
Extracting Conceptual Graphs from Japanese Documents for Software
Requirements Modeling

Ryo Hasegawa1 Motohiro Kitamura1 Haruhiko Kaiya2 Motoshi Saeki1

1Dept. of Computer Science, Tokyo Institute of Technology
Ookayama 2-12-1, Meguro-ku, Tokyo 152, Japan

Email: saeki@se.cs.titech.ac.jp
2Dept. of Computer Science, Shinshu University

Wakasato 4-17-1, Nagano 380-8553, Japan
Email: kaiya@cs.shinshu-u.ac.jp

Abstract

A requirements analysis step plays a significant role on the
development of information systems, and in this step we
produce various kinds of abstract models of the systems
(called requirements models) according to the adopted
development processes, e.g. class diagrams in the case
of adopting object-oriented development. However, con-
structing these models of sufficient quality requires high-
est intellectual tasks and skills of human requirements an-
alysts. In this paper, we develop a computerized tool to ex-
tract from a set of Japanese text documents conceptual in-
formation, called conceptual graph, which can be used as
intermediate representation to generate software require-
ments models. More concretely, by applying the variation
of text-mining techniques that we have developed, we ex-
tract significant words from text documents referring to
the same problem domain and identify relevant relation-
ships among them. The extracted words can be consid-
ered as concepts and they are constituents of a conceptual
graph in the domain. This constructed graph can be used
for generating requirements models, e.g. object oriented
models, feature model, and even as a domain ontology that
can be utilized during requirements analysis activities. We
have made experimental analyses of our tool. This paper
also includes the discussion on how the extracted concep-
tual graph can act as an object-oriented model, a feature
model and a domain ontology, in order to show its wide
applicability.

Keywords: Conceptual Graph, Requirements Modeling,
Text mining, NL processing

1 Introduction

Since a requirements analysis step is the first one in in-
formation systems development processes, the quality of
the artifacts that are produced in this step greatly affects
on the quality of a final artifact, i.e. an information sys-
tem. If we constructed an artifact of lower quality in this
step, for example an incomplete and/or inconsistent one,
we might re-do our activities after completing the final ar-
tifact and as a result we might spend much effort and the
development cost might exceed an estimated budget.

In this requirement analysis step, we produce abstract
models of the information system according to the adopted
development process style. For example, when we use
object-oriented (OO) development process, we produce
a class diagram as an object-oriented model. If we de-
velop a product belonging to a certain family and adopt

Copyright c©2009, Australian Computer Society, Inc. This paper ap-
peared at the Sixth Asia-Pacific Conference on Conceptual Modelling
(APCCM 2009), Wellington, New Zealand, January 2009. Conferences
in Research and Practice in Information Technology, Vol. 96. Markus
Kirchberg and Sebastian Link, Eds. Reproduction for academic, not-for
profit purposes permitted provided this text is included.

Feature-Oriented Analysis technique, we should produce
a feature oriented model. Thus we can produce various
kinds of model in a requirements analysis step according
to the adopted development process. We call these mod-
els, i.e. abstract models of the system that produced in
a requirements analysis step, requirements models. We
should construct a requirements model of high quality as
early as possible to reduce development costs and efforts.
However, human engineers are required to perform highly
intellectual and complicated activities and to have distin-
guished skills in order to construct a requirements model
of high quality. In addition, they should be experts to var-
ious modeling techniques that can be adopted. A current
status is that a limited number of domain experts are in-
volved in requirements modeling in their domains, spend-
ing their large efforts. We need some supporting tech-
niques to assist human engineers in constructing various
types of requirements models of higher quality with less
effort.

On the other hand, it is a rare case that we construct
a requirements model whose domain is quite new and
does not appear before. If we had reusable assets help-
ful for requirements modeling, we could get the model
efficiently. However, we have not accumulated sufficient
reusable assets of requirements models in a certain domain
yet. Rather, we can get many text documents referring to
the domain, including the electronic texts lying over In-
ternet. In fact, the experts to modeling frequently use the
documents regarding to the topics relevant to the problem
domain so as to get important information. Thus, it can
be considered as a promising support technique to extract
from the documents information necessary for require-
ments modeling. These documents are written in natural
language, and the constituents that a requirements model
should have, e.g. concepts and their relationships appear
in the documents as words and their co-occurrences in a
suitable abstraction level, because of the abstractness of
natural language descriptions. The words that commonly
appear in the documents of a domain, except for general
words such as be-verbs, prepositions, particle, etc., can be
considered as the representation of significant concepts in
the domain. In addition, the usages of theses words such
as co-occurrence and modification relationships suggest
the relationships between the concepts that the words de-
note. Thus we focus on the extraction of these words and
relationships from the documents.

To generate various kind of requirements model, we
extract an intermediate representation from a set of text
documents by using the combination of natural-language
(NL) processing and text-mining techniques so that it can
be (semi-)automatically transformed into various require-
ments models. Our intermediate representation is called
conceptual graph, which includes concepts and their re-
lationships extracted from the documents. Furthermore
requirements analysts can use this graph to make up for
their lack of domain knowledge during their requirements
elicitation activities. Figure 1 shows the overview of our

Concept Extraction
(Word Extraction)
Concept Extraction
(Word Extraction)

Relationship
Extraction

Relationship
Extraction

Syntactic AnalysisSyntactic Analysis

NL Processing
including text mining

TranslatorTranslator

TranslatorTranslator

TranslatorTranslator

Requirements
Elicitation & Modeling

... ...
as domain knowledge

OO Model

Feature Model

??? Model

Artifacts
(Requirements Specs.)

