
Decision Procedures for Finite Sets with Cardinality and Local

Theory Extensions

by

Kshitij Bansal

A dissertation submitted in partial fulfillment

of the requirements for the degree of

Doctor of Philosophy

Department of Computer Science

New York University

January 2016

Clark W. Barrett

Thomas Wies

c© Kshitij Bansal

All rights reserved, 2016

Acknowledgements

I’d like to thank my advisors Clark Barrett and Thomas Wies for their guidance and

support. I’d also like to thank Subhash Khot and Stéphane Demri for their guidance

during my PhD. I’d like to thank the members of the CVC4 team, especially Morgan

Deters, without whom this work would not have been possible. I’d like to thank

Ruzica Piskac, Viktor Kuncak, Cesare Tinelli, and Stéphane Demri for inviting me to

their universities and many engaging discussions during the visits. I’d like to thank my

collaborators Andrew Reynolds, Tim King, Liana Hadarean, Dejan Javonović, Eric

Koskinen, Cesare Tinelli, Omer Tripp, and Damien Zufferey. I’d like to thank the

members of my thesis committee for their time and valuable feedback: Clark Barrett,

Thomas Wies, Benjamin Goldberg, Eric Koskinen, and Cesare Tinelli. I’d also like

to thank Madhavi Saxena, Madhavan Mukund, Narayan Kumar and all the excellent

teachers I had the fortune of learning from. Finally, I’d like to thank my parents and

my brother, Ankur, for their unwavering love and support.

iii

Abstract

Many tasks in design, verification, and testing of hardware and computer systems

can be reduced to checking satisfiability of logical formulas. Certain fragments of

first-order logic that model the semantics of prevalent data types, and hardware and

software constructs, such as integers, bit-vectors, and arrays are thus of most interest.

The appeal of satisfiability modulo theories (SMT) solvers is that they implement

decision procedures for efficiently reasoning about formulas in these fragments. Thus,

they can often be used off-the-shelf as automated back-end solvers in verification tools.

In this thesis, we expand the scope of SMT solvers by developing decision procedures

for new theories of interest in reasoning about hardware and software.

First, we consider the theory of finite sets with cardinality. Sets are a common

high-level data structure used in programming; thus, such a theory is useful for mod-

eling program constructs directly. More importantly, sets are a basic construct of

mathematics and thus natural to use when mathematically defining the properties of

a computer system. We extend a calculus for finite sets to reason about cardinality

constraints. The reasoning for cardinality involves tracking how different sets over-

lap. For an efficient procedure in an SMT solver, we’d like to avoid considering Venn

regions directly, which has been the approach in earlier work. We develop a novel

technique wherein potentially overlapping regions are considered incrementally. We

iv

use a graph to track the interaction of the different regions. Additionally, our tech-

nique leverages the procedure for reasoning about the other set operations (besides

cardinality) in a modular fashion.

Second, a limitation frequently encountered is that verification problems are often

not fully expressible in the theories supported natively by the solvers. Many solvers

allow the specification of application-specific theories as quantified axioms, but their

handling is incomplete outside of narrow special cases. We show how SMT solvers

can be used to obtain complete decision procedures for local theory extensions, an

important class of theories that are decidable using finite instantiation of axioms. We

present an algorithm that uses E-matching to generate instances incrementally during

the search, significantly reducing the number of generated instances compared to eager

instantiation strategies.

v

Contents

Acknowledgements . iii

Abstract . iv

List of Figures . x

List of Tables . xi

1 Introduction 1

1.1 First-order logic . 3

1.1.1 Syntax . 3

1.1.2 Semantics . 4

1.2 Satisfiability problem . 6

1.2.1 Satisfiability modulo theories 8

1.2.2 This thesis . 9

2 Theory of finite sets and cardinality 10

2.1 Preliminaries . 11

2.1.1 Language . 11

2.1.2 Tableau . 13

2.1.3 Graphs . 16

2.1.4 Notational convention . 16

vi

2.2 Calculus . 16

2.2.1 Set reasoning rules . 18

2.2.2 Cardinality of sets . 24

2.2.3 Cardinality and membership interaction 30

2.3 Correctness . 31

2.3.1 Completeness . 31

2.3.2 Soundness . 54

2.3.3 Termination . 54

2.4 Related work . 59

2.5 Conclusion . 60

3 Local theory extensions 62

3.1 Background . 64

3.1.1 Example . 64

3.1.2 Semantic characterizations . 66

3.2 Formal definition . 68

3.2.1 Theory extensions . 70

3.2.2 Local theories and satisfiability problem 70

3.3 Algorithm . 72

3.3.1 Correctness . 75

3.3.2 Psi-local theories . 76

3.4 Conclusion . 78

3.5 Bibliographical note . 78

4 An application: synthesizing commutavity conditions 81

4.1 Problem . 81

vii

4.2 Overview . 82

4.2.1 Iterative refinement algorithm 84

4.2.2 Validity query . 85

4.2.3 System overview . 87

4.3 Evaluation . 89

4.3.1 Encoding the transition system 89

4.3.2 Predicate generation (PGEN) 90

4.3.3 Ranking and picking predicates (CHOOSE) 91

4.3.4 Validation . 94

4.4 Conclusion . 95

5 Implementation and experiments 96

5.1 Theory of finite sets with cardinality 96

5.1.1 Proof strategy . 96

5.1.2 Data structures . 97

5.1.3 Experimental results: finite sets 98

5.1.4 Experimental results: finite sets and cardinality 101

5.2 Local theory extensions . 102

5.2.1 Experimental setup . 104

5.2.2 Experiment 1 . 105

5.2.3 Experiment 2 . 106

5.2.4 Experiment 3 . 109

6 Conclusion 111

A Synthesizing commutavity conditions: additional data 113

viii

Bibliography 134

ix

List of Figures

3.1 Procedure DT1 . 75

4.1 The refinement algorithm for generating a commutativity condition

ϕ and non-commutativity condition ϕ̃ for two methods m and n. . . . 83

4.2 An example of how our technique generates commutativity condi-

tions for methods add and contains operating on a Set. Each subse-

quent panel depicts a partitioning of the state space. The counterex-

amples χc, χnc give values for the arguments x, y and the current state

of the set S. 83

5.1 # of eager instantiations vs. E-matching instantiations inside the solver 105

x

List of Tables

4.1 Automatically generated commutativity conditions. 92

4.2 Automatically generated commutativity conditions (continued). . . . 93

5.1 Performance on benchmarks generated by a static verification tool for

Haskell. 98

5.2 Comparison between baseline (base.) and additional use of Rule 29

(opt.). 99

5.3 Comparison of performance between baseline (base.) and when as-

signing different values by default to shared element variables if they

are unconstrained (opt.). 99

5.4 Comparison of performance between optimized CVC4 implementa-

tion with a translation to Z3 using extension of arrays. 100

5.5 Benchmarks involving cardinality reasoning 101

5.6 Comparison of solvers on uninstantiated benchmarks (time in sec.) . . 106

5.7 Comparison of solvers on partially instantiated benchmarks (time in

sec.) . 109

xi

Chapter 1

Introduction

Consider some curiosities of an idling mind:

• Sam is 5 years older than Ida. Mir is thrice the age of Ida. Sam is twice the age

of Mir. Is that possible?

• Is it possible to place 8 queens on a (standard, 8-by-8) chessboard such that no

two of them attack each other?

• Mia came across the following function in the C programming language:

int f(int x) {

if(x < 0) {

x = -x;

}

return 1000 / (1 + x);

}

She wonders, can this function ever have a divide-by-zero error?

1

• A plane is flying east at an altitude of 20,000 ft and speed of 400 miles per

hour. Another plane, east of the first plane is flying west towards it at the same

altitude and the same speed. When 2 km apart, one of the pilots realizes they

are headed for a head-on collision, and establishes contact with the other plane.

Given constraints on the maneuvering capabilities of the planes, can the pilots

navigate past each other maintaining a safe distance?

The above quite disparate looking problems can be viewed to be of the same form:

they all impose some constraints on the possibilities, and ask if a solution exists. For

instance, in the case of the first problem, a natural approach to solve involves the

following two distinct steps. One, encode the problem in a mathematically precise

way. E.g. let age of Sam be x, and that of Ida be y, then it must be the case that

x = y + 5. Two, once we have a set of constraints, does that have a solution?

Naturally, we are interested in using computers to aid us in solving these, but the

process is be the same: one, encoding the problem as constraints in a “language with

precisely defined meaning” and two, solving the constraints. Indeed, many problems

in computer science (and, in other domains) can be reduced to checking the satisfia-

bility of constraints encoded using logical formulas (“language with precisely defined

meaning”). The focus of this thesis is on the second step of determining if a set of

constraints has a solution.

There has been tremendous growth of techniques to check satisfiability of logical

formulas, and these techniques have applications in several domains of hardware and

software engineering. Applications include equivalence checking, model-checking, as-

sertions checking, and test pattern generation in hardware engineering; and dynamic

symbolic execution, program model checking, static model checking, program verifi-

cation, program synthesis and software modeling in software engineering.

2

In order to move any further, we need to fix a language and an unambiguous

meaning for it. We begin by doing so, which will then allow us to describe the content

and contribution of the thesis.

1.1 First-order logic

1.1.1 Syntax

Given a finite set of sorts Sorts, a signature for first-order logic is a tuple (Funcs,Preds)

where Funcs is a set of function symbols and Preds is set of predicate symbols. Each

function and predicate symbol has an arity and a rank associated with it. The arity

is a non-negative integer. The rank of a function symbol of arity n is described as

s1 × s2 . . . × sn → sn+1 where each si ∈ Sorts. The rank of a predicate symbol of

arity n is described as s1 × . . . × sn where each si ∈ Sorts. We sometimes refer to a

function symbol with arity n as n-ary. A constant symbol is a 0-ary function symbol.

A propositional symbol is a 0-ary predicate symbol. We assume a countably infinite set

of variable symbols for each sort.

Let Σ = (Funcs,Preds) be a signature over sorts Sorts. Then, a Σ-term of sort s is

defined as one of the following:

1. a variable symbol of sort s,

2. a constant symbol in Funcs of sort s, or

3. f(t1, . . . , tn) where f in Funcs is an n-ary function symbol of rank s1× s2 . . .×

sn → s, and t1, t2 . . . tn are Σ-terms of sorts s1, s2 . . . sn respectively.

A Σ-formula is defined as one of the following:

3

1. t1 = t2 where t1 and t2 are terms of the same sort,

2. P (t1, . . . , tn) where P in Preds is an n-ary predicate symbol of rank s1×s2 . . .×

sn, and t1, t2 . . . tn are Σ-terms of sorts s1, s2 . . . sn respectively,

3. ¬φ where φ is a Σ-formula,

4. φ1 ∗ φ2 where ∗ is a symbol from the set {∨,∧,→,↔} and φ1 and φ2 are Σ-

formulas,

5. ∀v φ where v is a variable symbol and φ is a Σ-formula,

6. true, or

7. false.

A Σ-atomic proposition is a formula of the form 1 or 2.

1.1.2 Semantics

In order to give meaning to formulas, we introduce the notion of structures, and use

it to interpret terms and formulas.

As earlier, let Σ = (Funcs,Preds) be a signature over sorts Sorts. Then, a Σ-

structure I consists of:

• for each s ∈ Sorts: a set Us called the domain of sort s,

• for each f ∈ Funcs of arity n and rank s1 × s2 . . . × sn → sn+1: a function

fI : Us1 × . . .× Usn → Usn+1 , and

• for each P ∈ Preds of arity n and rank s1 × s2 . . . × sn, a function fI : Us1 ×

. . .× Usn → {true, false} where n is the arity of P .

4

A variable assignment is a mapping from variable symbols to U .

Given a structure I, variable assignment ν, and term t, we define tI,ν as follows:

• ν(t) if t is a variable,

• tI if t is a constant, and

• fI(tI,ν1 , . . . tI,νn) if t is f(t1, . . . , tn).

Given a structure I, variable assignment ν and formula φ, we define I, ν |= φ

recursively:

• If φ is t1 = t2, then I, ν |= φ iff tI,ν1 = tI,ν2 .

• If φ is P (t1, . . . , tn), then I, ν |= φ iff P I(tI,ν1 , . . . tI,νn) = true.

• If φ is ¬φ′, then I, ν |= φ iff I, ν 6|= φ′.

• If φ is φ1 ∨ φ2, then I, ν |= φ iff I, ν |= φ1 or I, ν |= φ2.

• If φ is φ1 ∧ φ2, then I, ν |= φ iff I, ν |= φ1 and I, ν |= φ2.

• If φ is φ1 → φ2, then I, ν |= φ iff I, ν 6|= φ1 or I, ν |= φ2.

• If φ is φ1 ↔ φ2, then I, ν |= φ iff I, ν |= φ1 → φ2 and I, ν |= φ2 → φ1.

• If φ is ∀v φ′, then I, ν |= φ iff for all c ∈ U , I |=ν[v 7→c] φ
′.

• If φ is true, then I, ν |= φ.

• If φ is false, then I, ν 6|= φ.

Given a Σ-formula φ, we say it is satisfiable if there exists a structure I and variable

assignment ν such that I, ν |= φ.

Henceforth, we drop the prefix Σ where it is clear from the context.

5

1.2 Satisfiability problem

We can now define the satisfiability problem for first-order logic, which will be the

focus of the thesis.

Problem 1.1 (First-order satisfiability). The satisfiability problem for first-order logic is

the decision problem to check if a first-order formula is satisfiable.

input: A finite set of sorts Sorts, a signature Σ over Sorts, and a Σ-formula φ.

output: Yes, if φ is satisfiable. No, otherwise.

Is there a procedure for the above the decision problem? In 1928, a slightly dif-

ferent formulation of this problem was posed by David Hilbert [28], also famously

known as the Entscheidungsproblem. In 1936, it was answered in the negative by

Alonzo Church∗ and Alan Turing† under an assumption now commonly known as

the Church-Turing thesis.

A natural question then arises, are there meaningful restrictions of the problem

which allow us to regain decidability? As an exercise, let us consider a very restrictive

fragment of the problem. Say, we restrict the sorts to the empty set, thus restricting

the function symbols to be empty set, and predicate symbols to propositional sym-

bols. Is this fragment decidable? With function symbols and sorts restricted to empty

set, the formulas possible are just propositional symbols and their Boolean combina-

tion. It is equivalent to the problem known as the propositional satisfiability problem.

The propositional satisfiability problem, also sometimes referred in computer sci-

ence literature as just satisfiability problem or SAT, is one of the classical NP-complete

∗AMS, 15 April 1936.
†Proceedings of the London Mathematical Society, series 2, volume 42 (1936-7); corrected version

volume 43 (1937) pp. 544-546.

6

problems. NP-complete problems do not have any known polynomial time proce-

dures‡. Despite the worst-case exponential time, modern SAT solvers can deal with

very large instances of problems of interest in the real-world. But didn’t we just

say that no efficient algorithm is possible? Often, when the problem of interest are

translated to SAT (even those that are NP-complete) they to do not give rise to the

hardest instances. Advances in heuristics and new techniques has meant that indus-

trial instances containing as many as hundreds of thousands of variables and millions

of constraints can be successfully solved. That said, not all problems can be expressed

in propositional logic (and often not as naturally even when they can be translated to

propositional logic).

Returning to the first-order satisfiability problem, another possible approach is to

sacrifice decidability. That is, allow for the algorithm to stop with “don’t know” or

to not terminate on some instances. A class of tools which take this approach, called

interactive theorem provers, rely on user-assistance to help the heuristics within the

solver towards a solution. Though more general, a disadvantage of this approach is

that it is not fully automated.

Both approaches have their advantages, and use in appropriate place. In this thesis,

we be focus on the former approach, although considering restrictions which are not

as restrictive as in the exercise. The fragments we are interested in will be more ex-

pressive that propositional logic, but less expressive that the general first-order logic.

We’re interested in software and hardware verification domains, and accordingly will

consider fragments of first-order logic that allow us to express constraints of this do-

main. But to do so we need a formal way to capture the restrictions. We do so in

‡Though it widely believed no polynomial time procedure is possible, no proof exists. It is one
of the seven millennium problems identified by Clay Mathematics Institute with a prize of a million
dollars for solving it!

7

the next section via theories, calling the restricted satisfiability problems satisfiability

modulo theories.

Before we dive in, a note that the above two approaches are not completely inde-

pendent. The solvers for general first-order satisfiability benefit from improvement

in dedicated decision procedures for the restrictions. The interactive theorem provers

can (and do) use satisfiability modulo theory solvers to discharge proof obligations if

they fall in the restrictions (or allow the user to do so). Somewhat in the same fashion,

satisfiability modulo theory solvers have greatly benefited and adopted ideas from the

advances in (propositional) SAT solving.

Having (hopefully) convinced the reader of our place in the world, without further

ado let us dive into the restriction we are interested in.

1.2.1 Satisfiability modulo theories

As just discussed, given the undecidability of first-order logic, it is interesting to con-

sider restrictions which might entertain decidable procedures. A general way to talk

about restrictions is through theories. One can define this it two ways.

Fix a signature Σ. Pick a set of Σ-sentences, say K. Then one is interested in

satisfiability of a formula φ only when K holds. More formally, check whether there

exists I and ν such that I, ν |= φ as well as for all φ′ ∈ K: I, ∅ |= φ′.

Another way to define a restriction is to fix a class of structures, say T, and try

to check satisfiability only with respect to the structures in T. More formally, check

whether: there exists a I ∈ T and ν such that I, ν |= φ.

The satisfiability problem can be said to be modulo K in the first instance, and

modulo T in the second. The two notions above are inter-related (a set of Σ-sentences

gives a set of structures wherein all are satisfied). We use the latter definition, calling

8

them theories and henceforth referring to the problem of satisfiability restricted to a

theory as satisfiability modulo theories.

1.2.2 This thesis

Satisfiability modulo theory solvers have seen tremendous growth in performance

in the last decade. There has been work on theories useful to reason about basic

program constructs, leading to the development of dedicated procedures for theories

of arithmetic, bit-vectors, arrays, and their combination. In this thesis, we will be

exploring going beyond these theories.

In Chapter 2, we develop a new calculus for the theory of finite sets with cardi-

nality constraints and prove its correctness. This is joint work with Clark Barrett,

Andrew Reynolds, and Cesare Tinelli [4].

In Chapter 3, we provide a general purpose mechanism for deciding local theory

extensions which capture a broad class of decidable theories useful for encoding con-

straints arising in software verification domains. This is joint work with Andrew

Reynolds, Tim King, Clark Barrett, and Thomas Wies [6].

In Chapter 4, we discuss a new application of SMT solvers to synthesize commu-

tativity conditions. The experimental results benefit from the decision procedure for

sets. This is joint work with Eric Koskinen and Omer Tripp [5].

In Chapter 5, we provide experimental results related to the new decision proce-

dures presented in Chapters 2 and 3 before concluding in Chapter 6.

9

Chapter 2

Theory of finite sets and cardinality

As the applications of SMT solvers have spread, so has the need for additional theories

being supported directly by SMT solvers. This is sometimes for reasons of expressive-

ness – there is no way to directly express the constraints using existing theories. Even

when the constraints can be reduced to existing theories, it is hoped that a dedicated

procedure will reason more directly, and hence more efficiently, about the constraints.

This is in addition to reasons related to user-friendliness such as duplication of effort

for users in doing the encoding and translating the results back. To take an example

of an existing theory supported by SMT solvers, the theory of linear integer arith-

metic can be reduced to propositional satisfiability, but the performance is poor. A

SAT solver does not reason about an addition or inequality at the level of arithmetic

directly. One may also view it as loss of information in the encoding process.

In this chapter, we will explore the above question for fragments of set theory.

The focus will be on developing a decision procedure which will work well in a mod-

ern SMT solver. We are interested in being able to reason about membership, typical

operations on sets like union, intersection etc, and also constraints on their cardinali-

10

ties.

One reason to explore sets is that they are a common high-level data structure

used in programming. Much like with arithmetic, arrays or bit-vectors this is useful

to model the program construct directly. There are also high-level programming lan-

guages like SETL, and specification languages like B and Z, which are based on sets.

More importantly, sets are one of the basic constructs of mathematics and come up

quite naturally when trying to express properties of many systems.

2.1 Preliminaries

2.1.1 Language

We work in many-sorted first-order logic. The signature of our language is given by

the following constants, functions, and predicates over the sorts Cardinality, Element,

and Set:

1. Constant symbols: 0, 1 of Cardinality sort, and ∅ of Set sort.

2. Function symbols:

• + : Cardinality× Cardinality→ Cardinality.

• - : Cardinality× Cardinality→ Cardinality.

• t : Set× Set→ Set.

• u : Set× Set→ Set.

• \ : Set× Set→ Set.

• {·} : Element→ Set.

• |·| : Set→ Cardinality.

11

3. Predicate sybols:

• ≈Cardinality: Cardinality× Cardinality.

• < : Cardinality× Cardinality.

• ≈Set: Set× Set.

• v: Set× Set

• ≈Element: Element× Element.

• @−: Element× Set

We drop the subscript from ≈ when clear from the context.

We define the theory of finite sets with cardinality, denoted TS as the class of

structures I, which satisfy the following properties:

1. Domains:

• CardinalityI must be Z.

• ElementI is an infinite set disjoint from CardinalityI.

• SetI must be all finite sets in the power set of ElementI.

2. Constants are mapped to their intuitive meaning: 0I = 0, 1I = 1, ∅I = ∅.

3. Functions are interpreted respecting their intuitive meaning:

• (t1 + t2)I = tI1 + tI2.

• (t1 - t2)I = tI1 − tI2.

• (t1 t t2)I = tI1 ∪ tI2.

• (t1 u t2)I = tI1 ∩ tI2.

12

• (t1 \ t2)I = tI1 \ tI2.

• ({t})I =
{
tI
}

.

• (|t|)I =
∣∣∣tI∣∣∣.

4. Similarly, predicates are also interpreted respecting their intuitive meaning:

• (t1 ≈ t2)I = true if and only if tI1 = tI2.

