Riemenschneider, Convergence of vector subdivision schemes in Sobolev spaces. Appl. Comput.

Harmon. Anal. 12 (2002) 128–149.
[5] C. Conti, K. Hormann, Polynomial reproduction for univariate subdivision schemes of any arity. J. Approx. Theory 163

(2011) 413–437.
[6] C. Conti, L. Romani, Dual univariate m-ary subdivision schemes of de Rham-type. J. Math. Anal. Appl. 407(2) (2013)

443–456.
[7] I. Daubechies, J.C. Lagarias, Sets of matrices all infinite products of which converge. Linear Algebra Appl. 161 (1992)

227–263.
[8] G. Deslauriers, S. Dubuc, Symmetric iterative interpolation processes. Constr. Approx. 5 (1989) 49–68.
[9] J.M. de Villiers, K.M. Goosen, B.M. Herbst, Dubuc-Deslauriers subdivision for finite sequences and interpolation wavelets

on an interval. SIAM J. Math. Anal. 35 (2003) 423–452.
[10] N. Dyn, Subdivision schemes in computer-aided geometric design. In: W. Light (Ed.), Advances in Numerical Analysis,

vol. II, Oxford University Press, New York, 1992, pp. 36–10.
[11] N. Dyn, Interpolatory subdivision schemes. In: A. Iske, E. Quak, M.S. Floater (Eds.), Tutorials on Multiresolution in

Geometric Modelling - Mathematics and Visualization. Springer, Berlin, Heidelberg, 2002, pp. 25-50.
[12] N. Dyn, D. Levin, Subdivision schemes in geometric modeling. In: Acta Numer., Cambridge University Press, Cambridge,

2002, pp. 73–144.
[13] N. Dyn, D. Levin, J.A. Gregory, A Butterfly subdivision scheme for surface interpolation with tension control. ACM

Transactions on Graphics 9 (1990) 160–169.
[14] S. Hashmi, G. Mustafa, Estimating error bounds for quaternary subdivision schemes. J. Math. Anal. Appl. 358 (2009)

159-167.
[15] K.P. Ko, B.G. Lee, G.J. Yoon, A study on the mask of interpolatory symmetric subdivision schemes. Appl. Math. Comput.

187(2) (2007) 609-621.
[16] B.-G. Lee, Y.J. Lee, J. Yoon, Stationary binary subdivision schemes using radial basis function interpolation. Adv. Comput.

Math. 25 (2006) 57-72.
[17] T. Mejstrik, Joint spectral radius and subdivision schemes. Doctoral Thesis in Mathematics, University of Vienna, 2019

(http://www.tommsch.com/misc/diss.pdf)
[18] G. Muntingh, Symbols and exact regularity of symmetric pseudo-splines of any arity. BIT Numerical Mathematics 57(3)

(2017) 867–900.
[19] P. Novara, L. Romani, Complete characterization of the regions of C2 and C3 convergence of combined ternary 4-point

subdivision schemes. Appl. Math. Letters 62 (2016) 84–91.
[20] V. Protasov, Spectral factorizations of 2-block Toeplitz matrices and refinement equations. St. Petersburg Math. J. 18(4)

(2007), 607–646.
[21] O. Rioul, Simple regularity criteria for subdivision schemes. SIAM J. Math Anal. 23(6) (1992), 1544–1576.
[22] G.C. Rota, W.G. Strang, A note on the joint spectral radius. Indag. Math. 22 (1960) 379–381.
[23] L. Zhang, H. Ma, S. Tang, J. Tan, A combined approximating and interpolating ternary 4-point subdivision scheme. J.

Comput. Appl. Math. 349 (2019) 563–578.
[24] B. Zhang, H. Zheng, W. Song, Z. Lin, J. Zhou, Interpolatory subdivision schemes with the optimal approximation order.

Appl. Math. Comput. 347 (2019) 1–14.

13



Appendix A. A well-established smoothness analysis tool for univariate schemes of arity m

Let A(z) =
Ä

1−zm
m(1−z)

är+1
D[r+1](z) be the subdivision symbol of a univariate scheme of arity m, where

D[r+1](z) denotes the symbol of the (r+ 1)-th order difference scheme with mask d[r+1] = {d[r+1]
i , i ∈ Z}. A

first approach to investigate the smoothness of the scheme Sa consists in studying the contractivity of the
scheme Sd[r+1] . This is done by computing the symbol D̃(z) := 1

mD
[r+1](z) =

∑
i∈Z d̃iz

i and checking the
existence of k ∈ N such that

‖Sk
d̃
‖∞ < 1 (A.1)

for

‖Sk
d̃
‖∞ := max

∑
j∈Z
|d̃[k]

i+mkj
| : i = 0, 1, . . . ,mk − 1


and

d̃
[1]
i ≡ d̃i, ∀i ∈ Z, D̃[k](z) =

k−1∏
h=0

D̃(zm
h

) =:
∑
i∈Z

d̃
[k]
i z

i.

The condition in (A.1) is a sufficient condition for Cr continuity of the limit curves produced by the scheme
Sa (see, e.g., [12, Section 4.2]).
Necessary and sufficient conditions for Cr convergence of Sa can be obtained by exploiting the joint spectral
radius approach introduced in [7]. In particular, the analysis of an arbitrary subdivision scheme of arity
m can be performed by applying the following known result, which can be found in full generality in [4,
Theorem 4.1].

Proposition A.1. Assume that d
[r+1]
i = 0 if i < 1− L or i > n− L, with L, n ∈ N and let

ρ := ρ(D
[r+1]
0 , D

[r+1]
1 , . . . , D

[r+1]
m−1 )

= limp→∞
Ä
max

¶
‖D[r+1]

εp · · ·D[r+1]
ε2 D

[r+1]
ε1 ‖1/p∞ : εi ∈ {0, 1, . . . ,m− 1}, i = 1, ..., p

©ä
denote the joint spectral radius (JSR) (see [22]) of the set {D[r+1]

0 , D
[r+1]
1 , . . . , D

[r+1]
m−1 } of n × n matrices

given by

D[r+1]
ε =

Ä
d

[r+1]
n+i−mj+ε

ä
i,j=0,...,n−1

, ε = 0, 1, . . . ,m− 1

(see, e.g., [3, 7, 20, 21]). The subdivision scheme Sa is Cr convergent if and only if it generates the space
Πr of polynomials up to degree r, i.e.,

A(i)(e
2πi
m j) = 0 for all j = 1, . . . ,m− 1 and i = 0, . . . , r,

and ρ < m.

Remark A.2. Since the Hölder regularity of the subdivision scheme Sa is ν = r+ 1− logm(ρ), we conclude
by pointing out that, if ρ < m, then ν > r, i.e. the subdivision scheme Sa has integer smoothness Cr.
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