Documents

Conceptual
Graph

Figure 1: Overview of Our Approach

approach. In this paper, we have developed a computer-
ized tool for extracting conceptual graphs from a set of
documents. As will be discussed in the section of Related
Work, we can find many studies to extract specific require-
ments models such as OO models from a single document.
Unlike these studies, we use a set of documents as inputs
so that we can get stable and reusable conceptual informa-
tion. It is very significant which information we should
extract from documents. Since our target is information
systems, we adopt the concepts and their relationships that
we frequently use in modeling them, e.g. Object, Func-
tion, Is-a relationship (generalization) and Has-a (aggre-
gation), etc., and construct from them a meta model of the
conceptual graphs.

The rest of this paper is organized as follows. In the
next section, we explain the basic idea and show the log-
ical structure of the conceptual graphs, i.e. meta model.
We extract from Japanese documents information based
on this meta model. Section 3 presents the process for ex-
tracting conceptual graphs and the computerized tool us-
ing NL processing and the text mining technique that we
have proposed. Since our conceptual graphs have more
specific conceptual types and relationship ones rather than
usual thesauruses, we should develop newly a text min-
ing technique. Section 4 includes experimental results on
the effectiveness of our developed tool. In section 5, we
discuss how to get software requirements models from the
constructed conceptual graph in order to show its wide ap-
plicability. In sections 6 and 7, we discuss related work
and our current conclusions together with future work, re-
spectively.

2 Meta Model of Conceptual Graphs

2.1 Requirements to a Meta Model

As mentioned in section 1, we have a variety of notations
for requirements models such as Entity Relationship Dia-
gram and UML (Class Diagram etc.), and they have dif-
ferent meta concepts for description. In the case of Class
Diagram, it has meta concepts Class, Attribute, Operation,
Association, etc. Therefore, we need to clarify the struc-
ture of conceptual graphs, i.e. a meta model of conceptual
graphs so that we can extract Classes, Attributes, Opera-
tions, Associations etc. from the conceptual graph after-
ward. Our meta model should 1) have extensive meta con-
cepts so that we can derive various requirements models,
even reusable assets such as feature model of FODA [1],
from a conceptual graph that is its instance, 2) have useful

meta concepts specific to the area of information system,
and 3) be based on the information that can be automati-
cally gathered from text documents.

2.2 Meta Model of Conceptual Models

In order to satisfy the requirements to the meta model
mentioned in section 2.1, we analyzed the existing soft-
ware requirements modeling methods, referring to UML’s
meta model [2], Method Engineering meta model [3],
Method Common Meta Model [4], etc. and have got the
meta model shown in Figure 2. Our meta model consists
of concepts and relationships among the concepts, and it
has several subclasses of “concept” class and “relation-
ship”. In the figure, “object” is a subclass of a concept
class and a relationship “apply” can connect two concepts.
Concepts and relationships in Figure 2 are adopted so as
to easily represent the semantics in information systems.
Intuitively speaking, the concepts “object”, “function”,
“environment” and their subclasses are used to represent
functional aspects of the systems. On the other hand, the
concepts “constraint” and “quality” are used to represent
non-functional aspects. The concept “constraint” is useful
to represent numerical ranges, e.g., speed, distance, time
expiration, weight and so on.

Concept

quality

function

object

environment

constraint

actor

platform

Relationship

is-a
(generalize)

has-a
(aggregate)

contradict

apply

require

perform

2 1
{ordered}

symmetric reflective transitive

Figure 2: Meta Model of Conceptual Graphs

Figure 3 shows an example of a conceptual graph of
the problem domain of “making estimates”, an instance
of the meta model of Figure 2, which is depicted in the
form of Class Diagram, and it is a screenshot of our tool.
Note that our tool is for Japanese only and the figures of
tool screens have been produced by translating Japanese
words into English directly. A concept and its type are
depicted as Class and a stereo type respectively in the fig-
ure. Readers can find the concepts of type object, “esti-

Figure 3: A Tool Screenshot of Relationship Extraction: An Example of a Conceptual Graph

mate sheet”, “goods”, “tax”, etc, and “input” and “make”
of type function. There are two relationships between “es-
timate sheet” and “goods”; one is the relationship of type
“require” and another is of “has-a” 1. Since an estimate
sheet should have some columns on goods, their prices
and their quantity information, we use the combination of
these two types (require and has-a) of relationships be-
tween the estimate sheet and them. The concept “input” of
type “function” is applied to “goods”, “quantity”, “prices”
etc. in order to input these data, and thus we can have the
relationships of type “apply” to them.

3 A Supporting Tool for Extracting Conceptual
Graphs

In this section, we focus on the technique to extract con-
stituents of a conceptual graph from Japanese text docu-
ments. The quality of a conceptual graph greatly depends
on the quality of used text documents. If we use a docu-
ment of lower quality, we also get a graph of lower qual-
ity. There are no formal techniques to validate the quality
of the extracted conceptual graph. We consider that the
quality of the conceptual graph can be validated by so-
cial consensus of domain experts and by its usability to
our applications. We can consider that concepts and re-
lationships commonly appearing in many documents on a
domain have established social consensus. The larger the
number of documents is, the higher the quality of the ex-
tracted graph can be, because the concepts appearing in
the many documents are widely accepted in this domain.
As for the usability to our applications, we will discuss it
in section 5.

Basically, nouns and verbs included in the documents
correspond to the object concepts and functions of Figure
2 respectively, and adjectives and adverbs modifying ob-
jects or functions represent the concepts of quality. Thus
the essential parts of our process for extracting a concep-
tual graph are 1) Word extraction for extracting from doc-

1We use the same notation as UML Class diagram to represent “has-a”, i.e.
aggregation relationship.

uments the important words that can be considered as use-
ful concepts and 2) Relationship extraction for discovering
the relationships among the extracted words, as shown in
Figure 4.