• (t1 < t2)I = true if and only if tI1 < tI2.

• (t1 v t2)I = true if and only if tI1 ⊆ tI2.

• (t1 @− t2)I = true if and only if tI1 ∈ tI2.

For the sub-language LA = ({+, -} , {≈Cardinality, <} , {0, 1}), let TA denote the set

of structures which satisfy the above constraints. We assume a procedure which can

check satisfiability of a formula in this language modulo TA.

In this chapter, as we will only be talking about satisfiability of quantifier-free

formulas, for simplifying presentation we make a technical change. For notational

convenience, instead of free varialbles in the formulas, we think of them as constant

symbols in an extended signature. The theories are also expanded to inlcude structures

with respect to the extended signatures. Thus, instead of referring satisfiability prob-

lem being with respect to a structure in the theory and a variable assignment, we refer

to the structure interepreting the additional constant symbols (we may sometimes call

them variables but they are technically to be understood as constant symbols in the

extended signature).

2.1.2 Tableau

We will describe our decision procedure as a tableau-style calculus.

13

Derivation Rules

The rules of the calculus will be described as modifying a state:

Definition 2.1 (State). A state is either the symbol unsat or a tuple σ = 〈σ1, . . . , σn〉.

Then, a rule is described as:

Definition 2.2 (Derivation rule). A derivation rule is syntactically of one the following

forms:

P1 P2 P3

U1 U2

P1 P2 P3

unsat

where each Pi is a proposition over the set of states σ, and each Ui is a set of updates.

An update is a set of equations, where each equation is of the form σj := σ′j for some

j ∈ {1, . . . , n}.

We refer to the propositions of a rule as the premises of the rule, and each set of

updates as a conclusion of the rule. Rules with two or more conclusions are non-

deterministic branching rules.

A rule is applicable at state σ if the premise of the rule is satisfied, and if applying

the updates in each of the conclusions results in a state that is different from σ.

Derivation Trees and Derivations

Because of non-deterministic branching rules, application of the rules gives a deriva-

tion tree.

14

Definition 2.3 (Derivation tree). Given a set of derivation rules R and a state σ, a

derivation tree with initial state σ is a tree where:

• the root node is the state σ, and

• for any non-leaf node σ′, there is a rule r ∈ R such that r is applicable at σ′ and the

children of σ′ are the result of applying the conclusions to σ (or σ′ has a single child

unsat if the rule’s conclusion is unsat).

Definition 2.4 (Closed derivation tree). A derivation tree is said to be closed if the tree

is finite and each branch ends in the configuration unsat.

Definition 2.5 (Open derivation tree). A derivation tree is said to be open if is not

closed.

Definition 2.6 (Saturated derivation tree). Given a set of derivation rules R, a deriva-

tion tree is said to be saturated with respect to R if for all rules r ∈ R and all leaf nodes

σ in the derivation tree, r is not applicable at σ.

Definition 2.7 (Derives). Given a set of derivation rulesR, a derivation tree T1 derives

from T0 if T1 is obtained from T0 by the application of a single rule r ∈ R to a leaf node

σ in T0. By application of a rule r, we mean adding as children to the leaf node the states

obtained by applying the updates in each conclusion of r to σ (or a single child unsat if the

rule’s conclusion is unsat).

Definition 2.8 (Derivation). Given a set of derivation rulesR and a state σ, a derivation

starting at σ is a possibly infinite sequence of derivation trees T0, T1, T2, . . . where:

• T0 is a tree with just the state σ, and

• for i ≥ 0, Ti+1 derives from Ti.

15

2.1.3 Graphs

A directed graph G is a tuple (V (G), E(G)) with E(G) ⊆ V (G) × V (G). We call

V (G) the vertices (or nodes) of the graph, and E(G) the edges of the graph. A graph G

is acyclic if there do not exist vertices v0, v1, . . . , vn−1, vn = v0 such that (vi−1, vi) ∈

E(G) for all i ∈ {1 . . . n}. In this work, we only work with directed acyclic graphs

(or DAGs). For a DAG, we define the children of a vertex v, denoted C(v), to be

the set of vertices which have an outgoing edge from v. Formally, it is the set

{w ∈ V (G) | (v, w) ∈ E(G)}. A node w is reachable from v if either w = v or there

exists a node v′ such that (v, v′) ∈ E(G) and w is reachable from v′. We call a vertex

v with no outgoing edges a leaf. In other words, C(v) = ∅ for a leaf. For a DAG, we

define the leaves of a node, denoted Leaves (v), to be set of leaf nodes reachable from

v. More precisely, Leaves (v) = {w ∈ V (G) | C(w) = ∅, w is reachable from v}.

2.1.4 Notational convention

Wherever possible, we try to use following conventions. We use x, y for variables of

Element sort; S, T , U for variables of Set sort; s, t, u for terms of Set sort; c with

subscripts for variables of Cardinality sort.

2.2 Calculus

In this section, we describe our algorithm as a set of derivation rules. In the next

section, we will prove the correctness of the algorithm.

Normal form. Given an input formula, we introduce additional variables and re-

write the constraints so that the following hold:

16

• Each constraint is of the following form:

1. S ≈ T , S 6≈ T

2. S ≈ ∅

3. S ≈ {x}

4. S ≈ T t U

5. S ≈ T u U

6. S ≈ T \ U

7. x @− S, x 6@− S

8. cS ≈ |S|

9. x ≈ y, x 6≈ y

10. Constraints in language LA (in particular, they do not involve |S| terms

and use corresponding cS variables instead).

where S, T and U are variables of Set sort, cS is a variable of Cardinality sort,

and x, y are variables of Element sort. This can be done by (i) introducing a

new Set-variable for each non-variable Set-term, and adding a corresponding

equality; (ii) introducing a new Cardinality-variable cS for each occurrence of

|S| and corresponding equality (iii) a subset constrains S v T is equivalent to

S ≈ S t T .

• Any set variable term appears in at most one union, intersection or set differ-

ence term. This can be done by replacing multiple occurences of the variable

with new variables, and adding equality of difference variables.

• We assume an ordering on set variables. We allow only S t T and S u T where

T appears after S in that ordering.

17

Let set constraints, denoted S0, be all constraints of the form 1-8. Let element con-

straints, denotedM0, be constraints of form 9. Let arithmetic constraints, denotedA0,

be constraints of form 10.

State. As mentioned in Section 2.1.2, the rules operate on a state. In our case, the

state will be denoted 〈S,M,A,G〉, where S will be constraints involving Set terms,

M will be equality and disequality over elements, A will be constraints in the sub-

language LA, and G will be a directed graph. The meaning of the first three should be

clear, and we will elaborate on the graph in Section 2.2.2.

The rules and inconsistent set will be such that the tableau generated from an

initial state 〈S0,M0,A0, ({}, {})〉 will be closed if and only if the constraints are

unsatisfiable.

High-level overview. Broadly, the rules we will describe can be divided into three

categories. First are those which focus on reasoning about membership predicates (i.e.

those of form t1 @− t2). These rules only update S andM, though the premise of the

rules will depend on other information in the state (in particular they depend on the

vertices of the graph). Second are rules to handle constraints about the cardinality

operator (i.e. those of the form cS ≈ |S|). The graph that we build will be central

to satisfying these constraints. The final set of constraints can be thought of as ex-

changing additional information between the two to ensure we can combine the two

models – one for cardinalities of sets, and the other specifying the elements of a set.

2.2.1 Set reasoning rules

The rules in this section are based on rules in Cantone and Zarba 1998 for the MLSS

(multi-level syllogistic with singleton) fragment, though with some differences. First,

18

instead of working over just S, the rule work over an arbitrary set of Set-terms which

include all Set-terms in S. This generalization is required to handle the interaction

with cardinalities. Second, the reasoning is done modulo equality. Finally, a technical

difference is that we work with ur-elements rather than untyped sets.

We introduce notation for reasoning modulo equalities. We use TermsSort(C) to

refer to terms of Sort sort in C. We use Terms(C) to refer to all terms in C. Given a set

of constraints C, we define the binary relation ≈∗C⊆ T ×Terms(C) to be the reflexive,

symmetric, and transitive closure of the relation on terms induced by equality con-

straints in C. Given this notation we define closure of member constraints M∗ and

set constraints S∗ with respect to equality:

M∗ = {x ≈ y | x ≈∗M y}

∪ {x 6≈ y | ∃x′, y′. x ≈∗M x′, y ≈∗M y′, x′ 6≈ y′ ∈M}

S∗ = S ∪ {x @− s | ∃x′, s′. x ≈∗M x′, s ≈∗S s′, x′ @− s′ ∈ S}

∪ {x 6@− s | ∃x′, s′. x ≈∗M x′, s ≈∗S s′, x′ 6@− s′ ∈ S}

where x, y, x′, y′ in TermsElement(M∪ S), and s, s′ in TermsSet(S). Next, we define

a left-associative operator /. Intuitively, C / (P) updates the constraints C only if P is

not in the closure:

C / (P) =


C if P ∈ C∗

C ∪ {P} otherwise
(2.1)

The terms that the rules will work over will be denoted by T . In addition to the

terms from the set constraints, these will include the vertices of the graph, which are

themselves Set-terms:

T = Terms(S) ∪ V (G) (2.2)

19

Intersection

Rule 1 (INTERSECTION DOWN 1)

x @− s u t ∈ S∗

S := S / (x @− s) / (x @− t)

Rule 2 (INTERSECTION DOWN 2)

x 6@− s u t ∈ S∗ x @− s ∈ S∗

S := S / (x 6@− t)

Rule 3 (INTERSECTION DOWN 3)

x 6@− s u t ∈ S∗ x @− t ∈ S∗

S := S / (x 6@− s)

Rule 4 (INTERSECTION UP 1)

x @− s ∈ S∗ x @− t ∈ S∗ s u t ∈ T

S := S / (x @− s u t)

Rule 5 (INTERSECTION UP 2)

x 6@− s ∈ S∗ s u t ∈ T

S := S / (x 6@− s u t)

Rule 6 (INTERSECTION UP 3)

x 6@− t ∈ S∗ s u t ∈ T

S := S / (x 6@− s u t)

Rule 7 (INTERSECTION SPLIT)

s u t ∈ T x @− s ∈ S∗ x @− t 6∈ S∗ x 6@− t 6∈ S∗

S := S / (x @− t) S := S / (x 6@− t)

20

Union

Rule 8 (UNION DOWN 1)

x 6@− s t t ∈ S∗

S := S / (x 6@− s) / (x 6@− t)

Rule 9 (UNION DOWN 2)

x @− s t t ∈ S∗ x 6@− s ∈ S∗

S := S / (x @− t)

Rule 10 (UNION DOWN 3)

x @− s t t ∈ S∗ x 6@− t ∈ S∗

S := S / (x @− s)

Rule 11 (UNION UP 1)

x 6@− s ∈ S∗ x 6@− t ∈ S∗ s t t ∈ T

S := S / (x 6@− s t t)

Rule 12 (UNION UP 2)

x @− s ∈ S∗ s t t ∈ T

S := S / (x @− s t t)

Rule 13 (UNION UP 3)

x @− t ∈ S∗ s t t ∈ T

S := S / (x @− s t t)

Rule 14 (UNION SPLIT)

x @− s t t ∈ S x @− s 6∈ S∗ x @− t 6∈ S∗

S := S / (x @− s) S := S / (x @− t)

21

Set difference

Rule 15 (SET DIFFERENCE DOWN 1)

x @− s \ t ∈ S∗

S := S / (x @− s) / (x 6@− t)

Rule 16 (SET DIFFERENCE DOWN 2)

x 6@− s \ t ∈ S∗ x @− s ∈ S∗

S := S / (x @− t)

Rule 17 (SET DIFFERENCE DOWN 3)

x 6@− s \ t ∈ S∗ x 6@− t ∈ S∗

S := S / (x 6@− s)

Rule 18 (SET DIFFERENCE UP 1)

x @− s ∈ S∗ x 6@− t ∈ S∗ s \ t ∈ T

S := S / (x @− s \ t)

Rule 19 (SET DIFFERENCE UP 2)

x 6@− s ∈ S∗ s \ t ∈ T

S := S / (x 6@− s \ t)

Rule 20 (SET DIFFERENCE UP 3)

x @− t ∈ S∗ s \ t ∈ T

S := S / (x 6@− s \ t)

Rule 21 (SET DIFFERENCE SPLIT)

s \ t ∈ T x @− s ∈ S∗ x @− t 6∈ S∗ x 6@− t 6∈ S∗

S := S / (x @− t) S := S / (x 6@− t)

22

Singleton

Rule 22 (SINGLETON)

{x} ∈ T

S := S / (x @− {x})

Rule 23 (SINGLETON MEMBER)

x @− {y} ∈ S∗

M :=M / (x ≈ y)

Rule 24 (SINGLETON NON-MEMBER)

x 6@− {y} ∈ S∗

M :=M / (x 6≈ y)

Disequality

Let y in the following rule be a new variable of Element sort.

Rule 25 (SET DISEQUALITY)

s 6≈ t ∈ S∗ @x ∈ Terms(S) such that x @− s ∈ S∗ and x 6@− t ∈ S∗

@x ∈ Terms(S) such that x 6@− s ∈ S∗ and x @− t ∈ S∗

S := S, y @− s, y 6@− t S := S, y 6@− s, y @− t

Rules (contradiction)

Rule 26 (ELEMENT EQUALITY CONTRADICTION)

(x 6≈ x) ∈M∗

unsat

Rule 27 (SET MEMBERSHIP CONTRADICTION)

(x @− s) ∈ S∗ (x 6@− s) ∈ S∗

unsat

23

Rule 28 (EMPTY SET CONTRADICTION)

(x @− ∅) ∈ S∗

unsat

Optional propagation rules

Rule 29 (SINGLETON AND UNION)

x @− S ∈ S∗ T ≈ {x} ∈ S∗ S t T ∈ T

S := S / (S ≈ S t T)

2.2.2 Cardinality of sets

There are two forms of consistencies about the cardinality of sets that the rules in

this section will handle. First, the cardinality of two sets, and their union, intersec-

tion or set difference are inter-related. They implicitly impose some constraints on

cardinality of sets. Second, if two set terms are equal, their cardinalities (and also the

models we build eventually) must match. These, along with consistency with respect

to arithmetic constraints, and those imposed by membership constraints (handled by

rules in the Section 2.2.3) will be sufficient for ensuring completeness.

Consider two sets T and U , and how the different regions interact with each other.

T U

T \ U T u U U \ T

T t U

As we can see union, intersection, set difference of two sets and the sets themselves

affect the models and cardinalities of each other. This information is what the graph

G will capture. The nodes of the graph will be set terms, and the children of a node

24

correspond to its disjoint subsets. In the example above of two sets T and U , the

interaction is captured by the graph below:
T T t U U

T \ U T u U U \ T

The information associated with this graph is that

• T is a disjoint union of T \ U and T u U ;

• T t U is a disjoint union of T \ U , T u U and U \ T ; and

• U is a disjoint union of T u U and U \ T .

Knowing that the sets are disjoint is important. It allow us to add the constraints:

|T | ≈ |T \ U | + |T u U |

|T t U | ≈ |T \ U | + |T u U | + |U \ T |

|U | ≈ |U \ T | + |T u U |

and for any values T \ U , T u U and U \ T build a model for T , U , and T u U such

that everything is consistent.

This forms the basis of the rules in our calculus for cardinality. The graph should

eventually contain all nodes whose cardinality is implicitly or explicitly constrained.

We start by adding sets to the graph about which there are explicit constraints. Next,

we add the terms whose cardinality is implicitly constrained. As discussed in the

introduction to this section, these are: (i) terms which occur in an equality where the

other side is in the graph, and (ii) union, intersection and set difference of terms about

which there are constraints in S, and one of the sets is in the graph. That said, a

25

careful analysis shows that we can avoid adding intersection terms unless both sets are

in the graph, and set difference T \U unless T is in the graph (see proof of Proposition

2.9 for why this is sufficient).

Rule 30 (INTRODUCE CARD)

cs ≈ |S| ∈ S

G := add(G, S)

Rule 31 (INTRODUCE EQUALITY RIGHT)

S ≈ t ∈ S S ∈ V (G) t 6∈ V (G)

G := add(G, t)

Rule 32 (INTRODUCE EQUALITY LEFT)

S ≈ t ∈ S S 6∈ V (G) t ∈ V (G)

G := add(G, S)

Rule 33 (INTRODUCE UNION)

S ≈ T t U ∈ S T ∈ V (G) or U ∈ V (G) T t U 6∈ V (G)

G := add(G, T t U)

Rule 34 (INTRODUCE INTERSECTION)

S ≈ T u U ∈ S T ∈ V (G) U ∈ V (G) T u U 6∈ V (G)

G := add(G, T u U)

Rule 35 (INTRODUCE SET DIFFERENCE)

S ≈ T \ U ∈ S T ∈ V (G) T \ U 6∈ V (G)

G := add(G, T \ U)

where add(G, s) is formally defined as follows:

1. For s = T or s = ∅ or s = {x}, simply add s to V (G).

26

2. For s = T t U , add the following nodes to V (G): T , T t U , U , T \ U , T u U ,

and U \ T . Also add the following edges to E(G):

• for T : (T, T \ U), (T, T u U),

• for T t U : (T t U, T \ U), (T t U, T u U), (T t U,U \ T),

• for U : (U, T u U), (U,U \ T).

3. For T u U , add the following nodes to V (G): T , U , T \ U , T u U , and U \ T .

Also add the following edges to E(G):

• for T : (T, T \ U), (T, T u U),

• for U : (U, T u U), (U,U \ T).

4. For T \ U , the case is the same as for T u U .

Note that, by assumption, each Set-variable participates in at most one union, in-

tersection, or set difference. Thus, each set variable participates in at most one add

operation. This ensures that the children of any node in the graph represent disjoint

sets at introduction (this will be made more precise in Proposition 2.11).

We also need to be careful about terms which implicitly impose constraint on the

cardinality.

Rule 36 (INTRODUCE SINGLETON)

{x} ∈ Terms(S)

G := add(G, {x})

Rule 37 (INTRODUCE EMPTY SET)

G := add(G, ∅)

27

Let L(n) denote the set of leaf nodes for the subtree rooted at node n which are

not known to be empty. Formally,

L(n) = {n′ ∈ Leaves (n) | n′ ≈ ∅ 6∈ S∗} (2.3)

We call two nodes n and n′ merged if they have the same set of nonempty leaves, that

is if L(n) = L(n′).

The next few rules will ensure that for all equalities over set terms, the correspond-

ing nodes in the graph are merged. Let s ≈ t ∈ S∗ with s ∈ V (G) and t ∈ V (G). Let

L1 = L(s) and L2 = L(t). If L1 ⊆ L2 then the merge operation propagates that the

nodes in L2 \L1 must be empty and doesn’t modify the graph (similarly for L2 ⊆ L1).

Rule 38 (MERGE EQUALITY 1)

s ≈ t ∈ S s, t, ∅ ∈ V (G) L(s) (L(t)

S := {u ≈ ∅ | u ∈ L(t) \ L(s)} ∪ S

Rule 39 (MERGE EQUALITY 2)

s ≈ t ∈ S s, t, ∅ ∈ V (G) L(t) (L(s)

S := {u ≈ ∅ | u ∈ L(s) \ L(t)} ∪ S

Otherwise, let L3 = L1 \ L2 and L4 = L2 \ L1. Add the following set of nodes

and edges to the graph. We add the nodes

{l1 u l2 | l1 ∈ L3, l2 ∈ L4}

and for each new node l1 u l2 add the edges (l1, l1 u l2) and (l2, l1 u l2). Denote this

modification of the graph by merge(G, s, t).

28

Rule 40 (MERGE EQUALITY 3)

s ≈ t ∈ S s, t ∈ V (G) L(s) * L(t) L(t) * L(s)

G := merge(G, s, t)

Induced arithmetic constraints. The arithmetic constraints imposed by graph G

are denoted by Ĝ. They are:

• For each set term s ∈ V (G), the cardinality of the set term is the sum of the

corresponding non-empty leaf nodes. Formally, the constraints are:

cs ≈ ∑
t∈L(s)

ct

∣∣∣∣∣∣ s ∈ V (G)


• Each cardinality term should be non-negative:

{cs >= 0 | s ∈ V (G)}

• A singleton set has cardinality 1:

{cs ≈ 1 | s ∈ V (G), s = {x}}

• Cardinality of empty set is 0:

{cs ≈ 0 | s ∈ V (G), s = ∅}

If the above constraints along with A are inconsistent, then we consider the branch

of the tableau closed.

29

Rule 41 (ARITHMETIC CONTRADICTION)

A ∪ Ĝ |=TA
⊥

unsat

The merge rule needs to take a cross product of the leaf nodes being merged. Thus,

having many sets guessed to be empty can speed up the merge operation, as well as

reducing the total number of terms we need to consider significantly. We also need

this rule for completeness, to be able to build a model.

Rule 42 (GUESS EMPTY SET)

t ∈ Leaves (G)

S := S / (t ≈ ∅) S := S / (t 6≈ ∅)

2.2.3 Cardinality and membership interaction

For this section, let E denote the set of equalities inM. By [x]E denote the equiva-

lence class of x with respect to E. For a Set term t, define tS to be elements that must

be in the set according to S, modulo E. More precisely, tS = {[x]E | x @− t ∈ S∗}.

The first rule is to find an arrangement for all members in each leaf. This will be

required to build a model for an open branch. This is required only if the cardinality

of the set is not already lower-bounded to be at least as many elements as there are

equivalence classes for elements in the set.

Rule 43 (MEMBERS ARRANGEMENT)

t ∈ Leaves (G)

A 6V ct ≥ |tS | [x]E ∈ tS [y]E ∈ tS [x]E 6= [y]E x 6≈ y 6∈ M∗

M :=M / (x ≈ y) M :=M / (x 6≈ y)

where AV ct ≥ |tS | holds if for some fixed n ≥ |tS |, ct >=n ∈ A.

30

Rule 44 (PROPAGATE MINSIZE)

x1 @− s, x2 @− s, . . . , xn @− s ∈ S∗

xi 6≈ xj ∈M∗ for all 1 ≤ i 6= j ≤ n A 6V cs ≥ n

A := cs >=n,A

The following rule can be thought of as an optimization. It guesses a lower bound

for the size of sets to avoid many applications of the MEMBERS ARRANGEMENT rule.

Rule 45 (GUESS LOWER BOUND)

t ∈ Leaves (G) A 6V ct ≥ |tS | ct < |tS | 6∈ A

A := ct >= |tS | ,A A := ct < |tS | ,A

2.3 Correctness

We group the rules as follows:

• R1: Rules 1, 4, 12, 13, 14, 15, 18, 21, 22, 23, 25, 26, 27, and 28.

• R2: Rules 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, and 42.

• R3: Rule 43 and Rule 44.

• R4: optional propagation and split rules other than 45.

• R5: 45.

2.3.1 Completeness

The completeness involves proving the following:

Proposition 2.9. Let S0,M0,A0 be normalized set, element and arithmetic constraints

respectively. Let D be a derivation with respect to rules R1 ∪ R2 ∪ R3 from state 〈S0,

31

M0, A0, ({}, {})〉. If D is finite, and the final derivation tree, say D, in D is open and

saturated with respect to the rulesR1∪R2∪R3; then there exists an interpretation I that

satisfies S0,M0 and A0.

We develop the proof in stages, proving properties about different subset of rules.

We start with a proposition about the rules in Section 2.2.1.

Proposition 2.10. Let S andM be set and element constraints respectively. Let T an

arbitrary set of Set terms which includes all Set terms in S . Let S ,M and T be such that

none of the rules inR1 are applicable.

Let S be a structure interpreting all variables of Element sort in S andM satisfying

the following property: for any x and y in Vars (M) ∪ Vars (S) of Element sort,

xS = yS if and only x ≈ y ∈M∗ .

Let S interpret each variable S of Set sort in Vars (S) as:

SS =
{
xS

∣∣∣ x @− S ∈ S∗
}

and any variable cS of Cardinality sort in Vars (S) as:

cSS =
∣∣∣SS

∣∣∣ .

Then, S satisfies the constraints S andM.

Proof. For any set term s, define

Elements(s) =
{
xS

∣∣∣ x @− s ∈ S∗
}
. (2.4)

32

We will show by structural induction on set terms that for any set term s ∈ T :

Elements(s) = sS (2.5)

Case 1 (s is a variable). The definition of Elements(s) is identical to that of sS.

Case 2 (s is ∅). Rule 28 (EMPTY SET CONTRADICTION) closes a branch if there is a

constraint of the form x @− ∅ in S∗. It follows that Elements(∅) = ∅.

Case 3 (s is {x}). As sS =
{
xS
}

, sufficient to show Elements(s) =
{
xS
}

.

Since Rule 22 (SINGLETON) is not applicable, we can conclude that x @− s ∈ S∗. It

follows that
{
xS
}
⊆ Elements(s).

The other direction, Elements(s) ⊆
{
xS
}

, follows from Rule 23 (SINGLETON

MEMBER).

e ∈ Elements({x})

e = yS for some y with y @− {x} ∈ S∗ (definition)

y ≈ x ∈M∗ Rule 23 (SINGLETON MEMBER)

yS = xS (S satisfiesM)

e ∈
{
xS
}

(e = yS)

Case 4 (s is t u u). We need to show Elements(t u u) = tS ∩ uS.

First, we consider the direction Elements(t u u) ⊆ tS ∩ uS. The proof depends

33

on Rule 1 (INTERSECTION DOWN 1).

e ∈ Elements(t u u)

e = xS for some x with x @− t u u ∈ S∗ (definition)

x @− t ∈ S∗ and x @− u ∈ S∗ (Rule 1)

xS ∈ Elements(t) and xS ∈ Elements(u) (definition)

xS ∈ tS and xS ∈ uS (induction)

e ∈ tS ∩ uS

In the other direction, we show that tS ∩ uS ⊆ Elements(tu u). The reasoning relies

on Rule 4 (INTERSECTION UP 1).

e ∈ tS ∩ uS

e ∈ tS and e ∈ uS

e ∈ Elements(t) and e ∈ Elements(u) (induction)

x @− t ∈ S∗ and y @− u ∈ S∗ with xI = yI = e (definition)

x @− t ∈ S∗ and y @− u ∈ S∗ with x ≈ y ∈M∗ (by construction)

x @− t ∈ S∗ and x @− u ∈ S∗

x @− t u u ∈ S∗ (t u u ∈ T , Rule 4)

e ∈ Elements(t u u)

Case 5 (s is t t u). We need to show Elements(t t u) = tS ∪ uS.

First, we consider the direction Elements(t t u) ⊆ tS ∩ uS. The reasoning relies

34

on Rule 14 (UNION SPLIT).

e ∈ Elements(t t u)

e = xS for some x with x @− t t u ∈ S∗ (definition)

x @− t ∈ S∗ or x @− u ∈ S∗ (Rule 14 (UNION SPLIT))

xS ∈ Elements(t) or xS ∈ Elements(u) (definition)

xS ∈ tS or xS ∈ uS (induction)

e ∈ tS ∪ uS

In the other direction, we show that tS∪uS ⊆ Elements(ttu). The reasoning follows

directly from Rule 12 (UNION UP 2) and Rule 13 (UNION UP 3).

e ∈ tS ∪ uS

e ∈ tS or e ∈ uS

e ∈ Elements(t) or e ∈ Elements(u) (induction)

x @− t ∈ S∗ or x @− u ∈ S∗ where xI = e (definition)

x @− t t u ∈ S∗ (t t u ∈ T , Rule 12 or 13)

e ∈ Elements(t u u)

Case 6 (s is t \ u). We need to show Elements(t \ u) = tS \ uS.

First, we consider the direction Elements(t \ u) ⊆ tS \ uS. The proof depends

on Rule 15 (SET DIFFERENCE DOWN 1) and Rule 27 (SET MEMBERSHIP CONTRADIC-

35

TION).

e ∈ Elements(t \ u)

e = xS for some x with x @− t \ u ∈ S∗ (definition)

x @− t ∈ S∗ and x 6@− u ∈ S∗ (Rule 15)

We show by contradiction that xS 6∈ Elements(u). If possible, let xS ∈ Elements(u).

That is, there exists y such that yS = xS and y @− u ∈ S∗. By definition of S,

it follows that x ≈ y ∈ M∗. So, x @− u ∈ S∗. Contradiction by Rule 27 (SET

MEMBERSHIP CONTRADICTION). We conclude,

xS ∈ Elements(t) and xS 6∈ Elements(u)

xS ∈ tS and xS 6∈ uS (induction)

e ∈ tS \ uS

In the other direction, we show that tS \ uS ⊆ Elements(t \ u). The reasoning relies

on Rule 18 (SET DIFFERENCE UP 1) and Rule 21 (SET DIFFERENCE SPLIT).

e ∈ tS \ uS

e ∈ tS and e 6∈ uS

e ∈ Elements(t) and e 6∈ Elements(u) (induction)

x @− t ∈ S∗ and x @− u 6∈ S∗ for some x with xI = e (definition)

36

We show by contradiction that x 6@− u ∈ S∗. If possible, let x 6@− u 6∈ S∗. As

x @− u 6∈ S∗ and t\u ∈ T , the premise of Rule 21 (SET DIFFERENCE SPLIT) is satisfied.

As we had neither x @− u ∈ S∗ nor x 6@− u ∈ S∗, we get a contradiction.

x @− t ∈ S∗ and x 6@− u ∈ S∗ (Rule 21)

x @− t \ u ∈ S∗ (t \ u ∈ T , Rule 18)

e ∈ Elements(t \ u)

Having established the property of Elements(·), showing that each constraint in

S is satisfied by S is straightforward:

1. Let x @− s ∈ S. Then, xS ∈ Elements(s). With the property of Elements(·)

just established it follows xS ∈ sS.

2. Let x 6@− s ∈ S. We show xS 6∈ sS by contradiction.

xS ∈ sS (assume)

xS ∈ Elements(s) (proved above)

xS = yS for some y with y @− s ∈ S∗ (definition)

x ≈ y ∈M∗ (xS = yS iff x ≈ y ∈M∗)

x @− s ∈ S∗ (definition of S∗)

Tableau is closed, contradiction. (Rule 27)

3. Let s ≈ t ∈ S. From the definition of S∗ it follows that Elements(s) =

Elements(t). Since sS = Elements(s) and tS = Elements(t), it follows that

sS = tS.

37

4. Let s 6≈ t ∈ S. From Rule 25 (SET DISEQUALITY), it follows that there exists x

such that either x @− s ∈ S∗ and x 6@− t ∈ S∗, or x 6@− s ∈ S∗ and x @− t ∈ S∗.

It follows that either xS ∈ sS and xS 6∈ tS, or xS 6∈ sS and xS ∈ tS. In either

case, we can conclude that sS 6= tS.

5. Let cS ≈ |S| ∈ S. By definition, both cSS =
∣∣∣SS

∣∣∣ = |S|S.

Next, about the rules in Section 2.2.2.

Proposition 2.11. Let D be a derivation with respect to rules in our calculus starting

from state 〈S0,M0,A0, (∅, ∅)〉. Let D ∈ D that is open and saturated. Let 〈S,M,A,G〉

be the final state on a branch in D that is not unsat. Then, G satisfies the following proper-

ties:

1. If s ∈ V (G) or t ∈ V (G), and s ≈ t ∈ S ; then L(s) = L(t).

2. For a node T t U , L(T t U) = L(T) ∪ L(U).

3. For a node T u U , L(T u U) = L(T) ∩ L(U).

4. For a node T \ U , L(T \ U) = L(T) \ L(U).

5. Let s ∈ V (G). For all t, u ∈ Leaves (s), t 6= u, the two sets are necessarily disjoint:

|=TS
t u u ≈ ∅.

38

6. Let s ∈ V (G).Let E = {t ≈ u | t ≈ u ∈ S∗}. Then,∗

|=TS

(∧
P∈E

P

)
⇒

s ≈ ⊔
t∈L(s)

t

 (2.6)

Proof (Proposition 2.11, property 1). Let s ≈ t ∈ S, with s ∈ V (G) or t ∈ V (G). From

Rule 31 (INTRODUCE EQUALITY RIGHT) and Rule 32 (INTRODUCE EQUALITY LEFT)

it follows that both s ∈ V (G) and t ∈ V (G). For each of the Rules 38, 39, and 40; we

show that after the application of the rule, L(s) and L(t) are equal.

Consider Rule 38 (MERGE EQUALITY 1). Let Ls and Lt denote L(s) and L(t)

respectively before application of the rule. Let L′s and L′t denote L(s) and L(t) after

application of the rule. For the rule to be applicable Ls (Lt. The rule adds con-

straints to S so that L′t = Lt \ (Lt \ Ls). Equivalently, L′t = Lt ∩ Ls = Ls. Since

L′s = Ls, we get L′s = Ls = L′t.

The case for Rule 39 (MERGE EQUALITY 2) is analogous to Rule 38 (MERGE

EQUALITY 1).

Consider Rule 40 (MERGE EQUALITY 3). Let Ls and Lt denote L(s) and L(t)

respectively before application of the rule. Let L′s and L′t denote L(s) and L(t) after

application of the rule. Let n ∈ L′s. Note that the merge operation only adds nodes

and vertices. Thus, n is one of the following:

• l1u l2 with l1 ∈ Ls and l2 ∈ Lt: Since (l1, l1u l2) as well as (l2, l1u l2) is an edge,

it follows that n ∈ L′t.

• l1 ∈ Ls. Since nodes in Ls \ Lt have an outgoing edge, it must be the case that

l1 ∈ Ls ∩ Lt. It follows that n ∈ L′t.
∗Technically,

⊔
... is ambiguous. But, for any structure in TS , the interpretation of t is associative,

so the bracketing doesn’t matter in our context.

39

This shows that L′s ⊆ L′t. The reasoning for L′t ⊆ L′s is symmetrical.

As s ≈ t, s ∈ V (G), and t ∈ V (G), the premise of at least once of the rules (38),

(39), and (40) must be satisfied whenever L(s) 6= L(t). As the branch is saturated,

L(s) = L(t) follows.

Proof (Proposition 2.11, properties 2, 3, 4). As D is obtained from a derivation starting

with a state with an empty graph, it is sufficient to show the properties hold for the

empty graph, and that they are preserved each time the graph is modified by one of

the rules.

The properties hold trivially for the empty graph. The interesting cases are when

edges are added to the graph: i) add of a union, intersection, or set minus term, and

ii) merge operation.

Observe that when we introduce T t U , T u U , and T \ U to the graph:

• Leaves (T) = {T \ U, T u U},

• Leaves (U) = {T u U,U \ T},

• Leaves (T t U) = {T \ U, T u U,U \ T},

• Leaves (T u U) = {T u U},

• Leaves (T \ U) = {T \ U}, and

• Leaves (U \ T) = {U \ T}.

We conclude that:

• Leaves (T t U) = Leaves (T) ∪ Leaves (U)

• Leaves (T u U) = Leaves (T) ∩ Leaves (U)

40

• Leaves (T \ U) = Leaves (T) \ Leaves (U)

• Leaves (U \ T) = Leaves (U) \ Leaves (T)

when an introduce rule is applied. Note that the merge operation only adds edges

from existing leaf nodes, ensuring that the property is maintained by any application

of merge.

L(·), as defined in (2.3), can also be defined as:

L(n) = Leaves (n) \ E (2.7)

where E = {n′ ∈ V (G) | n′ ≈ ∅ ∈ S∗} does not depend on n. The properties in

the proposition about L(·) follow from the corresponding property of Leaves (·) just

established, and above formulation of L(·).

Proof (Proposition 2.11, properties 5,6). The properties holds trivially for the empty

graph.

Let G be the graph constraints. Let s ∈ V (G). Let s′ ≈ ∅ be a new constraint

such that s′ ∈ L(s). Then, this modifies L(s), and we need to verify the Property

6 still holds. Note that for any structure in TS , if s′ is interpreted as empty set, the

interpretation of
⊔
t∈L(s)\{s′} t will be same as

⊔
t∈L(s) t. Thus, if s′ ∈ L(s) and

|=TS

(∧
P∈E

P

)
⇒

s ≈ ⊔
t∈L(s)

t

 ,

then

|=TS

(
s′ ≈ ∅ ∧

∧
P∈E

P

)
⇒

s ≈ ⊔
t∈L(s)\{s′}

t

 .

It follows if s′ ≈ ∅ is added to S∗ by a rule, the property 6 continue to hold. Also note

41

that a equality is not removed by any rule (if there was such a rule, we’d need to check

the property continues to hold when the left side of the implication is weakened).

The only other rules which affect the properties are those which modify the graph

directly, i.e. the add and merge operations.

We show that if G satisfies the properties, then so does add(G, s):

• s is ∅, S or {x}: trivially, as no edges are added.

• s is T u U : Note that because of the assumptions on the normal form, either

T u U already in the graph and add operation doesn’t modify the graph, or it

will add the nodes T , U , T \U , T uU , and U \T to the graph, and edges between

them. It is easy to see that the property 5 follows from:

|=TS
((T \ U) u (T u U)) ≈ ∅

|=TS
((U \ T) u (T u U)) ≈ ∅

Property 6 follows from:

|=TS
T ≈ ((T \ U) t (T u U))

|=TS
U ≈ ((U \ T) t (T u U))

|=TS
(T u U) ≈ (T u U)

|=TS
(U \ T) ≈ (U \ T)

|=TS
(T \ U) ≈ (T \ U)

and reasoning as earlier that any constraint of the form s′ ≈ ∅ doesn’t affect the

property.

42

• s is T \ U or U \ T : reasoning same as for T u U .

• s is T t U . If not already present, T , U , T \ U , T u U are added to the graph

as for T u U . In addition, add for union also adds T t U , and three edges. The

properties follows from the following tautologies in TS in addition to those

listed in analysis for T u U :

|=TS
((T \ U) u ((U \ T))) ≈ ∅

|=TS
(T t U) ≈ ((T \ U) t (T u U) t (U \ T))

Finally, we show that if G satisfies the properties, then so does merge(G, s, t) if

s ∈ V (G), t ∈ V (G), L(s) * L(t) and L(t) * L(s).

Let Ls denote L(s) in G, and L′s denote L(s) in merge(G, s′, t′) (likewise for t, u

etc.).

In order to show property 5 holds, let s′ ∈ V (G), t′ ∈ L′s′ and u′ ∈ L′s′ . We need

to show: |=TS
t′ u u′ ≈ ∅.

• Let t′ ∈ Ls′ and u′ ∈ Ls′ , i.e. both are also leaf nodes in G. Then, the property

for merge(G, s, t) follows from that of G.

• Let t′ be one of the newly introduced leaf nodes and u′ ∈ Ls′ a leaf node in G.

Without loss of generality, let t′ be t1 u t2 with t1 ∈ Ls \ Lt and t2 ∈ Lt \ Ls.

For t′ to be in L′s′ , given the way the edges are added, either t1 ∈ Ls′ or t2 ∈ Ls′ .

Thus, we know that either |=TS
t1 u u′ ≈ ∅ or |=TS

t2 u u′ ≈ ∅. In either case,

it follows that |=TS
(t1 u t2) u u′ ≈ ∅, i.e. |=TS

t′ u u′ ≈ ∅.

• The analysis for the case where both are newly introduced leaf nodes is similar.

43

To show property 6 holds, the main observation is that each node no longer a

leaf node, say s′ ∈ Ls \ L′s, is union of a new set of leaf nodes in L′s (assuming the

equalities).

s′ ≈ s′ u s (s′ ∈ Ls, s ≈
⊔

s′′∈Ls

s′′)

≈ s′ u t (s ≈ t ∈ E)

≈ s′ u

 ⊔
t′∈Lt

t′

 (t ≈
⊔
t′∈Lt

t′)

≈
⊔
t′∈Lt

s′ u t′ (distribute)

But by property 5, s′ u t′ ≈ ∅ for s′, t′ ∈ Ls. Thus,

s′ ≈
⊔

t′∈Lt\Ls

s′ u t′

Note that {s′ u t′ | t′ ∈ Lt \ Ls} are precisely the nodes in L′s to which edges are added

from s′. The proof for a node in Lt but not in L′t is similar.

Since all the new leaf nodes are of the form s′ut′ with s′ ∈ Ls\Lt and t′ ∈ Lt\Ls,

it follows that property 6 holds for merge(G, s, t) if it holds for G assuming s ≈ t ∈

E.

Third, about the rules in Section 2.2.3.

Proposition 2.12. Let 〈S,M,A,G〉 be a state such that none of the rules in our calculus

are applicable. Let S be a structure defined in Proposition 2.10 satisfying constraints in S

andM. To recall, for x and y of Element sort,

xS = yS if and only if x ≈ y ∈M∗

44

and for s of Set sort,

sS =
{
xS

∣∣∣ x @− s ∈ S∗
}

.

Let A be a structure satisfying A. Then, for all t ∈ L(G),

cAt ≥
∣∣∣tS∣∣∣ .

Proof. Let t ∈ L(G). First we show that if A ⇒ ct ≥ |tS |, then the proposition

follows. That is there exists n ≥ |tS | such that ct >=n ∈ A. Let Elements(·) be as in

(2.4).

cAt ≥ nA (ct >=n ∈ A)

= n (constant symbol)

≥ |tS | (definition)

= |Elements(t)| (xS = yS iff x ≈ y ∈M∗)

=
∣∣∣tS∣∣∣ (using (2.5))

It remains to show that A ⇒ ct ≥ |tS |. Because of Rule 43 (MEMBERS ARRANGE-

MENT), either A ⇒ ct ≥ |tS | or Rule 43 is applicable until the premise of Rule 44

(PROPAGATE MINSIZE) holds. If Rule 44 is applicable, ct >= |tS |must have been added

to A. In either case, A ⇒ ct ≥ |tS |.

Now we return to the proof of the main result of this section, Proposition 2.9.

Let us recall the proposition:

Let S0,M0,A0 be normalized set, element and arithmetic constraints re-

spectively. Let D be a derivation with respect to rulesR1∪R2∪R3 from

45

state 〈S0,M0, A0, ({}, {})〉. If D is finite, and the final derivation tree,

say D, in D is open and saturated with respect to the rulesR1 ∪R2 ∪R3;

then there exists an interpretation I that satisfies S0,M0 and A0.

Intuitively, we start by building the model of the leaf nodes in the graphs using the

model obtained from Proposition 2.10. We add additional elements to these sets to

make the cardinalities match the model satisfying the arithmetic constraints and the

constraints induced by the graph. Propositions 2.11 and 2.12 ensure that this is always

possible to do without violating the set constraints.

Proof of Proposition 2.9. As D is open, there exists a branch that doesn’t end in the

state unsat. Let 〈S,M,A,G〉 be the final state on such a branch.

LetA∪Ĝ be the arithmetic constraints, and the arithmetic constraints induced by

the graph. These constraints fall in the theory TA. Let A be the structure satisfying

these constraints. Such an structure exists because Rule 41 (ARITHMETIC CONTRA-

DICTION) would have closed the branch if the constraints were inconsistent. From

Proposition 2.10, we obtain an structure S satisfying S and M. Without loss of

generality, assume that ElementS is infinite.