Pre-processing

Morphological Analysis
Dependency Analysis

Classification

Relationship Extraction
Selection & Modification •Co-occurrence frequency

•Co-sine Similarity
•Dependency Structure
•Inclusion Relationship
•Specific Words

Calculation
of Parameters •TDF

•TDF*IDF
•Entropy
•C-value

Selection
Modification

Word Extraction

Part of Speech
(Lexical Category)

Figure 4: Process for Extracting a Conceptual Graph

3.1 Word Extraction

After morphological analysis and dependency analysis,
we identify part-of-speech categories of the meaningful
words appearing in the documents such as noun, verb, ad-
jective etc. These steps can be performed automatically
using the natural-language processing tool called Cabocha
(dependency structure analyzer for Japanese)2. By us-
ing part-of-speech information of words, we classify the
words into the types of the concepts shown in Figure 2
such as object, function and quality. For example, “esti-
mate sheet” is a noun and is classified into an object con-
cept. In the next step, our tool calculates various measure

2http://chasen.org/t̃aku/software/cabocha/

Figure 5: A Tool Screenshot of Word Extraction

parameters of the words so that we can filter out unimpor-
tant words from the classified words. The parameters that
we use are based on word frequency, i.e. the number of
times a word appears in documents, and are shown below.

1. TF (term frequency): the number of times a word
appears in the documents.

2. TF × IDF (term frequency × inverse document fre-
quency) : the term frequency of a word weighted with
its importance degree. The importance degree results
from the number of the documents the word appears.

3. Entropy: logarithmic value of the term frequency of a
word weighted with its entropy [5]. Intuitively speak-
ing, an entropy value of the word A comes to be
lower if A appears uniformly throughout all docu-
ments.

4. C-value : the term frequency of a word weighted
with its length and its occurrences as a part of multi-
words. This value is for the characteristic of Japanese
texts that they frequently include many occurrences
of multi-words. A multi-word is a combination of
several words.

Figure 5 shows an example of the result of word ex-
traction. As shown in the figure, the words are measured
and sorted in descending order of the measure values. A
user of the tool can select the important words denoting
concepts in a conceptual graph of a problem domain, by
checking boxes on the sorted list of the measured words.
In the example of the figure, the user has manually se-
lected the words “estimate sheet”, “customer”, “tax”, “ad-
dress”, “date” and “price”.

3.2 Relationship Extraction

After selecting the words, the user proceeds to the step of
relationship extraction. As shown in Figure 4, the tool cal-
culates the number of times a pair of words included in a
sentence in the documents, i.e. co-occurrence frequency
(CF) of two words and cosine similarity (CS) of the fre-
quency of co-occurrence vectors, in order to find the se-
mantically relevant word pairs. If the two words co-occur
frequently, we can consider the two concepts denoted by
them are semantically related to each other.

The calculation method of cosine similarity of co-
occurrence vectors is as follows. Suppose that the words

y1, · · · , yn frequently co-occur with the word x in the
documents. We can define a co-occurrence vector Vx
of the word x as (c(x, y1), · · · , c(x, yn)) where c(x, yi)
is the number of times in which the words x and yi
co-occur. Thus we can calculate cosine similarity (CS)
of the co-occurrence vectors of the words u and w as
(Vu · Vw)/(|Vu| · |Vw|). If the cosine similarity is suffi-
ciently higher, we can consider that the words u and w are
used in a similar way in the documents and that they have
a certain semantic relationship.

After calculating CFs and CSs, pairs of words whose
CF and CS are higher than certain thresholds are basically
selected as candidates of the relationships to be included
in a conceptual graph. Based on types of words (e.g. ob-
ject, function and quality) and dependency structures in
the sentences, the tool suggests the types of the concept
relationships. Figure 6 shows the detailed process to ex-
tract relationships and to identify their types. Suppose that
we focus on the words A and B, as shown in the figure.
If A and B co-occur in a sentence and they also co-occur
with a specific word such as “require”, “contradict”, “such
as”, etc., we decide that A and B has a relationship of
types “require”, “contradict” or “is-a”, respectively. If A
is a precisely right-side substring of B, we consider the
relationship as “is-a”. For example, the word “new esti-
mate” (shinki-mitsumori-sho in Japanese) is an “estimate”
(mitsumori-sho), because the word mitsumori-sho appears
in shinki-mitsumori-sho as its right-side substring. If the
CF value of A and B is higher, we check the dependency
structure of the sentences where they co-occur and by their
types and their syntactic roles such as subject and object
etc., we decide the type of their relationship. For exam-
ple, suppose that the types of A and B are “object” and
“function” respectively. In addition, if A is an object in
grammatical sense and B is its verb in a sentence, the tool
suggests an “apply” relationship between A and B. “Ap-
ply” relationship between object A and function B means
that the function B is applied to the object A. CS values
are used to detect require and has-a relationships.

Figure 3 shows an example of the detected concepts
and their relationships in a class diagram-like form. The
tool users can modify the detected relationships and edit
the diagram to make it more complete and precise as a
conceptual graph.

there is a specific word in
a sentence where A and

B co-occur

A , B

if (A requires B …) � require(A, B)
if(A contradicts B …) � contradict(A, B)
if(A such as B…) � is-a(A,B)

yes

�s: s�A = B is-a(A, B)
yes

CF(A,B) �t1

yes

CS(A,B)�t2
no

if B is verb & type(B)= function �
if A is an object & type(A)=object � apply(A,B)
if A is a subject & type(A)=actor ��perform(A, B)

otherwise

no

no

CS(A,B)�t3

no relationships between A and B

yes

type(A) = type(B)

yes

A and B are merged
as synonyms

yes

require(A, B)

no

type(A) = type(B)
if(Entropy(A) < Entropy(B))
��� has-a(A, B)

otherwise has-a(B,A)

yes

no

no

no

°

°

Legends
Entropy(A) : the entropy value of A, see section 4.2.