The I we build satisfying S0 ∪M0 ∪ A0 will be as follows. It coincides with the

structure S on terms of Element sort. It coincides with the structure A on terms

of Cardinality sort. In order to define the value of Set variables, for each leaf node

t ∈ Leaves (G) we create the following sets:

Bt = {et,1, et,2 . . . et,cIt−|tS|}

where et,i ∈ ElementS are distinct from each other and from any e such that e = xS

for x in S or M. From Proposition 2.12, we know that cIt ≥
∣∣∣tS∣∣∣. Thus, for a leaf

46

node t, ∣∣∣tS∣∣∣+ |Bt| = cIt . (2.8)

For a set variable not in the graph, S 6∈ V (G), define SI = SS. For a set variable

in the graph, S ∈ V (G), define:

SI =
⋃

t∈L(S)
(tS ∪Bt) (2.9)

From Proposition 2.11, it follows that:

⋃
t∈L(S)

tS = SS (2.10)

So an equivalent way to define SI is as follows:

SI = SS ∪
⋃

t∈L(S)
Bt (2.11)

We verify that each constraints in S0 is satisfied:

1. S ≈ T , S 6≈ T .

For S ≈ T , we need to show SI = T I. If neither S ∈ V (G) nor T ∈ V (G), then

this follows from Proposition 2.10. If either S ∈ V (G) or T ∈ V (G), then due to

Rule 31 (INTRODUCE EQUALITY RIGHT) and Rule 32 (INTRODUCE EQUALITY

LEFT) both S ∈ V (G) and T ∈ V (G). From Proposition 2.11, property 1, we

know that L(S) = L(T). From the definition of SI and T I in (2.9), it follows

that SI = T I.

For S 6≈ T , we need to show SI 6= T I. Let us write SI = SS ∪ BS , where

BS = ∅ if S 6∈ V (G), otherwise let BS = ⋃
t∈L(S) Bt (from (2.11)). Similarly

47

we may write T I = TS ∪ BT . From Proposition 2.10 we know that SS 6= TS.

Without loss of generality assume e ∈ SS and e 6∈ TS. By definition, BT is

disjoint from SS, thus e 6∈ BT . Thus, e ∈ SI and e 6∈ T I. SI 6= T I follows.

2. S ≈ ∅.

We need to show SI = ∅I = ∅. It will follow from Rule 37 (INTRODUCE EMPTY

SET) and Rule 32 (INTRODUCE EQUALITY LEFT).

∅ ∈ V (G) and S ∈ V (G) (Rules 37, 32)

L(S) = L(∅) (Proposition 2.11, property 1)

L(S) = ∅ (L(∅) = ∅)

SI = ∅ (S ∈ V (G), (2.9))

3. S ≈ {x}.

We need to show that SI =
{
xI
}

. From Rule 36 (INTRODUCE SINGLETON) we

conclude that {x} ∈ V (G) Then, from Rule 32 (INTRODUCE EQUALITY LEFT),

S ∈ V (G).

From Ĝ, we know that:

cIS =
∑

t∈L(S)
cIt (constraint in Ĝ for cS)

=
∑

t∈L({x})
cIt (Proposition 2.11, property 1)

= cI{x} (constraint in Ĝ for c{x})

= 1 (constraint in Ĝ for singletons)

48

We can conclude that
∣∣∣SI

∣∣∣ = 1 as
∣∣∣SI

∣∣∣ = cIS (for proof of
∣∣∣SI

∣∣∣ = cIS , see reasoning

later in this proof for |S| ≈ cS – the same reasoning works for all nodes S ∈

V (G))

From, Rule 22 (SINGLETON), we know xS ∈ SS. By Proposition 2.10, xS ∈

SS. As

SI = SS ∪
⋃

t∈L(S)
Bt

and
∣∣∣SI

∣∣∣ = 1, we conclude that SI =
{
xS
}

=
{
xI
}

.

4. S ≈ T t U . We need to show SI = T I ∪ UI.

Let S 6∈ V (G), T 6∈ V (G), and U 6∈ V (G). Then,

SI = SS (S 6∈ V (G))

= TS ∪ US (Proposition 2.10)

= T I ∪ UI (T 6∈ V (G), U 6∈ V (G))

Otherwise, let S ∈ V (G), or T ∈ V (G), or U ∈ V (G). Then, from Rules 31,

32, 33 and definition of add, we know S, T , and U in V (G). Then,

SI =
⋃

t∈L(S)
(tS ∪Bt) (S ∈ V (G))

=
⋃

t∈L(TtU)
(tS ∪Bt) (Proposition 2.11)

=
 ⋃
t∈L(T)

(tS ∪Bt)
 ∪

 ⋃
t∈L(U)

(tS ∪Bt)
 (Proposition 2.11)

= T I ∪ UI (T ∈ V (G), U ∈ V (G))

49

5. S ≈ T u U . We need to show SI = T I ∩ UI.

Let S 6∈ V (G), T 6∈ V (G), and U 6∈ V (G). Then,

SI = SS (S 6∈ V (G))

= TS ∩ US (Proposition 2.10)

= T I ∩ UI (T 6∈ V (G), U 6∈ V (G))

Let S 6∈ V (G) and T 6∈ V (G), but U ∈ V (G). Then,

T I ∩ UI = TS ∩ UI (T 6∈ V (G))

= TS ∩

US ∪
⋃

t∈L(U)
Bt

 (U ∈ V (G))

= TS ∩ US (TS ∩Bt = ∅)

= SS (Proposition 2.10)

= SI (S 6∈ V (G))

If S 6∈ V (G) and U 6∈ V (G), but T ∈ V (G); the reasoning is same as above.

Otherwise, either S ∈ V (G) or both T ∈ V (G) and U ∈ V (G). Then, from

Rules 31, 32, 34 and definition of add, we know S, T , and U in V (G). Then,

T I ∩ UI =
TS ∪

⋃
t∈L(T)

Bt

 ∩
US ∪

⋃
t∈L(U)

Bt

 (T , U in V (G))

50

As each Bt is disjoint from all other sets, the above expression simplifies to:

=
(
TS ∩ US

)
∪

⋃
t∈L(T)∩L(U)

Bt

= SS ∪
⋃

t∈L(S)
Bt (Propositions 2.10 and 2.11)

= SI (S ∈ V (G))

6. S ≈ T \ U . We need to show SI = T I \ UI.

Let S 6∈ V (G), T 6∈ V (G), and U 6∈ V (G). Then,

SI = SS (S 6∈ V (G))

= TS \ US (Proposition 2.10)

= T I \ UI (T 6∈ V (G), U 6∈ V (G))

Let S 6∈ V (G) and T 6∈ V (G), but U ∈ V (G). Then,

T I \ UI = TS \ UI (T 6∈ V (G))

= TS \

US ∪
⋃

t∈L(U)
Bt

 (U ∈ V (G))

= TS \ US (TS \Bt = TS)

= SS (Proposition 2.10)

= SI (S 6∈ V (G))

Note that in contrast to intersection, if S 6∈ V (G), T ∈ V (G), and U 6∈ V (G),

the above analysis does not apply. We do need to introduce and reason about

51

the equality in the graph.

Let S ∈ V (G) or T ∈ V (G). From Rules 31, 32, 35 and definition of add we

know S, T , and U in V (G). Then,

T I \ UI =
TS ∪

⋃
t∈L(T)

Bt

 \
US ∪

⋃
t∈L(U)

Bt

 (T , U in V (G))

As each Bt is disjoint from all other sets, the above expression simplifies to:

=
(
TS \ US

)
∪

⋃
t∈L(T)\L(U)

Bt

= SS ∪
⋃

t∈L(S)
Bt (Propositions 2.10 and 2.11)

= SI (S 6∈ V (G))

7. x @− S, x 6@− S.

Note that irrespective of whether S ∈ V (G) or S 6∈ V (G), SS ⊆ SI. Thus,

from Proposition 2.10, xI ∈ SI if x @− S is a constraint.

It remains to show that if x 6@− S is a constraint then xI 6∈ SI. If S 6∈ V (G),

then again xI 6∈ SI follows from Proposition 2.10. If S ∈ V (G), then observe

that SI is SS ∪ ⋃t∈L(U) Bt. We already know xI 6∈ SS. It remains to show that

xI 6∈ ⋃t∈L(U)Bt. This follows from the definition of Bt.

8. cS ≈ |S|.

From Proposition 2.11, we know that for t, u in L(S):

|=TS
t u u ≈ ∅

52

and also,

|=TS

(∧
t∈E

t ≈ ∅
)
⇒

S ≈ ⊔
t∈L(S)

t


where E = {t ∈ V (G) | t ≈ ∅ ∈ S∗}.

In I, as for each t ∈ E, tI = ∅, it follows that:

SI =
⋃

t∈L(S)
tI .

Also, for t, u in L(S):

tI ∩ uI = ∅ .

In other words, SI is a disjoint union of tI where t ∈ L(S). It follows that,

∣∣∣SI
∣∣∣ =

∑
t∈L(S)

∣∣∣tI∣∣∣

For a leaf node t ∈ L(S), from (2.8) we know that
∣∣∣tI∣∣∣ =

∣∣∣tS∣∣∣ + |Bt| = cIt . We

may thus conclude, ∣∣∣SI
∣∣∣ =

∑
t∈L(S)

cIt

From the constraint on cardinality for S induced by the graph, i.e the constraint

on cS in Ĝ, we know that cIS = ∑
t∈L(S) c

I
t . The result follows:

∣∣∣SI
∣∣∣ = cIS

53

2.3.2 Soundness

Soundness of the rules 1-24, 26-28 follows trivially from the semantics of set operators

and definition of S∗. Soundness of Rule 25 (SET DISEQUALITY) also follows easily with

a case analysis. Likewise for the optional propagation rule Rule 29 (SINGLETON AND

UNION).

Soundness of Rule 38 (MERGE EQUALITY 1) and Rule 39 (MERGE EQUALITY 2)

follows from Proposition 2.11 (in particular the property that leaf terms are disjoint).

Rules 30-35 and 40-37 do not modify the constraints, but we need them to establish

properties of the graph. Soundness of induced graph constraints in Rule 41 (ARITH-

METIC CONTRADICTION) follows from properties of the Proposition 2.11 (in partic-

ular properties 5 and 6). Soundness of Rule 42 (GUESS EMPTY SET) is trivial.

Soundness of Rule 44 (PROPAGATE MINSIZE) follows from semantics of cardinal-

ity. Soundness of Rule 43 (MEMBERS ARRANGEMENT) and Rule 45 (GUESS LOWER

BOUND) is trivial.

2.3.3 Termination

For the purpose of the following proposition, let R denote all rules in our calculus

except the optional rules 29 and 45.

Proposition 2.13 (Termination). Let S0,M0, and A0 be normalized set, element, and

arithmetic respectively. Let D be a derivation with respect to rules R starting from the

state 〈S0,M0,A0, (∅, ∅)〉. Then, D is necessarily finite.

Proof. We will define a well-founded relation � over states. Next, we will show that

application of any rule in R to a leaf of a derivation tree gives smaller states with re-

spect to this relation. As the relation is well-founded, it will follow that the derivation

54

cannot be infinite.

In order to define �, we define fi for i ∈ {1, 2, . . . , 9}, each of which maps a state

σ = 〈S,M,A,G〉 to a natural number (non-negative integer). We denote the set of

natural numbers by N.

• f1(σ): number of equalities t1 ≈ t2 in S such that either t1 6∈ V (G), t2 6∈ V (G),

or L(t1) 6= L(t2).

• f2(σ): size of (TermsSet(S) ∪ {∅}) \ V (G).

• f3(σ): size of {t ∈ Leaves (G) | t ≈ ∅ 6∈ S∗, t 6≈ ∅ 6∈ S∗}.

• f4(σ): number of disequalities t1 6≈ t2 in S such that the premise of Rule 25

(SET DISEQUALITY) holds.

• f5(σ): size of TermsSet(S) ∪ {∅} ∪ V (G).

• f6(σ): size of TermsElement(S ∪M).

• f7(σ): size of M∗ subtracted from 2 · (f6(σ))2. As all constraints in M∗ are

either x ≈ y or x 6≈ y with x and y in TermsElement(S ∪M), the size ofM∗ can

be at most 2 · (f6(σ))2. Thus, f7(·) is well-defined as a map into N.

• f8(σ): size of S∗ subtracted from 2 · (f5(σ))2 + 2 · f5(σ) · f6(σ). There are at

most 2 · (f5(σ))2 constraints of the form s ≈ t or s 6≈ t in S∗ as s and t are

in TermsSet(S) ∪ {∅} ∪ V (G). There are at most 2 · f5(σ) · f6(σ) constraints

of the form x @− s or x 6@− s in S∗ as x and s are in TermsElement(S ∪M) and

TermsSet(S)∪{∅}∪V (G) respectively. Thus, f8(·) is well-defined as a map into

N.

• f9(σ): size of (TermsSet(S) ∪ {∅} ∪ V (G)) \ {t ∈ Leaves (G) | A 6V ct ≥ |tS |}.

55

Then, we define the order � over states as follows:

• σ � σ′ if σ 6= unsat and σ′ = unsat.

• σ � σ′ if σ 6= unsat, σ′ 6= unsat, and

(f1(σ), . . . , f9(σ)) >9
lex (f1(σ′), . . . , f9(σ′))

where (N9, >9
lex) is the 9-fold lexicographic product of ordering over natural

numbers (N, >).

• σ 6� σ′ otherwise.

The well-foundedness of� over states follows from the well-foundedness of (N9, >9
lex)

[3, Section 2.4].

Let r ∈ R be a rule applicable at state σ, and let σ′ be the state after the application

of the rule (if they are multiple conclusions denote the state on first branch as σ′1,

second branch as σ′2 etc.). We note below for each rule r ∈ R the relation between

f1(σ), . . ., f9(σ) and f1(σ′), . . ., f9(σ′) which establishes that σ � σ′.

• First, we consider Rules 1-7 for intersection, Rules 8-14 for union, Rules 15-

21 for set difference, and Rule 22 for singleton. None of these rules introduce

equalities of Set terms, nor do they affect the graph G; thus f1(σ) ≥ f1(σ′).

The only terms introduced to S are from V (G), thus f2(σ) = f2(σ′). None of

these rules update G or introduce equalities or disequalities of Set terms, thus

f3(σ) = f3(σ′). None of these rules introduce disequalities between Set terms,

thus f4(σ) ≥ f4(σ′). None of these rules introduce Set terms not already in S

or V (G), thus f5(σ) = f5(σ′). None of the rules introduce Element variables

56

not already in S or M, thus f6(σ) = f6(σ′). None of these rules update M,

thus f7(σ) = f7(σ′).

Each of these rules updates S. Recall that for a rule to be applicable at σ,

the resulting state must be different from σ. From the definition of /, we can

conclude that size of S∗ has increased. As f5(σ) = f5(σ′) and f6(σ) = f6(σ′), it

follows that f8(σ) > f8(σ′).

• Next, we consider Rules 23, 24 and 43. None of these rules introduce equalities

of Set terms, thus f1(σ) ≥ f1(σ′). None of these rules introduce Set terms to

S or V (G), thus f2(σ) = f2(σ′). None of these rules update G or introduce

equalities or disequality of Set terms, thus f3(σ) = f3(σ′). None of these rules

introduce disequalities of Set terms, thus f4(σ) ≥ f4(σ′). None of these rules

introduce Set terms to S or V (G), thus f5(σ) = f5(σ′). None of the rules

introduce Element variables not already in S orM, thus f6(σ) = f6(σ′).

Each of these rules updatesM. From the definition of /, we can conclude that

size of M∗ has increased. As f6(σ) = f6(σ′), we can conclude that f7(σ) >

f7(σ′).

• Next, we consider Rule 25. The rule doesn’t introduce any equality of Set

terms, thus f1(σ) ≥ f1(σ′i) for i ∈ {1, 2}. The rule doesn’t introduce Set terms

to S or V (G), thus f2(σ) = f2(σ′i) for i ∈ {1, 2}. The rule doesn’t update G,

thus f3(σ) ≥ f3(σ′i) for i ∈ {1, 2}. The premise of the rule doesn’t hold after

application of the rule on either of the branches. It follows that f4(σ) > f4(σ′i)

for i ∈ {1, 2}.

• Next, we consider Rules 30-37. None of these rules introduce equalities of Set

terms, thus f1(σ) ≥ f1(σ′).

57

Each of the rules adds at least one new node to G which is in TermsSet(S)∪{∅}.

At the same time, S is unchanged. It follows that f2(σ) > f2(σ′).

• Rules 38 and 39. Though these rules add equalities of the form u ≈ ∅ to S, the

equalities are such that u ∈ V (G), ∅ ∈ V (G) and L(u) = ∅ = L(∅). It follows

that f1(σ) ≥ f1(σ′).

Now, observe that for Rule 38 or Rule 39 to be applicable, there must exist

s ≈ t ∈ S such that L(s) 6= L(t). After the application of the rule, L(s) = L(t).

This shows that f1(σ) > f1(σ′).

• Rule 40. For the rule to be applicable, there must exist s ≈ t ∈ S such that

L(s) 6= L(t). After the application of the rule, L(s) = L(t). Thus, necessarily

f1(σ) > f1(σ′).

• Rule 42. Note that though this rule may add an equality of the form t ≈ ∅ on

the first branch, using the same reasoning as for Rules 38 and 39 above, we can

conclude that f1(σ) ≥ f1(σ′1). On the second branch, as no disequality is added,

we get that f1(σ) ≥ f1(σ′2). Only terms introduced to S are from V (G), thus

f2(σ) = f2(σ′1) for i ∈ {1, 2}.

In order to apply the rule, we pick a t ∈ Leaves (G) such that t ≈ ∅ 6∈ S∗ and

t 6≈ ∅ 6∈ S∗. On the first branch, t ≈ ∅ ∈ S∗, thus f3(σ) > f3(σ′1). On the

second branch, t 6≈ ∅ ∈ S∗, thus f3(σ) > f3(σ′2).

• Rule 44. The rule doesn’t update S, M, or G, thus f1(σ) = f1(σ′), f2(σ) =

f2(σ′), f3(σ) = f3(σ′), f4(σ) = f4(σ′), f5(σ) = f5(σ′), f6(σ) = f6(σ′), f7(σ) =

f7(σ′), and f8(σ) = f8(σ′). But, f9(σ) > f9(σ′).

• Rules 26, 27, 28, and 41. For each of these rules to be applicable, σ 6= unsat.

58

On the other hand, σ′ = unsat after the application of the rule. By definition,

σ � σ′.

As � order over states is well-founded, and application of any rule gives a smaller

state with respect to this order, the derivation D must be necessarily finite.

Remark. It is easy to extend the termination proof to include the optional rules, like

Rules 29 and 45. It would involve tracking sizes of additional objects. For instance,

for Rule 29, tracking the number of singleton set terms for which the rule has not

yet been applied. Since no rule introduces new singleton set terms, this can only go

down. For Rule 45, a strategy similar to one adopted for Rule 42 in our proof would

suffice.

In Chapter 5, we discuss how we can use the calculus to obtain an efficient, incre-

mental decision procedure for the theory in an SMT solver.

2.4 Related work

In this section we compare the calculus with work which is most closely related to

the fragment considered in this chapter.

In [58], the decidability of this fragment was established. The procedure involves

making an up-front guess that is exponential in the number of set variables in the

input, making it non-incremental and highly impractical for reasoning in an SMT

solver. That said, the focus of [58] is on establishing decidability, and not on providing

an efficient procedure.

Another logical fragment that is closely related is that of Boolean Alegbra and

Presburger Arithmetic (BAPA), for which several algorithms have been proposed

59

[39, 40, 56]. Though the fragment doesn’t have membership predicate and singleton

operator in the language, [56, Section 4] discusses how one can generalize the algo-

rithm for such reasoning. Intutively, the idea is to simulate singleton sets by imposing

the constraint |X| = 1 and then writing a membership constraint, say x @− S, by

introducing a singleton set for it, say X , and using the subset operation, e.g. X v S.

To illustrate a potential down-side of this approach, consider a simple example:

x @− S1t(S2 t (. . . t (S99 t S100))), x 6@− S1, x 6@− S2, . . ., x 6@− S100. It is easy to see the

set of constraints is unsatisfiable. In our calculus, a straightforward application of the

(propagation) Rule 11 will derive unsat. On the other hand, in a reduction to BAPA,

the membership reasoning if reduced to reasoning about cardinality of different sets,

such reasoning becomes inefficient. For instance, in [56], the algorithm will reduce the

reasoning to arithmetic constraints involving variables for 2101 Venn regions derived

from S1, S2, . . ., S100 and the singleton set introduced for x.

The broader point is that reasoning about membership predicates as is done by

the rules in Section 2.2.1 indirectly via cardinalities of Venn regions is inefficient. As

we show in our calculus, it is possible to avoid this. We reason about membership

directly, and minimize the number of regions whose cardinality we reason about.

The latter is done by being careful about terms we introduce to the graph used for

cardinality reasoning, and breaking down regions incrementally.

2.5 Conclusion

In this chapter, we presented a calculus for the theory of finite sets with cardinality

constraints and proved its correctness. In Chapter 5, we discuss how we can use the

calculus to obtain an efficient, incremental decision procedure for the theory in an

60

SMT solver. We also share our experience with implementation and experimental

results.

61

Chapter 3

Local theory extensions

One of the appeal of SMT solvers, as discussed earlier, is that they implement deci-

sion procedures for efficiently reasoning about formulas in theories that model the

semantics of prevalent data types and software constructs. Examples include integers,

bitvectors, arrays, and with work in previous chapter expanding it to sets. But, some

verification tasks involve reasoning about universally quantified formulas, which goes

beyond the capabilities of the solvers’ core decision procedures. Typical examples in-

clude verification of programs with complex data structures and concurrency, yielding

formulas that quantify over unbounded sets of memory locations or thread identifiers.

From a logical perspective, these quantified formulas can be thought of as axioms

of application-specific theories. In practice, such theories often remain within decid-

able fragments of first-order logic [1, 11, 13, 33]. However, their narrow scope (which

is typically restricted to a specific program) does not justify the implementation of a

dedicated decision procedure inside the SMT solver. Instead, many solvers allow the-

ory axioms to be specified directly in the input constraints. The solver then provides

a quantifier module that is designed to heuristically instantiate these axioms. These

62

heuristics are in general incomplete and the user is given little control over the in-

stance generation. Thus, even if there exists a finite instantiation strategy that yields

a decision procedure for a specific set of axioms, the communication of strategies and

tactics to SMT solvers is a challenge [17]. Further, the user cannot communicate the

completeness of such a strategy. In this situation, the user is left with two alternatives:

either she gives up on completeness, which may lead to usability issues in the verifi-

cation tool, or she implements her own instantiation engine as a preprocessor to the

SMT solver, leading to duplication of effort and reduced solver performance.

The contributions of this chapter are two-fold. First, we provide a better under-

standing of how complete decision procedures for application-specific theories can be

realized with the quantifier modules that are implemented in SMT solvers. Second,

we explore several extensions of the capabilities of these modules to better serve the

needs of verification tool developers. The focus of our exploration is on local theory

extensions [31, 54]. A theory extension extends a given base theory with additional

symbols and axioms. Local theory extensions are a class of such extensions that can

be decided using finite quantifier instantiation of the extension axioms. This class

is attractive because it is characterized by proof and model-theoretic properties that

abstract from the intricacies of specific quantifier instantiation techniques [22, 30, 54].

Also, many well-known theories that are important in verification but not commonly

supported by SMT solvers are in fact local theory extensions, even if they have not

been presented as such in the literature. Examples include the array property frag-

ment [12], the theory of reachability in linked lists [41, 49], and the theories of finite

sets [59] and multisets [57].

We present a general decision procedure for local theory extensions that relies on

E-matching, one of the core components of the quantifier modules in SMT solvers,

63

which will be discussed in this chapter. We have implemented our decision proce-

dure using the SMT solvers CVC4 [8] and Z3 [16] and applied it to a large set of

SMT benchmarks coming from the deductive software verification tool GRASShop-

per [46, 48]. We will discuss the experimental results in detail in Chapter 5. These

benchmarks use a hierarchical combination of local theory extensions to encode veri-

fication conditions that express correctness properties of programs manipulating com-

plex heap-allocated data structures. Guided by our experiments, we developed generic

optimizations in CVC4 that improve the performance of our base-line decision proce-

dure. Some of these optimizations required us to implement extensions in the solver’s

quantifier module. We believe that our results are of interest to both the users of SMT

solvers as well as their developers. For users we provide simple ways of realizing com-

plete decision procedures for application-specific theories with today’s SMT solvers.

For developers we provide interesting insights that can help them further improve the

completeness and performance of today’s quantifier instantiation modules.

3.1 Background

3.1.1 Example

Sofronie-Stokkermans [54] introduced local theory extensions as a generalization of

locality in equational theories [22,25]. We start our discussion with a simple example

that illustrates the basic idea behind local theory extensions. Consider the following

set of ground literals

G = {a+ b = 1, f(a) + f(b) = 0}.

64

We interpret G in the theory of linear integer arithmetic and a monotonically increas-

ing function f : Z→ Z. One satisfying assignment for G is:

a = 0, b = 1, f(x) = {−1 if x ≤ 0, 1 if x > 0}. (3.1)

We now explain how we can use an SMT solver to conclude thatG is indeed satisfiable

in the above theory.

SMT solvers commonly provide inbuilt decision procedures for common theories

such as the theory of linear integer arithmetic (LIA) and the theory of equality over

uninterpreted functions (UF). However, they do not natively support the theory of

monotone functions. The standard way to enforce f to be monotonic is to axiomatize

this property,

K = ∀x, y. x ≤ y =⇒ f(x) ≤ f(y), (3.2)

and then let the SMT solver check if G ∪ {K} is satisfiable via a reduction to its

natively supported theories. In our example, the reduction target is the combination

of LIA and UF, which we refer to as the base theory, denoted by T0. We refer to the

axiom K as a theory extension of the base theory and to the function symbol f as an

extension symbol.

Most SMT solvers divide the work of deciding ground formulas G in a base the-

ory T0 and axioms K of theory extensions between different modules. A quantifier

module looks for substitutions to the variables within an axiom K, x and y, to some

ground terms, t1 and t2. We denote such a substitution as σ = {x 7→ t1, y 7→ t2} and

the instance of an axiom K with respect to this substitution as Kσ. The quantifier

module iteratively adds the generated ground instances Kσ as lemmas to G until the

base theory solver derives a contradiction. However, if G is satisfiable, as in our case,

65

then the quantifier module does not know when to stop generating instances of K,

and the solver may diverge, effectively enumerating an infinite model of G.

For a local theory extension, we can syntactically restrict the instances Kσ that

need to be considered before concluding that G is satisfiable to a finite set of candi-

dates. More precisely, a theory extension is called local if in order to decide satisfi-

ability of G ∪ {K}, it is sufficient to consider only those instances Kσ in which all

ground terms already occur in G and K. The monotonicity axiom K is a local theory

extension of T0. The local instances of K and G are:

Kσ1 = a ≤ b =⇒ f(a) ≤ f(b) where σ1 = {x 7→ a, y 7→ b},

Kσ2 = b ≤ a =⇒ f(b) ≤ f(a) where σ2 = {x 7→ b, y 7→ a},

Kσ3 = a ≤ a =⇒ f(a) ≤ f(a) where σ3 = {x 7→ a, y 7→ a}, and

Kσ4 = b ≤ b =⇒ f(b) ≤ f(b) where σ4 = {x 7→ b, y 7→ b}.

Note that we do not need to instantiate x and y with other ground terms in G, such

as 0 and 1. Adding the above instances to G yields

G′ = G ∪ {Kσ1, Kσ2, Kσ3, Kσ4}.

which is satisfiable in the base theory. Since K is a local theory extension, we can

immediately conclude that G ∪ {K} is also satisfiable.

3.1.2 Semantic characterizations

There are two useful characterizations of local theory extensions that can help users

of SMT solvers in designing axiomatization that are local. The first one is model-

66

theoretic [22, 54]. Consider again the set of ground clauses G′. When checking satisfi-

ability of G′ in the base theory, the SMT solver may produce the following model:

a = 0, b = 1, f(x) = {−1 if x = 0, 1 if x = 1, -1 otherwise}. (3.3)

This is not a model of the originalG∪{K}. However, if we restrict the interpretation

of the extension symbol f in this model to the ground terms in G ∪ {K}, we obtain

the partial model

a = 0, b = 1, f(x) = {−1 if x = 0, 1 if x = 1, undefined otherwise}. (3.4)

This partial model can now be embedded into the model (3.1) of the theory extension.

If such embeddings of partial models of G′ to total models of G ∪ {K} always exist

for all sets of ground literals G, then K is a local theory extension of T0. The second

characterization of local theory extensions is proof-theoretic and states that a set of

axioms is a local theory extension if it is saturated under (ordered) resolution [10].

This characterization can be used to automatically compute local theory extensions

from non-local ones [30].

Note that the locality property depends both on the base theory as well as the

specific axiomatization of the theory extension. For example, the following axioma-

tization of a monotone function f over the integers, which is logically equivalent to

equation (3.2) in T0, is not local:

K = ∀x. f(x) ≤ f(x+ 1) .

Similarly, if we replace all inequalities in equation (3.2) by strict inequalities, then the

67

extension is no longer local for the base theory T0. However, if we replace T0 by a

theory in which ≤ is a dense order (such as in linear real arithmetic), then the strict

version of the monotonicity axiom is again a local theory extension.

In the remaining part of the chapter, we show how we can use the existing tech-

nology implemented in quantifier modules of SMT solvers to decide local theory

extensions. In particular, we show how E-matching can be used to further reduce the

number of axiom instances that need to be considered before we can conclude that a

given set of ground literals G is satisfiable.

3.2 Formal definition

In order to keep each chapter self-contained, we recall the basic notions of first-order

logic, and additional terminology needed for this chapter.

Sorted first-order logic

We present our problem in sorted first-order logic with equality. A signature Σ is a

tuple (Sorts,Ω,Π), where Sorts is a countable set of sorts and Ω and Π are countable

sets of function and predicate symbols, respectively. Each function symbol f ∈ Ω

has an associated arity n ≥ 0 and associated sort s1 × · · · × sn → s0 with si ∈ Sorts

for all i ≤ n. Function symbols of arity 0 are called constant symbols. Similarly,

predicate symbols P ∈ Π have an arity n ≥ 0 and sort s1 × · · · × sn. We assume

dedicated equality symbols ≈s ∈ Π with the sort s× s for all sorts s ∈ Sorts, though

we typically drop the explicit subscript. Terms are built from the function symbols

in Ω and (sorted) variables taken from a countably infinite set X that is disjoint from

Ω. We denote by t : s that term t has sort s.

68

A Σ-atom A is of the form P (t1, . . . , tn) where P ∈ Π is a predicate symbol of

sort s1 × · · · × sn and the ti are terms with ti : si. A Σ-formula F is either a Σ-atom

A, ¬F1, F1 ∧ F2, F1 ∨ F2, or ∀x : s.F1 where F1 and F2 are Σ-formulas. A Σ-literal

L is either A or ¬A for a Σ-atom A. A Σ-clause C is a disjunction of Σ-literals. A

Σ-term, atom, or formula is said to be ground, if no variable appears in it. For a set of

formulas K, we denote by st(K) the set of all ground subterms that appear in K.

A Σ-sentence is a Σ-formula with no free variables where the free variables of a

formula are defined in the standard fashion. We typically omit Σ if it is clear from the

context.

Structures

Given a signature Σ = (Sorts,Ω,Π), a Σ-structure M is a function that maps each sort

s ∈ Sorts to a non-empty setM(s), each function symbol f ∈ Ω of sort s1×· · ·×sn →

s0 to a function M(f) : M(s1) × · · · ×M(sn) → M(s0), and each predicate symbol

P ∈ Π of sort s1 × · · · × sn to a relation M(s1) × · · · × M(sn). We assume that

all structures M interpret each symbol ≈s by the equality relation on M(s). For

a Σ-structure M where Σ extends a signature Σ0 with additional sorts and function

symbols, we write M |Σ0 for the Σ0-structure obtained by restricting M to Σ0.

Given a structure M and a variable assignment ν : X → M , the evaluation tM,ν

of a term t in M, ν is defined as usual. For a structure M and an atom A of the

form P (t1, . . . , tn), (M, ν) satisfies A iff (tM,ν
1 , . . . , tM,ν

n) ∈ M(P). This is written as

(M, ν) |= A. From this satisfaction relation of atoms and Σ-structures, we can derive

the standard notions of the satisfiability of a formula, satisfying a set of formulas

(M, ν) |= {Fi}, validity |= F , and entailment F1 |= F2. If a Σ-structure M satisfies a

Σ-sentence F , we call M a model of F .

69

3.2.1 Theory extensions

A theory T over signature Σ is a set of Σ-structures. We call a Σ-sentence K an axiom

if it is the universal closure of a Σ-clause, and we denote a set of Σ-axioms as K. We

consider theories T defined as a class of Σ-structures that are models of a given set of

Σ-sentences K.

Definition 3.1 (Theory extension). Let Σ0 = (Sorts0,Ω0,Π) be a signature and assume

that the signature Σ1 = (Sorts0 ∪ Sortse,Ω0 ∪Ωe,Π) extends Σ0 by new sorts Sortse and

function symbols Ωe. Given a Σ0-theory T0 and Σ1-axioms Ke, we call (T0,Ke, T1) the

theory extension of T0 with Ke, where T1 is the set of all Σ1-structures M that are models

of Ke and whose reducts M |Σ0 are in T0.

We call the elements of Ωe extension symbols and terms starting with extension

symbols extension terms. We often identify the theory extension with the theory T1.

3.2.2 Local theories and satisfiability problem

We formally define the problem of satisfiability modulo theory and the notion of

local theory extensions in this section.

Let T be a theory over signature Σ. Given a Σ-formula φ, we say φ is satisfiable

modulo T if there exists a structure M in T and an assignment ν of the variables in φ

such that (M, ν) |= φ. We define the ground satisfiability modulo theory problem as

the corresponding decision problem for quantifier-free formulas.

Problem 3.2 (Ground satisfiability problem for Σ-theory T).

input: A quantifier-free Σ-formula φ.

output: sat if φ is satisfiable modulo T , unsat otherwise.

70

We say the satisfiability problem for T is decidable if there exists a procedure for

the above problem which always terminates with sat or unsat. We write entailment

modulo a theory as φ |=T ψ.

We say an axiom of a theory extension is linear if all the variables occur under

at most one extension term. We say it is flat if there there is no nesting of terms

containing variables. It is easy to linearize and flatten the axioms by using additional

variables and equality. As an example, ∀x.φ with f(x) and f(g(x)) as terms in F may

be written as

∀xyz.x ≈ y ∧ z ≈ g(y) =⇒ F ′

where F ′ is obtained from F by replacing f(g(x)) with f(z). For the remainder of the

chapter, we assume that all extension axioms Ke are flat and linear. For the simplicity

of the presentation, we assume that if a variable appears below a function symbol then

that symbol must be an extension symbol.

Definition 3.3 (Local theory extensions). A theory extension (T0,Ke, T1) is local if

for any set of ground Σ1-literals G: G is satisfiable modulo T1 if and only if G ∪ Ke[G]

is satisfiable modulo T0 extended with free function symbols. Here Ke[G] is the set of

instances of Ke where the subterms of the instantiation are all subterms of G or Ke (in

other words, they do not introduce new terms).

For simplicity, in the rest of this chapter, we work with theories T0 which have

decision procedures for not just T0 but also T0 extended with free function symbols.

Thus, we sometimes talk of satisfiability of a Σ1-formula with respect a Σ0-theory

T0, to mean satisfiability in the T0 with the extension symbols in Σ1 treated as free

function symbols. In terms of SMT, we only talk of extensions of theories containing

uninterpreted functions (UF).

71

A naive decision procedure for ground SMT of a local theory extension T1 is

thus to generate all possible instances of the axioms Ke that do not introduce new

ground terms, thereby reducing to the ground SMT problem of T0 extended with free

functions.

Hierarchical extensions.

Note that local theory extensions can be stacked to form hierarchies ((. . . ((T0, K1,

T1), K2, T2), . . .), Kn, Tn). Such a hierarchical arrangement of extension axioms is

often useful to modularize locality proofs. In such cases, the condition that variables

are only allowed to occur below extension symbols (of the current extension) can be

relaxed to any extension symbol of the current level or below. The resulting theory

extension can be decided by composing procedures for the individual extensions. Al-

ternatively, one can use a monolithic decision procedure for the resulting theory Tn,

which can also be viewed as a single local theory extension (T0,K1 ∪ · · · ∪Kn, Tn). In

our experimental evaluation, which involved hierarchical extensions, we followed the

latter approach.

3.3 Algorithm

In this section, we describe a decision procedure for a local theory extension, say

(T0,Ke, T1), which can be easily implemented in most SMT solvers with quantifier

instantiation support. We describe our procedure DT1 as a theory module in a typical

SMT solver architecture. For simplicity, we separate out the interaction between

theory solver and core SMT solver. We describe the procedure abstractly as taking as

input:

72

• the original formula φ,

• a set of extension axioms Ke,

• a set of instantiations of axioms that have already been made, Z, and

• a set of T0 satisfiable ground literals G such that G |= φ ∧ (∧ψ∈Z ψ), and

• a set equalities E ⊆ G between terms.

It either returns

• sat, denoting that G is T1 satisfiable; or

• a new set of instantiations of the axioms, Z ′.

For completeness, we describe briefly the way we envisage the interaction mech-

anism of this module in a DPLL(T) SMT solver. Let the input problem be φ. The

SAT solver along with the theory solvers for T0 will find a subset of literals G from

φ ∧ (∧ψ∈Z ψ) such that its conjunction is satisfiable modulo T0. If no such satisfying

assignment exists, the SMT solver stops with unsat. One can think of G as being

simply the literals in φ on the SAT solver trail. G will be sent to DT1 along with

information known about equalities between terms. The set Z can be also thought

of as internal state maintained by the T1-theory solver module, with new instances

Z ′ sent out as theory lemmas and Z updated to Z ∪ Z ′ after each call to DT1 . If DT1

returns sat, so does the SMT solver and stops. On the other hand, if it returns a new

set of instances, the SMT solver continues the search to additionally satisfy these.

E-matching. In order to describe our procedure, we introduce the well-studied E-

matching problem. Given a universally quantified Σ-sentence K, let X(K) denote

73

the quantified variables. Define a Σ-substitution σ of K to be a mapping from vari-

ables X(K) to Σ-terms of corresponding sort. Given a Σ-term p, let pσ denote the

term obtained by substituting variables in p by the substitutions provided in σ. Two

substitutions σ1, σ2 with the same domain X are equivalent modulo a set of equalities

E if ∀x ∈ X.E |= σ1(x) ≈ σ2(x). We denote this as σ1 ∼E σ2.

Problem 3.4 (E-matching). input: A set of ground equalitiesE, a set of Σ-termsG, and

patterns P .

output: The set of substitutions σ over the variables in p, modulo E, such that for all

p ∈ P there exists a t ∈ G with E |= t ≈ pσ.

E-matching is a well-studied problem, specifically in the context of SMT. An al-

gorithm for E-matching that is efficient and backtrackable is described in [15]. We

denote this procedure by E.

The procedure DT1(φ,Ke, Z,G,E) is given in Fig. 3.1. Intuitively, it adds all the

new instances along the current search path that are required for local theory reason-

ing as given in Definition 3.3, but modulo equality. For each axiom K in Ke, the

algorithm looks for function symbols containing variables. For example, if we think

of the monotonicity axiom in Sect. 3.1.1, these would be the terms f(x) and f(y).

These terms serve as patterns for the E-matching procedure. Next, with the help of

the E-matching algorithm, all new instances are computed (to be more precise, all in-

stances for the axiom K in Z which are equivalent modulo ∼E are skipped). If there

are no new instances for any axiom in Ke, and the set G of literals implies φ, we stop

with sat. as effectively we have that G ∪ Ke[G] is satisfiable modulo T0. Otherwise,

we return this set.

We note that though the algorithm DT1 may look inefficient because of the pres-

74

DT1(φ,Ke, Z,G,E)
Local variable: Z ′, initially an empty set.

1. For each K ∈ Ke:

(a) Define the set of patterns P to be the function symbols in K containing
variables. We observe that because the axioms are linear and flat, these pat-
terns are always of the form f(x1, . . . , xn) where f is an extension symbol
and the xi are quantified variables.

(b) Run E(E,G, P) obtaining substitutions S. Without loss of generality,
assume that σ ∈ S returned by the algorithm are such that st(Kσ) ⊆
st(G ∪ Ke). For the special case of the patterns in (a), for any σ not re-
specting the condition there exists one in the equivalence class that respects
the condition. Formally, ∀σ.∃σ′.σ′ ∼E σ ∧ st(Kσ′) ⊆ st(G ∪ Ke). We
make this assumption only for simplicity of arguments later in the chap-
ter. If one uses an E-matching procedure not respecting this constraint,
our procedure will still be terminating and correct (albeit total number of
instantiations suboptimal).

(c) For each σ ∈ S, if there exists no Kσ′ in Z such that σ ∼E σ′, then add
Kσ to Z ′ as a new instantiation to be made.

2. If Z ′ is empty, return sat, else return Z ′.

Figure 3.1: Procedure DT1

ence of nested loops, keeping track of which substitutions have already happened, and

which substitutions are new. However, in actual implementations all of this is taken

care of by the E-matching algorithm. There has been significant research on fast, in-

cremental algorithms for E-matching in the context of SMT, and one advantage of our

approach is to be able to leverage this work.

3.3.1 Correctness

The correctness argument relies on two aspects: one, that if the SMT solver says sat

(resp. unsat) then φ is satisfiable (resp. unsatisfiable) modulo T1, and second, that it

75

terminates.

For the case where the output is unsat, the correctness follows from the fact that

Z only contains instances of Ke. The sat case is more tricky, but the main idea is that

the set of instances made by DT1(φ,Ke, Z,G,E) are logically equivalent to Ke[G].

Thus, when the solver stops, G∪Ke[G] is satisfiable modulo T0. As a consequence, G

is satisfiable modulo T1. Since G |= φ, we have that φ is satisfiable modulo T1.

The termination relies on the fact that the instantiations returned by procedure

DT1(φ,Ke, Z,G,E) is logically equivalent to an instantiation in Ke[φ]. Since, Ke[φ] is

finite, eventually D will stop making new instantiations. Assuming that we have a ter-

minating decision procedure for the ground SMT problem of T0, we get a terminating

decision procedure for T1.

Theorem 3.5. An SMT solver with theory module DT1 is a decision procedure for the

satisfiability problem modulo T1.

3.3.2 Psi-local theories

We briefly explain how our approach can be extended to the more general notion of

Psi-local theory extensions [31]. Sometimes, it is not sufficient to consider only local

instances of extension axioms to decide satisfiability modulo a theory extension. For

example, consider the following set of ground literals:

G = {f(a) = f(b), a 6= b}

Suppose we interpret G in a theory of an injective function f : S → S with a partial

inverse g : S → S for some set S. We can axiomatize this theory as a theory extension

76

of the theory of uninterpreted functions using the axiom

K = ∀x, y. f(x) = y =⇒ g(y) = x .

G is unsatisfiable in the theory extension, but the local instances of K with respect to

the ground terms st(G) = {a, b, f(a), f(b)} are insufficient to yield a contradiction in

the base theory. However, if we consider the local instances with respect to the larger

set of ground terms

Ψ(st(G)) = {a, b, f(a), f(b), g(f(a)), g(f(b))},

then we obtain, among others, the instances

f(a) = f(b) =⇒ g(f(b)) = a and f(b) = f(a) =⇒ g(f(a)) = b .

Together with G, these instances are unsatisfiable in the base theory.

The set Ψ(st(G)) is computed as follows:

Ψ(st(G)) = st(G) ∪ { g(f(t)) | t ∈ st(G) }

It turns out that considering local instances with respect to Ψ(st(G)) is sufficient to

check satisfiability modulo the theory extensionK for arbitrary sets of ground clauses

G. Moreover, Ψ(st(G)) is always finite. Thus, we still obtain a decision procedure for

the theory extension via finite instantiation of extension axioms. Psi-local theory ex-

tensions formalize this idea. In particular, if Ψ satisfies certain properties including

monotonicity and idempotence, one can again provide a model-theoretic characteri-

77

zation of completeness in terms of embeddings of partial models. We refer the reader

to [31] for the technical details.