non-uniformity of occurrences of A
CF(A,B): co-occurrence frequency of A and B

the number of times A and B co-occur in the same sentence
CS(A,B) : co-sine similarity of A and B
��: concatenation of two strings

t1, t2, t3 : Threshold values

°

Legends
Entropy(A) : the entropy value of A, see section 4.2.

non-uniformity of occurrences of A
CF(A,B): co-occurrence frequency of A and B

the number of times A and B co-occur in the same sentence
CS(A,B) : co-sine similarity of A and B
��: concatenation of two strings

t1, t2, t3 : Threshold values

Figure 6: Relationship Extraction Process

4 Experimental Results

To assess our tool, we made several experiments, and in
this section we discuss these experimental results.

4.1 Aims of Our Experiments

The essential aim of our experiments is to show that our
tool allows any requirements analyst, who has a skill and
domain knowledge in a certain level, to derive efficiently
conceptual graphs of high quality. For these experiments,
we had several subjects who had experiences in software
development of more than 5 years including requirements
analysis and software design. They had also actually de-
veloped software of the problem domains that we adopted
in the experiments. Thus we can consider all of them had
skills of requirements modeling and domain knowledge in
a certain level. And we set threshold values of t1, t2 and
t3 of Figure 6 to 3, 0.75 and 0.9 respectively.

We can decompose the above aim into the following
items;

1. Any analyst3 can construct conceptual graphs effi-
ciently. Basically, we observe how long it took our
subjects to complete their conceptual graphs.

2. Any analyst can get the same results, i.e. the same
conceptual graphs, if they use the same documents as
inputs to the tool. We have two subjects having the
same skills and knowledge, more concretely having
similar experiences, and make them construct con-
ceptual graphs from the same documents by using
our tool. After their constructing graphs, we com-
pare their results and check how many parts of their
constructed conceptual graphs are the same.

3In the context of this section, as mentioned above, “analysts” have sufficient
skills, experience and domain knowledge like our subjects.

Table 1: Results on Feed Readers and POS systems

Problem Domain Spent Time Concepts Relationships
Feed Reader 180 min. 178 270
POS System 160 min. 226 252

3. Any analyst can construct conceptual graphs of high
quality. In fact, it is difficult to measure the quality
of a conceptual graph. Thus we pay attention to the
following two points to estimate the quality of con-
ceptual graphs;

(a) how many constituents of her graph the subject
should modify so as to get to the graph at the
quality level that she could be satisfied.

(b) whether the conceptual graph that the subject
constructed could be transformed to require-
ments models and be used as domain knowl-
edge in requirements elicitation processes.

The second point is related to the application of con-
ceptual graphs and it is very significant to show that
they graph can be used for requirements analysis
tasks. This point will be discussed in the section 5.

4.2 Spent Time for Constructing Conceptual Graphs

We picked up specific problem domains and investigated
how long and how large our subjects constructed concep-
tual graphs, in order to show that they could do efficiently.
We selected the two domain Feed Reader and POS (Point
of Sales) systems. Their results are shown in Table 1. For
example, the subject of Feed Reader finally constructed
the graph having 178 concepts and 270 relationships in
180 minutes. In this experiment, we gave 17 documents

Table 2: Results on Making Estimates

Spent Time Concepts Relationships
260 min. 218 432
180 min. 201 363

for the subject of Feed Reader and 14 documents for the
subject of POS system. The lengths of the documents that
we used were from 3 to 23 pages of A4 paper size. Al-
though their tasks included manual activities to modify
the graphs, we consider that our tool is helpful to construct
conceptual graphs of practical size within reasonable labor
time. In addition, our subjects pointed out that they could
know which parts they had to concentrate on for their un-
derstanding because our tool suggested significant words
in these domains.

4.3 Similarity of the Constructed Graphs

We had two subjects and each of them developed a con-
ceptual graph using our tool from the 8 documents refer-
ring to “making estimates” domain. The result is shown
in Table 2. Although our two subjects spent different
time (260 and 180 minutes respectively) in constructing
their conceptual graphs, the sizes of the graphs were sim-
ilar. They extracted 218 and 201 concepts respectively as
shown in the table, and 147 of them were quite the same.
Thus about 70% of the extracted concepts were commonly
included in the graphs that different persons constructed,
and we consider that any analyst can reasonably construct
a conceptual graph at a certain level.

4.4 Quality of Conceptual Graphs: Modification Ef-
forts

In the third experiment, we investigated the quality of the
constructed conceptual graphs by measuring how much
effort the subjects should modify manually the graphs that
the tool derived. We selected a domain of “a record man-
agement system in a school (for storing and managing
records of students’ scores and credits)”. We used 8 man-
uals for existing software for record management systems.
Our subject, a skilled domain expert created a conceptual
graph for “a record management system in a school” by
using our tool. As shown in Table 3, he finally got 74
concepts and 202 relationships and these can be consid-
ered as the graph of high quality, because the distinguished
expert manually modified and completed the graph. The
tool automatically extracted 68 (64 + 4) and 64 of 68 were
used without any modifications. 4 of 68 extracted con-
cepts were modified and 6 concepts were newly added
by the expert. As for the relationships, the tool automati-
cally recognized 76 + 62 relationships and 76 were used
without any modifications. From this table, our tool could
create totally more than 60% of concepts/relationships in
the graph. In almost of 62 modifications of the relation-
ships, the expert manually modified has-a and is-a rela-
tionships to require relationship, because our technique of
Figure 6 could not distinguish correctly require relation-
ship from has-a and is-a relationships. From this experi-
ment, although the tool could not necessarily extract the
conceptual relationships accurately, it could do concepts
satisfactorily. Human efforts were necessary to get more
complete relationships. However, the time spent in modi-
fying and adding concepts and their relationships was less
than 2 hours and thus in a tolerable range.