To use our algorithm for deciding satisfiability of a set of ground literalsGmodulo

a Psi-local theory extension (T0,Ke, T1), we simply need to add an additional prepro-

cessing step in which we compute Ψ(st(G)) and define G′ = G ∪ { instclosure(t) |

t ∈ Ψ(st(G)) } where instclosure is a fresh predicate symbol. Then calling our

procedure for T1 with G′ decides satisfiability of G modulo T1.

3.4 Conclusion

In this chapter, we presented a new algorithm for deciding local theory extensions, a

class of theories that plays an important role in verification applications. Our algo-

rithm relies on existing SMT solver technology so that it can be easily implemented in

today’s solvers. In its simplest form, the algorithm does not require any modifications

to the solver itself but only trivial syntactic modifications to its input. These are: (1)

flattening and linearizing the extension axioms; and (2) adding trigger annotations to

encode locality constraints for E-matching. In Chapter 5, we evaluate the algorithm

on benchmarks generated from heap-manipulating program and discuss further opti-

mizations that can be made in the solver.

3.5 Bibliographical note

Sofronie-Stokkermans [54] introduced local theory extensions as a generalization of

locality in equational theories [22, 25]. Further generalizations include Psi-local the-

ories [31], which can describe arbitrary theory extensions that admit finite quantifier

instantiation. The formalization of our algorithm targets local theory extensions, but

78

we briefly describe how it can be generalized to handle Psi-locality. The original de-

cision procedure for local theory extensions presented in [54], which is implemented

in H-Pilot [32], eagerly generates all instances of extension axioms upfront, before the

base theory solver is called. As we show in our experiments, eager instantiation is

prohibitively expensive for many local theory extensions that are of interest in verifi-

cation because it results in a high degree polynomial blowup in the problem size.

In [34], Swen Jacobs proposed an incremental instantiation algorithm for local

theory extensions. The algorithm is a variant of model-based quantifier instantiation

(MBQI). It uses the base theory solver to incrementally generate partial models from

which relevant axiom instances are extracted. The algorithm was implemented as a

plug-in to Z3 and experiments showed that it helps to reduce the overall number of

axiom instances that need to be considered. However, the benchmarks were artifi-

cially generated. Jacob’s algorithm is orthogonal to ours as the focus of this paper is

on how to use SMT solvers for deciding local theory extensions without adding new

substantial functionality to the solvers. A combination with this approach is feasible

as we discuss in more detail below.

Other variants of MBQI include its use in the context of finite model finding [50],

and the algorithm described in [24], which is implemented in Z3. This algorithm is

complete for the so-called almost uninterpreted fragment of first-order logic. While

this fragment is not sufficiently expressive for the local theory extensions that appear

in our benchmarks, it includes important fragments such as Effectively Propositional

Logic (EPR). In fact, we have also experimented with a hybrid approach that uses our

E-matching-based algorithm to reduce the benchmarks first to EPR and then solves

them with Z3’s MBQI algorithm.

E-matching was first described in [44], and since has been implemented in various

79

SMT solvers [15, 23]. In practice, user-provided triggers can be given as hints for finer

grained control over quantifier instantiations in these implementations. More recent

work [19] has made progress towards formalizing the semantics of triggers for the pur-

poses of specifying decision procedures for a number of theories. A more general but

incomplete technique [51] addresses the prohibitively large number of instantiations

produced by E-matching by prioritizing instantiations that lead to ground conflicts.

80

Chapter 4

An application: synthesizing

commutavity conditions

In the last two chapters, we developed decision procedures with a view of expanding

the theories an SMT solver can reason about. In this chapter, we look at an application

of SMT. This would give us a flavor of the step of encoding a problem of interest

to checking of satisfiability of logic formulas, where an SMT solver fits in a system

overall, and some of the challenges.

4.1 Problem

Recent decades have seen the development of a variety of paradigms to exploit the op-

portunity for concurrency in multicore architectures, including parallelizing compil-

ers [53], speculative execution (e.g. transactional memory [27]), futures, etc. It has been

shown, across all of these domains, that understanding the commutativity of concur-

rent data-structure operations provides a key avenue to improved performance [14] as

well as ease of verification [36, 37].

81

Intuitively, linearizable data-structure operations that commute can be executed

concurrently because their effects don’t interfere with each other in a harmful way.

When using a (linearizable) HashTable, for example, knowledge that put(x,’a’)

commutes with get(y) provided that x 6= y enables significant parallelization oppor-

tunities as both can be performed concurrently.

Commutativity conditions are an important part of the concurrent programming

toolkit, but they are tedious to specify manually and require nontrivial and error-

prone reasoning. Recent advances have been made on verification of commutativity

conditions [35], as well as attempts at synthesis based on random interpretation [2] or

dynamic profiling. Thus far, however, generating commutativity conditions automat-

ically has been largely overlooked.

We present the first known technique for automatic refinement of commutativity

conditions. We build on a vast body of existing research, extending over the last five

decades, on specification and representation of abstract data types (ADTs) in terms of

logical (Prem, Postm) specifications [7, 20, 21, 29, 42, 43].

4.2 Overview

We describe the algorithm with an example. Consider the Set abstract data type

(ADT), whose state consists of a single variable, S, that stores an unordered col-

lection of unique elements. We focus on two operations: contains(x)/bool and

add(y)/bool (returns true if data structure is modified). Clearly add and contains

commute if they refer to different elements in the set. Another case, which is slightly

more subtle, is when both add and contains refer to the same element e, and in the

prestate e ∈ S. In this case, in both orders of execution add and contains leave the

82

REFINEmn (H,Π) {
if valid(H ⇒ m .̂/ n) then
ϕ := ϕ ∨H;
else if valid(H ⇒ m \̂./ n) then
ϕ̃ := ϕ̃ ∨H;
else
let χc, χnc = counterex. to .̂/ and \̂./ (resp.) in
let p = CHOOSE(H,Π, χc, χnc) in
REFINEmn (H ∧ p, Π \ {p});
REFINEmn (H ∧ ¬p, Π \ {p});
}
main {
ϕ := false; ϕ̃ := false;
try { REFINEmn (true,Π); }
catch (InterruptedException e) { skip; }
return(ϕ, ϕ̃);
}

Figure 4.1: The refinement algorithm for generating a commutativity condition ϕ
and non-commutativity condition ϕ̃ for two methods m and n.

H0 ≡ true H1 ≡ x = y

χc = {x=0,y=0,S=∅}

χnc={x=0,y=1,S={0}}
H'1 ≡ x ≠ y

H2 ≡ x = y ∧ x∈S

H'2 ≡ x = y ∧ x∉S

valid(H'1!"m ⋈ n)

χc = {x=0,y=0,S=∅}

χnc ={x=0,y=0,S={0}}

valid(H2!""m ⋈ n)

valid(H'2! "m ⋈ n)

φ := false ∨ (x ≠ y)

 ∨ (x=y ∧ x∈S)

φ := false ∨ (x ≠ y)

φ᷉ := false ∨

 (x=y ∧ x∉S)

#

Figure 4.2: An example of how our technique generates commutativity conditions
for methods add and contains operating on a Set. Each subsequent panel depicts
a partitioning of the state space. The counterexamples χc, χnc give values for the
arguments x, y and the current state of the set S.

83

set unmodified and return false and true, respectively.

The algorithm we describe in this paper automatically produces a precise logical

formula that captures this commutativity condition. It also generates the conditions

under which the methods do not commute: x = y ∧ x /∈ S. We explain the algo-

rithm using our running example and, for reference, provide the pseudocode of the

algorithm in Figure 4.1.

4.2.1 Iterative refinement algorithm

The main thrust of the algorithm is to recursively subdivide the state space via pred-

icates until, at the base case, regions are found that are either entirely commutative

or else entirely non-commutative. The conditions we incrementally generate are de-

noted ϕ and ϕ̃, respectively. In the algorithm, we denote by H the logical formula

that describes the current state space at a given recursive call. As expected, we begin

withH0 = true. Our algorithm has three cases for a givenH: (i)H describes a precon-

dition for m and n in which m and n always commute; (ii) H describes a precondition

for m and n in which m and n never commute; or (iii) neither of the above.

We illustrate how our algorithm proceeds on the running example in Figure 4.2.

For these methods, true is visibly not a sound commutativity condition, as our al-

gorithm determines via a quantifier-free (QF) validity query (described in more detail

later) to an SMT solver. This returns the commutativity counterexample described

above: χc = {x = 0, y = 0, S = ∅}. true is also not a sufficient precondition for

add and contains not to commute. We establish analogously, obtaining the non-

commutativity counterexample χnc = {x = 0, y = 1, S = {0}}.

Since H0 = true is neither a commutativity nor a non-commutativity condition,

we must refine H0 into regions (or stronger conditions). In particular, we would like

84

to perform a useful subdivision: Divide H0 into an H1 that allows χc but not χnc,

and an H ′1 that allows χnc but not χc. To this end, the choose operation looks for a

predicate p (from a suitable set of predicates Π, discussed later), such that H0∧p⇐ χc

while H0 ∧ ¬p ⇐ χnc (or vice versa). The predicate x = y satisfies this property. In

the next two recursive calls, p is added as a conjunct to H, as shown in the second

column of Figure 4.2: one with H1 ≡ true ∧ x = y and one with H ′1 ≡ true ∧ x 6= y.

Taking the H ′1 case, our algorithm makes another SMT query and finds that x 6=

y implies that add always commutes with contains. At this point, it can update

the commutativity condition ϕ, letting ϕ := ϕ ∨ H ′1, adding this H ′1 region to the

growing disjunction. On the other hand, H1 is neither a sufficient commutativity

nor a sufficient non-commutativity condition, and so our algorithm, again, produces

the respective counterexamples: χc = {x = 0, y = 0, S = ∅} and χnc = {x =

0, y = 0, S = {0}}. In this case, our algorithm selects the predicate x ∈ S, and

makes two further recursive calls: one with H2 ≡ x = y ∧ x ∈ S and another with

H ′2 ≡ x = y ∧ x /∈ S. In this case, it finds that H2 is a sufficiently strong precondition

for commutativity, while H ′2 is a strong enough precondition for non-commutativity.

Consequently, H2 is added as a new conjunct to ϕ, yielding ϕ ≡ x 6= y∨ (x = y∧x ∈

S). Similarly, ϕ̃ is updated to be: ϕ̃ ≡ (x = y ∧ x /∈ S). No further recursive

calls are made so the algorithm terminates, and we have obtained a precise (complete)

commutativity/non-commutativity specification: ϕ ∨ ϕ̃ is valid.

4.2.2 Validity query

So far we relied on intuition for when add and contains commute. We make it this

more precise now to give a flavor of the validity queries being generated, and to illus-

trate how we avoid quantifier alternation which arises when defining commutativity.

85

Let the abstract states be denoted by σ, σ′, σm etc. (in our example, the abstract

state was just the contents of the set). Denote by σ m(a)/r−−−−→ σ′ the predicate which is

true iff on application of methodmwith arguments a on state σ0, the return value is r

and new state is σ′. In our example, for add this predicate holds when r = (a 6∈ S) and

S ′ = S ∪ {a}, and for contains this predicate holds when r = (a ∈ S) and S ′ = S.

We note that we only work with deterministic systems (this was not a limitation in

our experiments), i.e. for any pre-state and method with specific arguments, there is at

most one post-state. At times, there might be no valid post state, and it is important

to capture this. For example, one cannot pop an empty queue – so push followed by

pop is possible, but pop as the first operation isn’t.

Given the above definition, the definition of commutativity for a pair of methods

m and n is: (i) for all abstract states σ0, whenevermwith arguments x (returning value

rm) followed by n with arguments y (returning value rn) is possible, then the reverse

application n(y) followed by m(x) is also possible and gives the same abstract state

and return values (ii) vice-versa. In our notation, it would correspond to checking:

∀σ0, σ1, σ2, x, y, rm, rn.(
σ0

m(x)/rm−−−−−→ σ1
n(y)/rn−−−−→ σ2 =⇒

(
∃σ3.σ0

n(y)/rn−−−−→ σ3
m(x)/rm−−−−−→ σ2

))
∧
(
σ0

n(y)/rn−−−−→ σ1
m(x)/rm−−−−−→ σ2 =⇒

(
∃σ3.σ0

m(x)/rm−−−−−→ σ3
n(y)/rn−−−−→ σ2

))

As one can see above, there is quantifier alternation if we use the natural encoding.

When translated to a satisfiability query for an SMT solver, the inner existential quan-

tifier stays as a universal quantifier. Since SMT solvers cannot handle quantifiers very

well, we do a transformation which allows us to avoid quantifier alternation. We en-

force that there is always a post-state by adding a new Err state in our set of abstract

86

states. Whenever, there is no post-state for a given state, method and its arguments,

we add a transition to the abstract Err state. Once in Err state, we always stay in

Err state. Under this modified encoding, it is easy to prove that the following check

encodes commutativity defined above:

∀σ0, σ1, σ2, σ3, σ4, x, y, rm, rn, r
′
m, r

′
n.

σ0
m(x)/rm−−−−−→ σ1

n(y)/rn−−−−→ σ2 ∧ σ0
n(y)/r′

n−−−−→ σ3
m(x)/r′

m−−−−−→ σ4

∧ ((σ2 6= Err ∨ σ4 6= Err) =⇒ (rm = r′m ∧ rn = r′n ∧ σ2 = σ4))

Intuitively, with exactly one post state, the universal quantification works as well as

the existential one to get a handle on the post state.

4.2.3 System overview

While the algorithm, as outlined so far, executes a relatively standard refinement loop,

there are a couple of challenges that are implicit in its description. First, there is the

critical question of which predicates to range over during the iterative refinement

process. If the predicate vocabulary is not sufficiently expressive, then the algorithm

would not be able to converge on precise commutativity and non-commutativity con-

ditions. In Section 4.3, we provide a mechanized solution to this problem, whereby

the predicate vocabulary is populated with the atoms that occur in the transition re-

lations’ Pre and Post formulas. As we demonstrate in Section 4.3, this strategy works

well in practice. An intuitive explanation is that the Pre and Post formulas suffice

to express the footprint of an operation, and so the atoms comprising them are an

effective vocabulary to express when operations do, or do not, interfere.

Having fixed the predicate vocabulary, a second challenge is to prioritize the pred-

87

icates. This choice essentially drives the iterative refinement loop, and so it controls

not only the algorithm’s performance, but also the quality (or conciseness) of the re-

sulting conditions. Our choice of next predicate p is governed by two requirements.

First, for progress, p/¬p must eliminate the counterexamples to commutativity/non-

commutativity due to the last iteration (where previously selected predicates ensure

the same for their respective counterexamples). This may still leave multiple choices,

and we propose two heuristics with different trade-offs to break ties. We discuss this

in more detail in Section 4.3.

Also, as we discussed in the Section 4.2.2, we would want the validity queries to the

solver to be in a fragment for which the solver has complete decision procedures.We

refer to the preprocessing of the input described in the section as the LIFT operation.

In summary, the following diagram illustrates the overall flow of our automated

algorithm, including the components discussed above to generate useful predicates

(PGEN), and choose the next predicate (CHOOSE) within an overall refinement process

(REFINE):

(Pre
m
, Post

m
)

(Pre
n
, Post

n
)

…

(Pre
m
,Post

m
)

(Pre
n
,Post

n
)

…

Preds

LIFT

(§IV)

PGEN

(§VIIc)
(φ

m
,n φ᷉

m
)n

⟨

REFINE (§V)

CHOOSE

(§VIId)

⟨

⟨
⟨

In the diagram, we denote the total version of the Prem/Postm specifications (after LIFT

preprocessing) as P̂rem/P̂ostm, the generated commutativity condition as ϕnm, and the

non-commutativity condition ϕ̃nm.

88

4.3 Evaluation

We have implemented the algorithm in Section, along with the other parts of the

system (illustrated in Section 4.2) in our tool SERVOIS∗. We use CVC4 [9] as the

backend solver. We evaluated the algorithm on various abstract data structures.In

Tables 4.1 and 4.2 and we provide the commutativity conditions generated. The ϕmn

column shows the generated commutativity condition. When right moverness (B)

conditions are same for a pair of methods, we show them together in one row (./).

Qs has the number of SMT queries made, and running time in seconds in parentheses.

The experiments were run on a 2.53 GHz Intel Core 2 Duo machine with 8 GB RAM.

4.3.1 Encoding the transition system

We use an input specification language building on YAML (which has parsers and

printers in all common programming languages) with SMTLIB as the logical lan-

guage. It is human-readable as well as can be easily auto-generated allowing to eas-

ily fit in other toolchains [7, 20, 21, 29, 42, 43]. See Appendix A.1.1 for the Counter

ADT specification which was derived from the Pre and Post conditions used in earlier

work [35]. The novelty of our work is that we automatically generate commutativity

conditions for any implementation that respects these contracts.

The states (state) of a transition system describing an ADT are encoded as list of

variables (each as a name, type pair), and each method (methods) specification requires

a list of argument types (args), return type (return), and Pre (requires) and Post (ensures)

conditions. The full specifications for Counter, Accumulator, Set, HashTable, and

Stack we used can be found in the Appendix A. We used the quantifier-free integer

∗http://cs.nyu.edu/~kshitij/projects/servois/

89

http://cs.nyu.edu/~kshitij/projects/servois/

theory in SMTLIB to encode the abstract state and contracts for the counter and

accumulator ADTs. For Set, we used the theory of finite sets along with integers to

track size; for HashTable we used sets to track the keys, and arrays for the HashMap

itself. In order to encode the Stack example, we utilized the observation that for the

purpose of pairwise commutativity it is sufficient to track the behavior of boundedly

many top elements. In specific, since two operations can at most either pop the top

two elements or push two elements, tracking four elements is sufficient.

4.3.2 Predicate generation (PGEN)

One of the questions that arises is how to obtain a relevant set of the predicates. As

mentioned in Section 4.2, our intuition was that the commutativity condition would

need to involve terms and predicates that are used to describe the methods. Using

this intuition, the procedure we use to generate a set of predicates for input to our

REFINE is as follows: (i) take all terms that appear in the input specification of the Pre

and Post conditions, grouped by the sort, (ii) take all predicate symbols that appear

in the specification, and generate all possible atoms that are well-typed using terms

extracted. For example, if size, 1, (size+1) are terms of sort Z that appear in the

formula along with the predicates = and ≥, we generate (size = 1), (size ≥ 1), etc.

for a total of 18 predicates. We filter out those that are trivial.

By this process, depending on the pair of methods, the number of predicates gen-

erated by our implementation of PGEN were (in parenthesis, after filtering): Counter:

25-25 (12-12), Accumulator: 1-20 (0-20), Set: 17-55 (17-34), HashTable: 18-36 (6-36),

Stack: 41-61 (41-42).

90

4.3.3 Ranking and picking predicates (CHOOSE)

Even though the number of predicates obtained is relatively small, our algorithm

makes two recursive calls at each step. It is thus important to be able to identify

relevant predicates for the algorithm to be practical.

To this end, in addition to filtering trivial predicates, inspired by CEGAR tech-

niques we prioritize predicates based on the two counterexamples generated from

the validity checks in REFINE. Predicates that distinguish between the given counter

examples are tried first (call these distinguishing predicates). The property of these

predicates is that they ensure both counterexamples can be valid on recursing and

thus guarantee progress. More formally, CHOOSE must return a predicate such that

χc ⇒ H∧p and χnc ⇒ H∧¬p. In our implementation, we provided the SMT solver

all the predicates upfront, which returns the evaluation on the counterexample with-

out any additional queries. This still left us with several predicates, and we discuss the

heuristics we tried to break ties.

Simple Heuristic

One relatively simple heuristic we tried was to start by picking the predicates with

the least number of terms. The intuition was that conditions would at least involve

some simple atoms, and would consequently lead to simple conditions. This worked

very well, on all our examples this heuristic terminated with precise commutativity

conditions. In Tables 4.1 and 4.2, we give the number of queries posed to the solver

and total time (in parentheses) consumed by this heuristic.

91

M
et

h.
m

(x̄
)

M
et

h.
n

(ȳ
)

Si
m

pl
e

Po
ke

ϕ
m n

ge
ne

ra
te

d
by

Po
ke

he
ur

is
ti

c
C

ou
nt

er
Q

s
(t

im
e)

Q
s

(t
im

e)
de

cr
em

en
t

./
de

cr
em

en
t

3
(0

.1
1)

3
(0

.1
1)

tr
ue

in
cr

em
en

t
B

de
cr

em
en

t
10

(0
.3

6)
34

(0
.9

1)
¬(

0
=

c)
de

cr
em

en
t

B
in

cr
em

en
t

3
(0

.1
1)

3
(0

.1
2)

tr
ue

de
cr

em
en

t
./

re
se

t
2

(0
.1

0)
2

(0
.1

0)
fa

lse
de

cr
em

en
t

./
ze

ro
6

(0
.1

9)
26

(0
.6

6)
¬(

1
=

c)
in

cr
em

en
t

./
in

cr
em

en
t

3
(0

.1
2)

3
(0

.1
1)

tr
ue

in
cr

em
en

t
./

re
se

t
2

(0
.0

9)
2

(0
.1

0)
fa

lse
in

cr
em

en
t

./
ze

ro
10

(0
.3

0)
34

(0
.8

6)
¬(

0
=

c)
re

se
t

./
re

se
t

3
(0

.1
1)

3
(0

.1
1)

tr
ue

re
se

t
./

ze
ro

9
(0

.2
4)

30
(0

.6
9)

0
=

c
ze

ro
./

ze
ro

3
(0

.1
1)

3
(0

.1
1)

tr
ue

A
cc

um
ul

at
or

in
cr

ea
se

./
in

cr
ea

se
3

(0
.1

1)
3

(0
.1

1)
tr

ue
in

cr
ea

se
./

re
ad

13
(0

.3
1)

28
(0

.6
3)

c
+

x1
=

c
re

ad
./

re
ad

3
(0

.0
9)

3
(0

.0
9)

tr
ue

Se
t

ad
d

./
ad

d
10

(0
.4

0)
14

0
(4

.4
7)

[y
1

=
x1
∧

y1
∈

S]
∨

[¬
(y

1
=

x1
)]

ad
d

./
co

nt
ai

ns
10

(0
.4

2)
12

2
(3

.6
3)

[x
1
∈

S]
∨

[¬
(x

1
∈

S)
∧
¬(

y1
=

x1
)]

ad
d

./
ge

ts
iz

e
6

(0
.2

1)
31

(0
.9

3)
x1
∈

S
ad

d
./

re
mo

ve
6

(0
.2

8)
66

(2
.2

8)
¬(

y1
=

x1
)

co
nt

ai
ns

./
co

nt
ai

ns
3

(0
.1

8)
3

(0
.1

6)
tr

ue
co

nt
ai

ns
./

ge
ts

iz
e

3
(0

.1
3)

3
(0

.1
3)

tr
ue

co
nt

ai
ns

./
re

mo
ve

17
(0

.5
7)

16
0

(4
.8

1)
[S
\{

x1
}

=
{y

1}
]∨

[¬
(S
\{

x1
}

=
{y

1}
)
∧

y1
∈

{x
1}
∧

..
.]
∨

[.
..