Note that the goal of this tool is not to automate
completely the creation of a precisely correct conceptual
graph, but to support human activities and produce a use-
ful graph for our application. In the application of model-
ing the requirements of an information system, it is more
important to include concepts and relationships as many

Table 3: Results on a Record Management System

Concepts Relationships
Used without any modifications 64 (86.4%) 76 (36.7%)
Modified 4 (5.4%) 62 (30.6%)
Added 6 (8.1%) 64 (31.6%)
Total number 74 (100%) 202 (100%)

as possible, in order to avoid lacking requirements. Thus
our tool tries to show many candidates of concepts and re-
lationships. By using our tool, a requirements analyst se-
lects appropriate ones out of the candidates, and replaces
their types into correct ones if their types are inappropri-
ate.

5 Applications of a Conceptual Graph

In this section, to show the wide applicability of the con-
ceptual graphs constructed using our approach, we ex-
plain how to derive an object oriented model and a fea-
ture model from an extracted graph. And we show an-
other application where the conceptual graph can be used
as domain knowledge for software requirements elicita-
tion processes. By showing the wider applicability of the
constructed graph, we can estimate its quality.

5.1 Transforming a Graph into an Object Oriented
Model

One of the most popular modeling techniques in software
engineering is object oriented modeling and we use class
diagrams to represent them. As shown in Figure 2, our
conceptual graphs are based on an object oriented model-
ing technique. Therefore, an object oriented model can be
derived from our conceptual graph straightforward. The
outline of derivation rules is as follows. For simplicity, we
call each subclass of a concept or a relationship in Figure
2 as XX-concept or YY-relationship. For example, we call
“function” subclass of a concept “function-concept”. An
object-concept in our conceptual graph corresponds to a
class in an object oriented model, and function-concepts
related to the object-concept with an apply-relationship
become methods of the class. Constraint-concepts related
to the object-concept become attributes of the class. Is-
a-relationships and has-a-relationships in our conceptual
graph simply correspond to inheritance and aggregation
relationships in the object oriented model.

Figure 7 shows a class diagram (an object oriented
model) derived from a conceptual graph in Figure 3 by
using the above rules. Object-concepts such as “estimate
sheet”, “goods” and “price” become classes in the class
diagram, and has-a-relationships in the conceptual graph
become aggregation relationships. An aggregation rela-
tionship between “estimate sheet” and “goods” is a typi-
cal example in Figure 7. A function-concept “input” in the
conceptual graph has apply-relationships to several object-
concepts as shown in Figure 3. Therefore, classes corre-
sponding to the object-concepts in the class diagram has a
“input” method as shown in Figure 7. For example, a class
“goods” has a method “input”.

5.2 Transforming a Graph into a Feature Model

Feature modeling was developed by Kang et al, and
reusable assets in a product line development can be rep-
resented in the model. A definition of a feature is given in
[1] as “a prominent or distinctive user-visible aspect, qual-
ity or characteristic of a software system or a system”. A
feature model has a hierarchical (normally tree) structure
among features, which are inherent concepts of a product
family, and it is normally depicted in the tree-like diagram

���

�����

���	

�����

����
��

���������

������

������

�����

	�����
�����

�����

���
�����
�� �����
�������
��

���

�����

�
����
������

��������

������
���

�

���
���

�����

���	

�����

����
��

���������

������

������

�����

	�����
�����

�����

���
�����
�� �����
�������
��

���

�����

�
����
������

��������

������
���

�

���

Figure 7: Deriving a Class Diagram

called feature diagram. To specify a model of a product
in a product family, features in a feature diagram are cho-
sen in a top down manner, i.e., sub-features are chosen
after their super-feature was chosen. When a sub-feature
has a mandatory relationship to its super-feature, this sub-
feature should be chosen, i.e. the product should have this
sub-feature. There are other kinds of relationships among
features such as optional, alternative, exclusive and so on.

A conceptual graph can be derived from documents
about a product family, and concepts in the graph corre-
spond to features in a feature model. Has-a-, is-a-, apply-
and perform-relationships in the graph correspond to re-
lationships between super- and sub-feature relationships.
In the case of is-a-relationship, the derived relationship
between a super- and a sub-feature should be alternative
relationships. In addition, since the properties of a super
concept are inherited to its sub concepts in our conceptual
graph, we consider that the concepts related to the super-
concept would be also related to all of its sub concepts.

In Figure 8, we show a feature diagram derived from
the conceptual graph in Figure 3. All concepts in the graph
are transformed into features at first. Since the features
such as “make”, “tax” and “goods” have “has-a”, “is-a”
or “apply” relationships with a feature “estimate sheet”,
these features become sub-features of the feature “esti-
mate sheet”. A sub-feature “goods” is a mandatory fea-
ture of its super-feature “estimate sheet” because “goods”
has a “require” relationship to its super-feature “estimate
sheet” as well as a “has-a” relationship. Suppose that
an apply-relationship between a function-concept and an
object-concept is included in our conceptual model. The
function-concept corresponds to a sub-feature of a fea-
ture corresponding to the object-concept. In addition, this
sub-feature becomes a mandatory feature if the apply-
relationship is only one between the function and the ob-
ject, because it is the only one function that can manip-
ulate the object. A sub-feature “make” in Figure 8 is a
typical example of this kind of mandatory features and
“make” is the only one that can manipulate “estimate
sheet” according to the conceptual graph shown in Fig-
ure 3. As shown in the figure, object-concepts “home ad-
dress” and “business address” are the sub-classes of an
object-concept “address” because these concepts have is-
a relationships to “address”. These two concepts become
alternative sub-features of a feature “address” as shown in
Figure 8. In addition, these two features has a sub-feature
“input”, because a function-concept “input” has an apply-
relationship to the object-concept “address” and two con-
cepts “home address” and “business address” are the sub-
classes of the object-concept. By applying these kinds of
transformations, the feature diagram of Figure 8 can be
derived from Figure 3.