]
ge

ts
iz

e
./

ge
ts

iz
e

3
(0

.1
2)

3
(0

.1
3)

tr
ue

ge
ts

iz
e

./
re

mo
ve

13
(0

.3
9)

37
(1

.0
3)

¬(
y1
∈

S)
re

mo
ve

./
re

mo
ve

21
(0

.7
5)

19
2

(6
.4

7)
[S
\{

y1
}

=
{x

1}
]∨

[¬
(S
\{

y1
}

=
{x

1}
)
∧

y1
∈

{x
1}
∧

..
.]
∨

[.
..

]

Ta
bl

e
4.

1:
A

ut
om

at
ic

al
ly

ge
ne

ra
te

d
co

m
m

ut
at

iv
ity

co
nd

iti
on

s.

92

M
et

h.
m

(x̄
)

M
et

h.
n

(ȳ
)

Si
m

pl
e

Po
ke

ϕ
m n

ge
ne

ra
te

d
by

Po
ke

he
ur

is
ti

c
H

as
hT

ab
le

Q
s

(t
im

e)
Q

s
(t

im
e)

ge
t

./
ge

t
3

(0
.1

7)
3

(0
.1

5)
tr

ue
ge

t
./

ha
sk

ey
3

(0
.1

4)
3

(0
.1

4)
tr

ue
pu

t
B

ge
t

13
(0

.4
7)

74
(2

.3
7)

[H
[x

1=
..

.]
=

H
∧

y1
∈

ke
ys

]∨
[¬

(H
[x

1=
..

.]
=

H)
∧
¬(

y1
=

x1
)]

ge
t

B
pu

t
10

(0
.3

7)
48

(1
.5

4)
[H

[y
1]

=
y2

]∨
[¬

(H
[y

1]
=

y2
)
∧
¬(

y1
=

x1
)]

re
mo

ve
B

ge
t

3
(0

.1
7)

3
(0

.1
6)

tr
ue

ge
t

B
re

mo
ve

13
(0

.4
5)

40
(1

.2
3)

¬(
y1

=
x1

)
ge

t
./

si
ze

3
(0

.1
4)

3
(0

.1
4)

tr
ue

ha
sk

ey
./

ha
sk

ey
3

(0
.1

4)
3

(0
.1

4)
tr

ue
ha

sk
ey

./
pu

t
10

(0
.3

7)
52

(1
.6

3)
[y

1
∈

ke
ys

]∨
[¬

(y
1
∈

ke
ys

)
∧
¬(

y1
=

x1
)]

ha
sk

ey
./

re
mo

ve
17

(0
.5

9)
44

(1
.3

6)
[x

1
∈

ke
ys
∧
¬(

y1
=

x1
)]
∨

[¬
(x

1
∈

ke
ys

)]
ha

sk
ey

./
si

ze
3

(0
.1

4)
3

(0
.1

4)
tr

ue
pu

t
./

pu
t

24
(0

.9
7)

35
7

(1
3.

50
)

[H
[y

1]
=

y2
∧

x2
=

H[
x1

]∧
..

.]
∨

[H
[y

1]
=

y2
∧

x2
=

H[
x1

]∧
..

.]
∨

[.
..

]
pu

t
./

re
mo

ve
6

(0
.3

0)
33

(1
.2

6)
¬(

y1
=

x1
)

pu
t

./
si

ze
6

(0
.2

9)
23

(0
.8

2)
x1
∈

ke
ys

re
mo

ve
./

re
mo

ve
21

(0
.8

9)
19

2
(6

.9
5)

[k
ey

s\
{x

1}
=

{y
1}

]∨
[¬

(k
ey

s\
{x

1}
=

{y
1}

)
∧

y1
∈

{x
1}
∧

..
.]
∨

[.
..

]
re

mo
ve

./
si

ze
13

(0
.4

5)
37

(1
.1

3)
¬(

x1
∈

ke
ys

)
si

ze
./

si
ze

3
(0

.1
4)

3
(0

.1
4)

tr
ue

St
ac

k
cl

ea
r

./
cl

ea
r

3
(0

.1
3)

3
(0

.1
3)

tr
ue

cl
ea

r
./

po
p

2
(0

.1
0)

2
(0

.1
1)

fa
lse

cl
ea

r
./

pu
sh

2
(0

.1
2)

2
(0

.1
1)

fa
lse

po
p

./
po

p
6

(0
.2

3)
20

(0
.6

2)
ne

xt
To

To
p

=
to

p
pu

sh
B

po
p

72
(2

.1
4)

11
5

(3
.5

3)
¬(

0
=

si
ze

)
∧

to
p

=
x1

po
p

B
pu

sh
34

(0
.9

9)
76

(2
.2

1)
y1

=
to

p
pu

sh
./

pu
sh

13
(0

.5
8)

20
(0

.7
2)

y1
=

x1

Ta
bl

e
4.

2:
A

ut
om

at
ic

al
ly

ge
ne

ra
te

d
co

m
m

ut
at

iv
ity

co
nd

iti
on

s(
co

nt
in

ue
d)

.

93

Poke Heuristic

Though the simple heuristic produces precise conditions, we now focus on the qual-

itative aspect of our synthesis algorithm. We found that in some cases the simple

CHOOSE heuristic would pick predicates to split on that could have been technically

avoided in the commutativity condition. Not an issue from correctness point of view,

nevertheless, we tried a heuristic which tries more aggressively to find concise condi-

tions in addition to being precise.

We call this poke heuristic, which in order to decide which predicate to pick,

recurses one level deep on each predicate and computes number of distinguishing

predicates would the two calls have. The sum of values returned by the two calls

becomes the weight of the predicate. We then pick the predicate with lowest weight

(fewest remaining distinguishing predicates). This heuristic was found to converge

much faster to the more relevant predicates. This requires more calls to the SMT

solver, but since the queries were relatively simple for CVC4, it was not overall an

issue. The conditions in Tables 4.1 and 4.2 are those generated by the Poke heuristic.

Please see the appendix for a comparison with those generated by Simple heuristic.

4.3.4 Validation

Although our algorithm is sound, we manually validated the implementation of SER-

VOIS by examining its output and comparing the generated commutativity conditions

with those manually written in prior works. In the case of the Accumulator and

Counter, our commutativity conditions were identical to those given in [35]. For the

Set data-structure, the work of [35] used a less precise Set abstraction, so we instead

validated against the conditions of [38]. For the HashTable, we validated that our

94

conditions matched those given by Dimitrov et al. [18].

4.4 Conclusion

Our work shows that it possible to automatically generate commutativity conditions,

something that was done manually so far. The conditions are correct by construction

and ensure special cases aren’t missed. These conditions can be derived statically,

and used in a variety of contexts including transactional boosting [27], open nested

transactions [45], and other non-transactional concurrency paradigms such as race

detection [18], automatic parallelization [53], etc.

95

Chapter 5

Implementation and experiments

5.1 Theory of finite sets with cardinality

We have implemented a decision procedure based on the rules in Chapter 2 in the

SMT solver CVC4. In this section, we describe details related to the implementation,

and share experimental results.

5.1.1 Proof strategy

The decision procedure can be thought as a specific strategy of applying the rules

given in Section 2.2. We recall the categorization of the rules given in 2.3:

• R1: (necessary) membership predicate reasoning rules

• R2: (necessary) graph rules to reason about cardinality operator

• R3: (necessary) rules to handle cardinality constraints imposed by membership

reasoning

96

• R4: optional propagation and split rules other than Rule 45 (GUESS LOWER

BOUND).

• R5: Rule 45 (GUESS LOWER BOUND).

Our proof strategy can be summarized as follows:

1. Any time a contradiction rule is applicable, apply the rule and close the branch.

2. Apply propagation rules in R1 and R4 to saturation.

3. Apply all rules, including split rules, in R1 and R4 to saturation.

4. Apply a introduce or merge rule in R2. After the application, apply rules in

R1, R4, and Rule 42 (GUESS EMPTY SET) to saturation.

5. Apply rules in R2 to saturation following above strategy.

6. Apply all rules in calculus, including R3 and R5, to saturation.

Note that rules in R1 do not introduce any new set terms. Further, if there are no

constraints of form 7 (see 2.2, Normal form), then we can

5.1.2 Data structures

Reasoning modulo equality. The rules in Section 2.2.1 reason modulo equality.

We use an incremental, congruence closure module to keep all the constraints modulo

equality.

Propagation rules. In order to handle the propagation rules efficiently, we maintain

for each set term all the other terms it appears in. For an incremental procedure, this

is important. This helps us avoid looping over all the constraints, and we can detect

which propagation rules apply efficiently.

97

file # queries # sat # unsat time (sec.) # decisions
deepmeas0 138 103 35 0.20 967
ListConcat 178 173 5 0.46 2389
ListElem 38 27 11 0.04 182
ListElts 470 358 112 0.55 2682
listSetDemo 470 358 112 0.58 2682
listSet 393 301 92 0.44 2096
meas10 216 170 46 0.24 1248
meas11 33 30 3 0.05 184
meas9 264 210 54 0.16 1064
refinements101reax 355 226 129 0.18 487
SS 1795 801 994 1.15 4214
stacks0 189 115 74 0.13 643
TalkingAboutSets 6241 4566 1675 9.33 91534
UniqueZipper 1907 1674 233 6.21 26050
zipper0 963 870 93 2.46 11840
zipper 8323 8017 306 30.06 359863

Table 5.1: Performance on benchmarks generated by a static verification tool for
Haskell.

5.1.3 Experimental results: finite sets

We test our procedure on benchmarks generated by a static verification tool for

Haskell∗. The constraints do not contain any cardinality constraints. These are in-

cremental (multiple satisfiability checks in one file) benchmarks. The largest bench-

mark (zipper) has over 8,000 queries (see Table 5.1, # queries column). The next

two columns are sat and unsat for number of satisfiable and unsatisfiable queries in

the benchmark respectively. The time column is the time taken by the procedure in

seconds. Finally, decisions column is the number of decisions (guesses) made by the

SAT solver. Both the running time as well as number of decisions are for the whole

benchmark (i.e. cumulative over all the queries in a benchmark).

Table 5.1 shows the results for a baseline implementation. On an average, one
∗Ranjit Jhala, via the SMT-LIB mailing list, submitting SMTLIB2 benchmarks?, Wed Jul 24 11:29:26

EDT 2013

98

file time (sec.) # decisions time (sec.) # decisions
base. base. opt. opt.

deepmeas0 0.20 967 0.19 933
ListConcat 0.46 2389 0.42 2223
ListElem 0.04 182 0.04 159
ListElts 0.55 2682 0.60 2646
listSetDemo 0.58 2682 0.54 2646
listSet 0.44 2096 0.43 1977
meas10 0.24 1248 0.25 1214
meas11 0.05 184 0.05 166
meas9 0.16 1064 0.15 985
refinements101reax 0.18 487 0.18 487
SS 1.15 4214 1.38 4174
stacks0 0.13 643 0.14 643
TalkingAboutSets 9.33 91534 9.81 91045
UniqueZipper 6.21 26050 4.33 26050
zipper0 2.46 11840 2.48 11840
zipper 30.06 359863 28.98 359863

Table 5.2: Comparison between baseline (base.) and additional use of Rule 29 (opt.).

file time (sec.) # decisions time (sec.) # decisions
base. base. opt. opt.

deepmeas0 0.20 967 0.09 265
ListConcat 0.46 2389 0.19 847
ListElem 0.04 182 0.03 47
ListElts 0.55 2682 0.42 860
listSetDemo 0.58 2682 0.33 860
listSet 0.44 2096 0.29 478
meas10 0.24 1248 0.11 219
meas11 0.05 184 0.03 41
meas9 0.16 1064 0.10 323
refinements101reax 0.18 487 0.12 29
SS 1.15 4214 1.00 1144
stacks0 0.13 643 0.09 101
TalkingAboutSets 9.33 91534 6.24 29959
UniqueZipper 6.21 26050 2.90 6755
zipper0 2.46 11840 1.44 2315
zipper 30.06 359863 10.30 42896

Table 5.3: Comparison of performance between baseline (base.) and when assigning
different values by default to shared element variables if they are unconstrained (opt.).

99

file time (sec.) # decisions time (sec.) # decisions
CVC4 CVC4 Z3 Z3

deepmeas0 0.13 162 0.04 611
ListConcat 0.15 626 0.05 1399
ListElem 0.03 24 0.00 85
ListElts 0.41 729 0.06 1125
listSetDemo 0.30 729 0.10 1125
listSet 0.29 343 0.07 665
meas10 0.10 182 0.02 348
meas11 0.02 23 0.01 96
meas9 0.15 240 0.03 422
refinements101reax 0.13 29 0.03 82
SS 1.03 1001 0.15 1268
stacks0 0.06 101 0.02 404
TalkingAboutSets 5.74 23456 6.60 63301
UniqueZipper 2.74 6755 1.04 24078
zipper0 1.40 2315 0.26 5441
zipper 10.05 42896 3.41 64978

Table 5.4: Comparison of performance between optimized CVC4 implementation
with a translation to Z3 using extension of arrays.

query in a benchmark takes a fraction of a second. We discuss two optimizations

we found to be helpful on these benchmarks. First, we found that adding an ad-

ditional propagation rule, specifically, 29 reduced the number of decisions in some

cases. Comparison with baseline results (Table 5.1) is in Table 5.2. Second, if the

element variables are shared with another theory, we found that it helps significantly

to assign different values by default to variables. Comparison with baseline results

(Table 5.1) is in Table 5.3.

Finally, we compare the configuration with both of the optimizations enabled

with an encoding of the set operations using Z3’s extended array operators. The com-

parison is in Table 5.4. Both CVC4 as well as Z3 can solve all the queries in all the

benchmarks. Z3 is faster on all but one benchmark, though the running times are

comparable. Both finish in under a second on benchmarks with less than a thousand

100

file output time (sec.) # decisions
card unsat 0.00 0
card-2 sat 0.01 14
card-3 unsat 0.00 0
card-6 unsat 0.01 0
card-7 sat 0.03 384
cade07-vc1 unsat 0.00 4
cade07-vc2 unsat 0.01 6
cade07-vc2a unsat 0.02 32
cade07-vc2b sat 1.03 4730
cade07-vc3 unsat 0.00 1
cade07-vc3a unsat 0.00 3
cade07-vc3b sat 0.45 1305
cade07-vc4 unsat 8.82 12237
cade07-vc4b Timeout
cade07-vc5 unsat 50.01 20668
cade07-vc5b Timeout
cade07-vc6 unsat 0.91 2193
cade07-vc6a unsat 0.37 1284
cade07-vc6b sat 2.71 6420
cade07-vc6c sat 1.67 5211

Table 5.5: Benchmarks involving cardinality reasoning

queries. On benchmarks with more than thousand queries, CVC4 is faster on one

benchmark and slower on the other four. Note that on all the benchmarks CVC4

takes fewer decisions. Given the differences in architecture, it is not possible to con-

clusively say anything, but it warrants further investigation.

5.1.4 Experimental results: finite sets and cardinality

We have an initial implementation for cardinality reasoning, built on top of the imple-

mentation for theory of finite sets in CVC4. We have tested it on simple hand-crafted

benchmarks, and benchmarks derived from [40]. The results are in Table 5.5. Our

initial implementation is able to solve 13 of the 15 benchmarks from [40]. The imple-

101

mentation is a slight variant of the calculus and proof strategy proposed. As future

work, we plan a more detailed analysis of an improved implementation on a broader

set of benchmarks.

Though we have not re-run the algorithms from [39, 40, 56], we report here the

experimental results as stated in the respective papers. As the experiments were run on

different machines, the comparison is only indicative. In [40], the algorithm from [39]

is reported to solve 12 of the 15 benchmarks with a timeout of 100 seconds. In [40], the

algorithm in the paper is reported to solve 11 of the 15 benchmarks with a timeout of

100 seconds. In [56], the algorithm in the paper is reported to solve all 15 benchmarks.

5.2 Local theory extensions

We evaluated our techniques for deciding local theory extensions (see Chapter 3) on

a set of benchmarks generated by the deductive verification tool GRASShopper [26].

The benchmarks encode memory safety and functional correctness properties of pro-

grams that manipulate complex heap-allocated data structures. The programs are writ-

ten in a type-safe imperative language without garbage collection. The tool makes no

simplifying assumptions about these programs like acyclicity of heap structures.

GRASShopper supports mixed specifications in (classical) first-order logic and sep-

aration logic (SL) [52]. The tool reduces the program and specification to verification

conditions that are encoded in a hierarchical combination of (Psi-)local theory exten-

sions. This hierarchy of extensions is organized as follows:

1. Base theory: at the lowest level we have UFLIA, the theory of uninterpreted

functions and linear integer arithmetic, which is directly supported by SMT

102

solvers.

2. GRASS: the first extension layer consists of the theory of graph reachability

and stratified sets. This theory is a disjoint combination of two local theory

extensions: the theory of linked lists with reachability [41] and the theory of

sets over interpreted elements [59].

3. Frame axioms: the second extension layer consists of axioms that encode the

frame rule of separation logic. This theory extension includes arrays as a sub-

theory.

4. Program-specific extensions: The final extension layer consists of a combination

of local extensions that encode properties specific to the program and data struc-

tures under consideration. These include:

• axioms defining memory footprints of SL specifications,

• axioms defining structural constraints on the shape of data structures,

• sorted constraints, and

• axioms defining partial inverses of certain functions, e.g., to express injec-

tivity of functions and to specify the content of data structures.

We refer the interested reader to [46–48] for further details about the encoding.

The programs considered include sorting algorithms, common data structure op-

erations, such as inserting and removing elements, as well as complex operations on

abstract data types. Our selection of data structures consists of singly and doubly-

linked lists, sorted lists, nested linked lists with head pointers, binary search trees,

skew heaps, and a union find data structure. The input programs comprise 108 pro-

cedures with a total of 2000 lines of code, 260 lines of procedure contracts and loop

103

invariants, and 250 lines of data structure specifications (including some duplicate

specifications that could be shared across data structures). The verification of these

specifications are reduced by GRASShopper to 816 SMT queries, each serves as one

benchmark in our experiments. 802 benchmarks are unsatisfiable. The remaining 14

satisfiable benchmarks stem from programs that have bugs in their implementation

or specification. All of these are genuine bugs that users of GRASShopper made while

writing the programs.† We considered several versions of each benchmark, which we

describe in more detail below. Each of these versions is encoded as an SMT-LIB 2

input file.

5.2.1 Experimental setup

All experiments were conducted on the StarExec platform [55] with a CPU time limit

of one hour and a memory limit of 100 GB. We focus on the SMT solvers CVC4 [8]

and Z3 [16]‡ as both support UFLIA and quantifiers via E-matching. This version of

CVC4 is a fork of v1.4 with special support for quantifiers.§

In order to be able to test our approach with both CVC4 and Z3, wherever pos-

sible we transformed the benchmarks to simulate our algorithm. We describe these

transformations in this paragraph. First, the quantified formulas in the benchmarks

were linearized and flattened, and annotated with patterns to simulate Step 1(a) of

our algorithm (this was done by GRASShopper in our experiments, but may also be

handled by an SMT solver aware of local theories). Both CVC4 and Z3 support using

these annotations for controlling instantiations in their E-matching procedures. In or-

†See www.cs.nyu.edu/~kshitij/localtheories/ for the programs and benchmarks used.
‡We used the version of Z3 downloaded from the git master branch at http://z3.codeplex.com

on Jan 17, 2015.
§This version is available at www.github.com/kbansal/CVC4/tree/cav14-lte-draft.

104

www.cs.nyu.edu/~kshitij/localtheories/
http://z3.codeplex.com
www.github.com/kbansal/CVC4/tree/cav14-lte-draft

1

1e2

1e4

1e6

1e8

1e10

1 1e2 1e4 1e6 1e8 1e10

in

st
an

tia
tio

ns
 b

y
C

VC
4,

 b
as

el
in

e
(C

 U
L)

eager instantiation

(a) CVC4 with baseline algorithm

1

1e2

1e4

1e6

1e8

1e10

1 1e2 1e4 1e6 1e8 1e10

in

st
an

tia
tio

ns
 b

y
C

VC
4,

 b
as

el
in

e
(C

 U
LO

)

eager instantiation

(b) CVC4 with optimized algorithm

Figure 5.1: # of eager instantiations vs. E-matching instantiations inside the solver

der to handle Psi-local theories, the additional terms required for completeness were

provided as dummy assertions, so that these appear as ground terms to the solver. In

CVC4, we also made some changes internally so as to treat these assertions specially

and apply certain additional optimizations which we describe later in this section.