In a feature diagram, several kinds of relationships
among features, e.g., a dependency relationship among
features and an exclusive relationship between features,
are allowed in addition to the tree-like hierarchy of fea-
tures. When there is only a require-relationship between
two concepts in our conceptual graph, we have a de-
pendency relationship between the two features corre-
sponding to these concepts. When there is a contradict-

relationship among concepts in a conceptual graph, there
is an exclusive relationship between the features corre-
sponding to the concepts. An example of exclusive re-
lationships appears between features “tax” and “within”
in Figure 8. An example of dependency relationships ap-
pears between features “tax-free limit” and “within”.

In deriving object oriented models and feature models,
their derivation rules can be formally defined, and these
derivations can be automatically achieved. However, the
quality of derived models cannot be guaranteed without
the inspection of human experts. Thus such derivation
rules play a role of guidelines only. This kind of derivation
should be achieved interactively, and the finally derived
models should be improved by manual.

inputinput

tax price goods date address customer
name

inputinput

inputinput

inputinput

inputinput

inputinput

estimate
sheet

makemake quantity

inputinput

tax-free
limit

home
address

business
address

inputinput

inputinputbeyond within

inputinput

inputinput

dependency

exclusive

alternative

alternative

Figure 8: Deriving a Feature Diagram

5.3 Using as a Domain Ontology

Knowledge on a problem domain where an information
system is operated (simply, domain knowledge) plays an
important role on eliciting system requirements of high
quality. For example, to develop e-commerce systems,
the knowledge on marketing business processes, supply
chain management, commercial laws, etc. is required as
well as internet technology. Although requirements ana-
lysts have much knowledge of software technology, they
may have less domain knowledge. As a result, lack of
domain knowledge allows the analysts to produce require-
ments specification of low quality, e.g. an incomplete re-
quirements specification where mandatory requirements
are lacking. Although interviews with domain experts
are one of the solutions to avoid this problematic situa-
tion, communication gaps between the analysts and the
domain experts resulted from their knowledge gaps [6].
Thus, the techniques to provide domain knowledge for the
analysts during their requirements elicitation and comput-
erized tools based on these techniques to support the ana-
lysts are necessary.

We have proposed how to use domain ontologies for
requirements elicitation [7] where domain ontologies are
used to make up domain knowledge to requirements an-
alysts during requirement elicitation processes. In this
framework, how to create domain ontologies of high qual-
ity efficiently is a crucial issue. Our tool for extracting
conceptual graphs can be used to create domain ontolo-
gies for supporting requirements elicitation processes.

In this section, we present the basic idea how to use
our conceptual graph as domain knowledge to detect lack-
ing requirements and inconsistent requirements. Below,
let’s consider how a requirements analyst uses a concep-
tual graph of a certain domain for completing require-
ments elicitation. Suppose that a requirements document
initially submitted by a customer is itemized as a list. At
first, an analyst should map a requirement item (statement)
in a requirement document into concepts of the conceptual
graph as shown in Figure 9. For example, the item “bbb”
is mapped into the concepts A and B and an aggregation
relationship between them. The requirements document

may be improved incrementally through the interactions
between a requirements analyst and stakeholders. In this
process, logical inference on the graph suggests to the an-
alyst what part she should incrementally describe. In the
figure, although the document S includes the concept A at
the item bbb, it does not have the concept C, which has a
require-relationship to A in the conceptual graph G. The
inference resulted from “C has a require-relationship to A
(i.e. C is required by A)” and “A is included” suggests
to the analyst that a statement having C should be added
to the document S. The details of this technique are out
of scope of this paper, and the readers who have a great
interest to it can see [7].

To assess this technique, we used the conceptual graph
of Feed Reader in section 4.1 and made comparative ex-
periments of requirements elicitation of a specific feed
reader system. As a result, subjects with less domain
knowledge could get the same results as a domain expert,
more concretely they could elicit requirement of the same
quality as the domain expert did. The details of the ex-
periments and their results are shown in [8]. This result
means that our conceptual graph is applicable as domain
knowledge for requirements elicitation processes.

� �

�

�

�

1. aaa
2. bbb
3. ccc

require

A Requirements Document “S”
(consists of req. items.)

Fint: mapping function

Conceptual Graph (in class diagram form) “G”

Figure 9: Mapping from Requirements to a Conceptual
Graph

6 Related Work

In the area of requirements analysis and software speci-
fication, some studies to extract requirements models by
applying NLP techniques to natural-language documents
exist [9]. In particular, many of them derive OO mod-
els, e.g. class diagrams [10, 11, 12, 13] for software sys-
tems. Their techniques are basically to focus on nouns
and verbs that are indicators of classes and of operations
or relationships respectively, and their success greatly de-
pends on the quality of an input document. For exam-
ple, if mandatory descriptions are lacking from the doc-
ument, the corresponding part of the model cannot be
extracted. Since our approach uses multiple documents
as inputs, our approach can mitigate these shortcomings.
Furthermore they did not consider the extracted models as
reusable assets like feature models. And, since we have
adopted a variety of types of concepts and their relation-
ships in our meta model of conceptual graphs so as to have
wide applications for requirements analysis, we have de-
veloped a newly devised text-mining technique fit to our
meta model in order to achieve the construction of the
graphs from documents. In the area of database systems,
a lot of work has also been done to derive a family of En-
tity Relationship (ER) models from natural-language doc-
uments and their major aims are designing a data schema
[14, 15, 16, 17, 18]. They focused on the extraction of
entities, attributes, relationships and inheritance ones, but
did not consider the other constructs such as require re-

lationships, which are necessary for requirements elicita-
tion. Furthermore, an ER model can be derived from our
conceptual graph in the same way as section 5.1, and in
this sense, our resulting conceptual graph includes rich in-
formation for requirements modeling. CM builder, devel-
oped by Harmain et. al. [19], uses the domain knowledge,
that has been made ready beforehand, to analyze seman-
tically documents. More precisely, in their approach, the
domain knowledge is extended to a more specific model
by means of adding the extracted classes to it. Although
our conceptual graph plays the same role on their domain
knowledge of CM builder’s technique, they did not discuss
the technique how to construct the domain knowledge, i.e.
conceptual graphs.

In research community of Ontology, many comput-
erized tools for supporting ontology creation using text-
mining techniques have been developed. Text2Onto of
KAON [20, 21] is a computerized tool having a text-
mining functions based on TF × IDF measure so that
words frequently appearing can be extracted from text
documents. In fact, our tool uses the same quantification
techniques for word extraction. In [22], the author applied
to software documents of a certain domain the technique
similar to Text2Ont to extract the terminology that soft-
ware developers, domain experts and other stakeholders
could commonly use during software development pro-
cesses. OntoLearn [23] adopted a kind of pattern match-
ing technique to disambiguate words in the semantic anal-
ysis for word extraction. DODDLE [24] is also a tool to
mining English texts for concept extraction based on term
frequency, and it uses WordNet [25] and EDR dictionary
[26] as a general-purpose ontologies. Although these tools
developed by ontology communities have some functions
to make our tool more elaborated, all of them cannot clas-
sify the extracted concepts and relationships into the types
specific to requirements models as shown in Figure 2, e.g.
“Class”, “Function”, etc. for concepts and “apply”, “re-
quire”, “perform”, etc. for conceptual relationships. They
are just for extracting concepts with no types and too gen-
eral relationships such as “is-a”, “has-a” and “synonym”
etc. as general-purpose ontology or thesauruses, not nec-
essarily suitable for requirements analysis. Their aim is
different from ours and they are not immediate supports
to requirements modeling. Our conceptual graphs have a
variety of types of concepts and of relationships in order to
apply to requirements modeling and elicitation, and these
existing techniques could not classify the extracted con-
cepts and relationships into these types. To support seam-
lessly requirements modeling, these techniques should ex-
tract not only concepts and their relationships but also
their types that lead to the elements of requirements mod-
els.

As for the quality of input documents, [27] suggested
several guidelines of writing natural-language sentences
that could be used for extracting requirements models. Al-
though they are for German, some of them could be useful
to improve the quality of input documents for our tool.

7 Conclusion

In this paper, in order to support requirements modeling,
we presented a computerized tool for extracting concep-
tual information from Japanese documents, and made sev-
eral experiments to show the usefulness of our tool. Al-
though our experiments mentioned in section 5 were too
small in the sense of practical setting to argue the general-
ity of the experimental findings, we could find the possi-
bility of supporting the construction of useful conceptual
graphs. According to the results of interviews to our sub-
jects, the user interface of our tool should be improved.

None of conceptual graphs that our tool suggested in-
cluded contradiction relationships, and our subjects added
them by manual. The reason was that the documents we
used did not contain any specific words denoting contra-

diction. We should explore more elaborated mining tech-
niques together with good samples of documents.

Although our current approach is based on the fre-
quency of words in documents, frequent words are not
always important in general. Comparing different doc-
uments [28, 29] is one of the ways to complement this
frequency based approach. Another way to create a con-
ceptual graph of higher quality is the integration of many
existing ontologies, including WordNet and EDR dictio-
nary.

In sections 5.1 and 5.2, we illustrated how to derive
two types of requirements models from our conceptual
graphs. Formalization of these derivation rules using a
graph rewriting system [30] and its automation are also a
future work.

In section 5.3, we used our conceptual graph as do-
main knowledge. There are several excellent techniques
and Meta CASE tools to generate domain specific mod-
eling languages such as MetaEdit+ [31] , Metaview [32]
and GME [33]. Our conceptual graph can be an input to
these Mata CASE tools to produce domain specific mod-
eling environments. This is one of the most interesting
applications of our technique.

References

[1] K. Kang, S. Cohen, J. Hess, W. Novak, and A. Pe-
terson. Feature Oriented Domain Analysis (FODA):
Feasiblity Study. Technical Report CMU/SEI-90-
TR-21, 1990.

[2] OMG. Unified Modeling Language Specifi-
cation, Version 1.4. http://www.omg.org/cgi-
bin/doc?formal/01-09-67.

[3] F. Harmsen. Situational Method Engineering. Moret
Ernst & Young Management Consultants, 1997.

[4] M. Saeki. A Meta-Model for Method Integration.
Information and Software Technology, 39:925 – 932,
1998.

[5] T. Tokunaga. Information Retrieval and Natural
Language Processing (in Japanese). University of
Tokyo Press, 1999.

[6] Haruhiko Kaiya, Daisuke Shinbara, Jinichi Kawano,
and Motoshi Saeki. Improving the detection of re-
quirements discordances among stakeholders. Re-
quirements Engineering, 10(4):289 – 303, Dec.
2005.

[7] H. Kaiya and M. Saeki. Using domain ontology
as domain knowledge for requirements elicitation.
In Proc. of 14th IEEE International Requirements
Engineering Conference (RE’06), pages 189–198,
2006.

[8] M. Kitamura, R. Hasegawa, H. Kaiya, and M. Saeki.
An Integrated Tool for Supporting Ontology Driven
Requirements Elicitation. In Proc. of 2nd Interna-
tional Conference on Software and Data Technolo-
gies (ICSOFT 2007), pages 73–80, 2007.

[9] L. Goldin and D. Berry. AbstFinder, A Prototype
Natural Language Text Abstraction Finder for Use in
Requirements Elicitation. Automated Software Engi-
neering Journal, 4(4):375 – 412, 1997.

[10] R. Abbott. Program Design by Informal English De-
scriptions. Commun. ACM, 26(11):882–894, 1983.

[11] M. Saeki, H. Horai, and H. Enomoto. Software De-
velopment Process from Natural Language Specifi-
cation. In Proc. of 11th International Conference on
Software Engineering, pages 64–73, 1989.

[12] S. Overmyer, B. Lavoie, and O. Rambow. Con-
ceptual Modeling through Linguistic Analysis Us-
ing LIDA. In Proc. of 23rd International Conference
on Software Engineering (ICSE’01), pages 401–410,
2001.

[13] A. Montes, H. Pacheco, H. Estrada, and O. Pastor.
Conceptual Model Generation from Requirements
Model: A Natural Language Processing Approach.
In Lecture Notes in Computer Science (NLDB 2008),
volume 5039, pages 325–326, 2008.

[14] R. Hausser. Database Semantics for Natural Lan-
guage. Artificial Intelligence, 130(1), 2001.

[15] A. Min Tjoa and L. Berger. Transformation of Re-
quirement Specifications Expressed in Natural Lan-
guage into an EER Model, 1994.

[16] P. Chen. English Sentence Structure and Entity-
Relationship Diagrams. Information Science, 29(2-
3):127–149, 1983.

[17] S. Hartmann and S. Link. English Sentence
Structures and EER Modeling. In Proc. of 4th
Asia-Pacific Conference on Conceptual Modelling
(APCCM2007), pages 27–35, 2007.

[18] E. Buchholz, H. Cyriaks, A. Dusterhoft, H. Mehlan,
and B. Thalheim. Acquiring Complex Information
from Natural Language for EER Database Design. In
1st International Workshop on Applications of Natu-
ral Language to Data Bases (NLDB’95), 1995.

[19] H. Harmain and R. Gaizauskas. CM-Builder: An
Automated NL-based CASE Tool. In Proc. of 15th
IEEE International Conference on Automated Soft-
ware Engineering (ASE’00), pages 45–53, 2000.

[20] P. Cimiano and J. Volker. Text2onto : A framework
for ontology learning and data-driven change discov-
ery. In Lecture Notes in Computer Science, volume
3513, pages 227–238, 2005.

[21] KAON Tool Suite. http://kaon.semanticweb.org/.

[22] L. Kof. Natural Language Processing for Require-
ments Engineering: Applicability to Large Require-
ments Documents. In Proc. of the Workshops,
19th International Conference on Automated Soft-
ware Engineering, 2004.

[23] R. Navigli, P. Velardi, and A. Gangemi. Ontology
learning and its application to automated terminol-
ogy translation. IEEE Intelligent Systems, 18(1):22–
31, 2003.

[24] T. Morita, N. Fukuta, N. Izumi, and T. Yamaguchi.
DODDLE-OWL: A Domain Ontology Construction
Tool with OWL. In Lecture Notes on Computer Sci-
ence (ASWC2006), volume 4185, pages 537–551,
2006.

[25] WordNet: A Lexical Database for the English Lan-
guage. http://wordnet.princeton.edu/.

[26] Japan Electronic Dictionary Research Institute. EDR
Home Page. http://www.jsa.co.jp/EDR/index.html?

[27] G. Fliedl, C. Kop, W. Mayerthaler, H. Mayr, and
C. Winkler. Guidelines for NL-Based Requirements
Specifications in NIBA. In Lecture Notes in Com-
puter Science (NLDB 2000), volume 1959, pages
251–264, 2000.

[28] Renaud Lecceuche. Finding Comparatively Im-
portant Concepts between Texts. In The Fifteenth
IEEE International Conference on Automated Soft-
ware Engineering (ASE’00), pages 55–60, Grenoble,
France, Sep. 2000.

[29] Akira Osada, Daigo Ozawa, Haruhiko Kaiya, and
Kenji Kaijiri. Modeling Software Characteristics and
Their Correlations in A Specific Domain by Com-
paring Existing Similar Systems. In Kai-Yuan Cai,
Atsushi Ohnishi, and M. F. Lau, editors, QSIC 2005,
Proceedings of The 5th International Conference on
Quality Software, pages 215–222, Melbourne, Aus-
tralia, Sep. 2005. IEEE Computer Society.

[30] G. Taentzer, O. Runge, B. Melamed, M. Rudorf,
T. Schultzke, and S. Gruner. AGG : The At-
tributed Graph Grammar System. http://tfs.cs.tu-
berlin.de/agg/, 2001.

[31] S. Kelly, K. Lyytinen, and M. Rossi. MetaEdit+
: A Fully Configurable Multi-User and Multi-Tool
CASE and CAME Environment. In Lecture Notes in
Computer Science (CAiSE’96), volume 1080, pages
1–21, 1996.

[32] P. Sorenson, J. Tremblay, and A. McAllister. The
Metaview System for Many Specification Environ-
ments. IEEE Software, 2(5):30–38, 1988.

[33] A. Ledeczi, M. Maroti, A. Bakay, G. Karsai, J. Gar-
rett, C. Thomason, G. Nordstrom, J. Sprinkle, and
P. Volgyesi. The Generic Modeling Environment. In
Proc. of WISP’2001, 2001.