5.2.2 Experiment 1

Our first experiment aims at comparing the effectiveness of eager instantiation ver-

sus incremental instantiation up to congruence (as done by E-matching). Figure 5.1

charts the number of eager instantiations versus the number of E-matching instan-

tiations for each query in a logarithmic plot.¶ Points lying on the central line have

an equal number of instantiations in both series while points lying on the lower line

have ten times as many eager instantiations as E-matching instantiations. (The upper

line corresponds to 1
10 .) Most benchmarks require substantially more eager instantia-

¶Figure 5.1 does not include timeouts for CVC4.

105

C UD C UL C ULO Z3 UD Z3 UL Z3 ULO
family # # time # time # time # time # time # time
sl lists 139 127 70 139 383 139 17 138 1955 138 1950 139 68
dl lists 70 66 1717 70 843 70 33 56 11375 56 11358 70 2555
sl nested 63 63 1060 63 307 63 13 52 6999 52 6982 59 1992
sls lists 208 181 6046 204 11230 208 3401 182 20596 182 20354 207 4486
trees 243 229 2121 228 22042 239 7187 183 41208 183 40619 236 27095
soundness 79 76 17 79 1533 79 70 76 7996 76 8000 79 336
sat 14 - - 14 670 14 12 - - 10 3964 14 898
total 816 742 11032 797 37009 812 10732 687 90130 697 93228 804 37430

Table 5.6: Comparison of solvers on uninstantiated benchmarks (time in sec.)

tions. We instrumented GRASShopper to eagerly instantiate all axioms. Subfigure (a)

compares upfront instantiations with a baseline implementation of our E-matching

algorithm. Points along the x-axis required no instantiations in CVC4 to conclude

unsat. We have plotted the above charts up to 1010 instantiations. There were four

outlying benchmarks where upfront instantiations had between 1010 and up to 1014

instances. E-matching had zero instantiations for all four. Subfigure (b) compares

against an optimized version of our algorithm implemented in CVC4. It shows that

incremental solving reduces the number of instantiations significantly, often by sev-

eral orders of magnitude. The details of these optimizations are given later in the

section.

5.2.3 Experiment 2

Next, we did a more thorough comparison on running times and number of bench-

marks solved for uninstantiated benchmarks. These results are in Table 5.6. The

benchmarks are partitioned according to the types of data structures occurring in

the programs from which the benchmarks have been generated. Here, “sl” stands for

singly-linked, “dl” for double-linked, and “sls” for sorted singly-linked. The binary

search tree, skew heap, and union find benchmarks have all been summarized in the

106

“trees” row. The row “soundness” contains unsatisfiable benchmarks that come from

programs with incorrect code or specifications. These programs manipulate various

types of data structures. The actual satisfiable queries that reveal the bugs in these

programs are summarized in the “sat” row.

We simulated our algorithm and ran these experiments on both CVC4 (C) and Z3

obtaining similar improvements with both. We ran each with three configurations:

UD Default. For comparison purposes, we ran the solvers with default options.

CVC4’s default solver uses an E-matching based heuristic instantiation proce-

dure, whereas Z3’s uses both E-matching and model-based quantifier instantia-

tion (MBQI). For both of the solvers, the default procedures are incomplete for

our benchmarks.

UL These columns refer to the E-matching based complete procedure for local theory

extensions (algorithm in Fig. 3.1).‖

ULO Doing instantiations inside the solver instead of upfront, opens the room for

optimizations wherein one tries some instantiations before others, or reduces

the number of instantiations using other heuristics that do not affect complete-

ness. The results in these columns show the effect of all such optimizations.

As noted above, the UL and ULO procedures are both complete, whereas UD is

not. This is also reflected in the “sat” row in Table 5.6. Incomplete Instantiation-

based procedures cannot hope to answer “sat”. A significant improvement can be

seen between the UL and ULO columns. The general thrust of the optimizations

was to avoid blowup of instantiations by doing ground theory checks on a subset of

‖ The configuration C UL had one memory out on a benchmark in the tree family.

107

instantiations. Our intuition is that the theory lemmas learned from these checks

eliminate large parts of the search space before we do further instantiations.

For example, we used a heuristic for Psi-local theories inspired from the observa-

tion that the axioms involving Psi-terms are needed mostly for completeness, and that

we can prove unsatisfiable without instantiating axioms with these terms most of the

time. We tried an approach where the instantiations were staged. First, the instan-

tiations were done according to the algorithm in Fig. 3.1 for locality with respect to

ground terms from the original query. Only when those were saturated, the instan-

tiations for the auxiliary Psi-terms were generated. We found this to be very helpful.

Since this required non-trivial changes inside the solver, we only implemented this

optimization in CVC4; but we think that staging instantiations for Psi-local theories

is a good strategy in general.

A second optimization, again with the idea of cutting instantiations, was adding

assertions in the benchmarks of the form (a = b) ∨ (a 6= b) where a, b are ground

terms. This forces an arbitrary arrangement over the ground terms before the instan-

tiation procedure kicks in. Intuitively, the solver first does checks with many terms

equal to each other (and hence fewer instantiations) eliminating as much of the search

space as possible. Only when equality or disequality is relevant to the reasoning is

the solver forced to instantiate with terms disequal to each other. One may contrast

this with ideas being used successfully in the care-graph-based theory combination

framework in SMT where one needs to try all possible arrangements of equalities

over terms. It has been observed that equality or disequality is sometimes relevant

only for a subset of pairs of terms. Whereas in theory combination this idea is used

to cut down the number of arrangements that need to be considered, we use it to

reduce the number of unnecessary instantiations. We found this really helped CVC4

108

C PL C PLO Z3 PM Z3 PL Z3 PLO
family # # time # time # time # time # time
sl lists 139 139 664 139 20 139 9 139 683 139 29
dl lists 70 70 3352 70 50 70 41 67 12552 70 423
sl nested 63 63 2819 63 427 63 182 56 7068 62 804
sls lists 208 206 14222 207 3086 208 37 203 17245 208 1954
trees 243 232 7185 243 6558 243 663 222 34519 242 8089
soundness 79 78 156 79 49 79 23 79 2781 79 39
sat 14 14 85 14 22 13 21 12 1329 14 109
total 816 802 28484 815 10213 815 976 778 76177 814 11447

Table 5.7: Comparison of solvers on partially instantiated benchmarks (time in sec.)

on many benchmarks.

Another optimization was instantiating special cases of the axioms first by enforc-

ing equalities between variables of the same sort, before doing a full instantiation. We

did this for axioms that yield a particularly large number of instances (instantiations

growing with the fourth power of the number of ground terms). Again, we believe

this could be a good heuristic in general.

5.2.4 Experiment 3

Effective propositional Logic (EPR) is the fragment of first order-logic consisting of

formulas of the shape ∃x∀y.G with G quantifier-free and where none of the univer-

sally quantified variables y appears below a function symbol in G. Theory extensions

that fall into EPR are always local. Our third exploration is to see if we can exploit

dedicated procedures for this fragment when such fragments occur in the benchmarks.

For the EPR fragment, Z3 has a complete decision procedure that uses model-based

quantifier instantiation. We therefore implemented a hybrid approach wherein we

did upfront partial instantiation to the EPR fragment using E-matching with respect

to top-level equalities (as described in our algorithm). The resulting EPR benchmark

109

is then decided using Z3’s MBQI mode. This approach can only be expected to help

where there are EPR-like axioms in the benchmarks, and we did have some which

were heavier on these. We found that on singly linked list and tree benchmarks this

hybrid algorithm significantly outperforms all other solver configurations that we

have tried in our experiments. On the other hand, on nested list benchmarks, which

make more heavy use of purely equational axioms, this technique does not help com-

pared to only using E-matching because the partial instantiation already yields ground

formulas.

The results with our hybrid algorithm are summarized in Column Z3 PM of Ta-

ble 5.7. Since EPR is a special case of local theories, we also tried our E-matching

based algorithm on these benchmarks. We found that the staged instantiation im-

proves performance on these as well. The optimization that help on the uninstanti-

ated benchmarks also work here. These results are summarized in the same table.

Overall, our experiments indicate that there is a lot of potential in the design of

quantifier modules to further improve the performance of SMT solvers, and at the

same time make them complete on more expressive decidable fragments.

110

Chapter 6

Conclusion

Over the last three decades, starting with breakthroughs in practical tools for check-

ing satisfiability of propositional formulas, the role of general-purpose and fully auto-

mated reasoning systems has grown tremendously. SMT solvers have built upon the

success in SAT solving, with efficient, sound and complete procedures for fragments

of first-order logic – maintaining a fine balance between expressiveness and efficiency.

In this thesis, we furthered the scope of SMT solvers by developing decision proce-

dures for additional decidable fragments of first-order logic.

First, we developed a decision procedure for the theory of finite sets and cardi-

nality. We extended a calculus for membership, union, intersection, set difference,

and singleton sets to reason about cardinality. We also discussed optimizations and

practical aspects of adapting the procedure for an SMT solver.

Second, we show how SMT solvers can be used to obtain complete decision pro-

cedures for local theory extensions. We used two SMT solvers to implement this al-

gorithm and conducted an extensive experimental evaluation on benchmarks derived

from verification conditions for heap-manipulating programs.

111

Finally, we discussed new applications that were enabled by these procedures and

discussed future directions.

112

Appendix A

Synthesizing commutavity conditions:

additional data

A.1 Data structure specifications and untruncated out-

put

We list the full experimental results from Chapter 4. For each data-structure, we pro-

vide the abstract data-structure specification used. We also provide the commutativity

conditions synthesized by simple and poke heuristics.

A.1.1 Counter

Counter data structure’s abstract definition

name: counter

state:
- name: contents

type: Int

states_equal:
definition: (= contents_1 contents_2)

113

methods:
- name: increment

args: []
return:

- name: result
type: Bool

requires: |
(>= contents 0)

ensures: |
(and (= contents_new (+ contents 1))

(= result true))
terms:

Int: [contents, 1, (+ contents 1)]
- name: decrement

args: []
return:

- name: result
type: Bool

requires: |
(>= contents 1)

ensures: |
(and (= contents_new (- contents 1))

(= result true))
terms:

Int: [contents, 1, (- contents 1), 0]
- name: reset

args: []
return:

- name: result
type: Bool

requires: |
(>= contents 0)

ensures: |
(and (= contents_new 0)

(= result true))
terms:

Int: [contents, 0]
- name: zero

args: []
return:

- name: result
type: Bool

requires: |
(>= contents 0)

ensures: |
(and (= contents_new contents)

(= result (= contents 0)))
terms:

Int: [contents, 0]

predicates:
- name: "="

type: [Int, Int]

• decrement ./ decrement

Simple:

true

Poke:

114

true

• increment B decrement

Simple:

[1 = contents]

∨ [¬(1 = contents) ∧ ¬(0 = contents)]

Poke:

¬(0 = contents)

• decrement B increment

Simple:

true

Poke:

true

• decrement ./ reset

Simple:

false

Poke:

false

• decrement ./ zero

Simple:

¬(1 = contents)

Poke:

¬(1 = contents)

• increment ./ increment

Simple:

true

Poke:

true

115

• increment ./ reset

Simple:

false

Poke:

false

• increment ./ zero

Simple:

[1 = contents]

∨ [¬(1 = contents) ∧ ¬(0 = contents)]

Poke:

¬(0 = contents)

• reset ./ reset

Simple:

true

Poke:

true

• reset ./ zero

Simple:

¬(1 = contents) ∧ 0 = contents

Poke:

0 = contents

• zero ./ zero

Simple:

true

Poke:

true

116

A.1.2 Counter (lifted, auto-generated)

methods:
- args: []

ensures: "(or (and err err_new)\n (and (not err) (not err_new) (>= contents 0)\n\
\ (and (= contents_new (+ contents 1))\n (= result true))\n)\n (and (not\
\ err) err_new (not (>= contents 0)\n)))"

name: increment
requires: ’true’
return:
- name: result

type: Bool
terms:

Int:
- contents
- 1
- (+ contents 1)

- args: []
ensures: "(or (and err err_new)\n (and (not err) (not err_new) (>= contents 1)\n\

\ (and (= contents_new (- contents 1))\n (= result true))\n)\n (and (not\
\ err) err_new (not (>= contents 1)\n)))"

name: decrement
requires: ’true’
return:
- name: result

type: Bool
terms:

Int:
- contents
- 1
- (- contents 1)
- 0

- args: []
ensures: "(or (and err err_new)\n (and (not err) (not err_new) (>= contents 0)\n\

\ (and (= contents_new 0)\n (= result true))\n)\n (and (not err) err_new\
\ (not (>= contents 0)\n)))"

name: reset
requires: ’true’
return:
- name: result

type: Bool
terms:

Int:
- contents
- 0

- args: []
ensures: "(or (and err err_new)\n (and (not err) (not err_new) (>= contents 0)\n\

\ (and (= contents_new contents)\n (= result (= contents 0)))\n)\n (and\
\ (not err) err_new (not (>= contents 0)\n)))"

name: zero
requires: ’true’
return:
- name: result

type: Bool
terms:

Int:
- contents
- 0

name: counter
predicates:
- name: ’=’

type:

117

- Int
- Int

state:
- name: contents

type: Int
- name: err

type: Bool
states_equal:

definition: ’(or (and err_1 err_2) (and (not err_1) (not err_2)

(= contents_1 contents_2)

))’

A.1.3 Accumulator

Accumulator abstract definition

name: accumulator

state:
- name: contents

type: Int

options:

states_equal:
definition: (= contents_1 contents_2)

methods:
- name: increase

args:
- name: n

type: Int
return:

- name: result
type: Bool

requires: |
true

ensures: |
(and (= contents_new (+ contents n))

(= result true))
terms:

Int: [$1, contents, (+ contents $1)]
- name: read

args: []
return:

- name: result
type: Int

requires: |
true

ensures: |
(and (= contents_new contents)

(= result contents))
terms:

Int: [contents]

118

predicates:
- name: "="

type: [Int, Int]

• increase ./ increase

Simple:

true

Poke:

true

• increase ./ read

Simple:

[x1 = contents ∧ contents + x1 = contents]

∨ [¬(x1 = contents) ∧ contents + x1 = contents]

Poke:

contents + x1 = contents

• read ./ read

Simple:

true

Poke:

true

A.1.4 Set

name: set

preamble: |
(declare-sort E 0)

state:
- name: S

type: (Set E)
- name: size

type: Int

states_equal:
definition: (and (= S_1 S_2) (= size_1 size_2))

methods:

119

- name: add
args:

- name: v
type: E

return:
- name: result

type: Bool
requires: |

true
ensures: |

(ite (member v S)
(and (= S_new S)

(= size_new size)
(not result))

(and (= S_new (union S (singleton v)))
(= size_new (+ size 1))
result))

terms:
E: [$1]
Int: [size, 1, (+ size 1)]
(Set E): [S, (singleton $1), (union S (singleton $1))]

- name: remove
args:

- name: v
type: E

return:
- name: result

type: Bool
requires: |

true
ensures: |

(ite (member v S)
(and (= S_new (setminus S (singleton v)))

(= size_new (- size 1))
result)

(and (= S_new S)
(= size_new size)
(not result)))

terms:
E: [$1]
Int: [size, 1, (- size 1)]
(Set E): [S, (singleton $1), (setminus S (singleton $1))]

- name: contains
args:

- name: v
type: E

return:
- name: result

type: Bool
requires: |

true
ensures: |

(and (= S_new S)
(= size_new size)
(= (member v S) result))

terms:
E: [$1]
Int: [size]
(Set E): [S, (singleton $1), (setminus S (singleton $1))]

- name: getsize
args: []
return:

120

- name: result
type: Int

requires: |
true

ensures: |
(and (= S_new S)

(= size_new size)
(= size result))

terms:
Int: [size]

predicates:
- name: "="

type: [Int, Int]
- name: "="

type: [E, E]
- name: "="

type: [(Set E), (Set E)]
- name: "member"

type: [E, (Set E)]

• add ./ add

Simple:

[y1 = x1 ∧ y1 ∈ S]

∨ [¬(y1 = x1)]

Poke:

[y1 = x1 ∧ y1 ∈ S]

∨ [¬(y1 = x1)]

• add ./ contains

Simple:

[y1 = x1 ∧ y1 ∈ S]

∨ [¬(y1 = x1)]

Poke:

[x1 ∈ S]

∨ [¬(x1 ∈ S) ∧ ¬(y1 = x1)]

• add ./ getsize

Simple:

x1 ∈ S

Poke:

x1 ∈ S

121

• add ./ remove

Simple:

¬(y1 = x1)

Poke:

¬(y1 = x1)

• contains ./ contains

Simple:

true

Poke:

true

• contains ./ getsize

Simple:

true

Poke:

true

• contains ./ remove

Simple:

[y1 = x1 ∧ 1 = size ∧ ¬(y1 ∈ S)]

∨ [y1 = x1 ∧ ¬(1 = size) ∧ ¬(y1 ∈ S)]

∨ [¬(y1 = x1)]

Poke:

[S\{x1} = {y1}]

∨ [¬(S\{x1} = {y1}) ∧ y1 ∈ {x1} ∧ ¬(y1 ∈ S)]

∨ [¬(S\{x1} = {y1}) ∧ ¬(y1 ∈ {x1})]

• getsize ./ getsize

Simple:

true

Poke:

true

122

• getsize ./ remove

Simple:

[1 = size ∧ ¬(y1 ∈ S)]

∨ [¬(1 = size) ∧ ¬(y1 ∈ S)]

Poke:

¬(y1 ∈ S)

• remove ./ remove

Simple:

[1 = size ∧ y1 = x1 ∧ ¬(y1 ∈ S)]

∨ [1 = size ∧ ¬(y1 = x1)]

∨ [¬(1 = size) ∧ y1 = x1 ∧ ¬(y1 ∈ S)]

∨ [¬(1 = size) ∧ ¬(y1 = x1)]

Poke:

[S\{y1} = {x1}]

∨ [¬(S\{y1} = {x1}) ∧ y1 ∈ {x1} ∧ ¬(y1 ∈ S)]

∨ [¬(S\{y1} = {x1}) ∧ ¬(y1 ∈ {x1})]

A.1.5 HashTable

Hash table data structure’s abstract definition

name: HashTable

preamble: |
(declare-sort E 0)
(declare-sort F 0)

state:
- name: keys

type: (Set E)
- name: H

type: (Array E F)
- name: size

type: Int

states_equal:
definition: |

(and (= keys_1 keys_2)
(= H_1 H_2)
(= size_1 size_2))

methods:

123

- name: haskey
args:

- name: k0
type: E

return:
- name: result

type: Bool
requires: |

true
ensures: |

(and (= keys_new keys)
(= H_new H)
(= size_new size)
(= (member k0 keys) result)

)
terms:

Int: [size]
E: [$1]
(Set E): [keys]
(Array E F): [H]

- name: remove
args:

- name: v
type: E

return:
- name: result

type: Bool
requires: |

true
ensures: |

(ite (member v keys)
(and (= keys_new (setminus keys (singleton v)))

(= size_new (- size 1))
(= H_new H)
result)

(and (= keys_new keys)
(= size_new size)
(= H_new H)
(not result)))

terms:
Int: [size, 1, (- size 1)]
E: [$1]
(Set E): [keys, (singleton $1), (setminus keys (singleton $1))]
(Array E F): [H]

- name: put
args:

- name: k0
type: E

- name: v0
type: F

return:
- name: result

type: Bool
requires: |

true
ensures: |

(ite (member k0 keys)
(and (= keys_new keys)

(= size_new size)
(ite (= v0 (select H k0))

(and (not result)
(= H_new H))

124

(and result
(= H_new (store H k0 v0)))))

(and (= keys_new (insert k0 keys))
(= size_new (+ size 1))
result
(= H_new (store H k0 v0))))

terms:
Int: [size, 1, (+ size 1)]
E: [$1]
F: [$2, (select H $1),]
(Set E): [keys, (insert $1 keys)]
(Array E F): [H, (store H $1 $2)]

- name: get
args:

- name: k0
type: E

return:
- name: result

type: F
requires: |

(member k0 keys)
ensures: |

(and (= keys_new keys)
(= H_new H)
(= size_new size)
(= (select H k0) result)
)

terms:
Int: [size]
E: [$1]
F: [(select H $1)]
(Set E): [keys]
(Array E F): [H]

- name: size
args: []
return:

- name: result
type: Int

requires: |
true

ensures: |
(and (= keys_new keys)

(= H_new H)
(= size_new size)
(= size result))

terms:
Int: [size]
(Set E): [keys]
(Array E F): [H]

predicates:
- name: "="

type: [Int, Int]
- name: "="

type: [E, E]
- name: "="

type: [F, F]
- name: "="

type: [(Set E), (Set E)]
- name: "="

type: [(Array E F), (Array E F)]
- name: "member"

125

type: [E, (Set E)]

• get ./ get

Simple:

true

Poke:

true

• get ./ haskey

Simple:

true

Poke:

true

• put B get

Simple:

[x2 = H[y1] ∧ y1 ∈ keys]

∨ [¬(x2 = H[y1]) ∧ ¬(y1 = x1)]

Poke:

[H[x1=x2] = H ∧ y1 ∈ keys]

∨ [¬(H[x1=x2] = H) ∧ ¬(y1 = x1)]

• get B put

Simple:

[H[y1] = y2]

∨ [¬(H[y1] = y2) ∧ ¬(y1 = x1)]

Poke:

[H[y1] = y2]

∨ [¬(H[y1] = y2) ∧ ¬(y1 = x1)]

126

• remove B get

Simple:

true

Poke:

true

• get B remove

Simple:

[1 = size ∧ ¬(y1 = x1)]

∨ [¬(1 = size) ∧ ¬(y1 = x1)]

Poke:

¬(y1 = x1)

• get ./ size

Simple:

true

Poke:

true

• haskey ./ haskey

Simple:

true

Poke:

true

• haskey ./ put

Simple:

[y1 = x1 ∧ y1 ∈ keys]

∨ [¬(y1 = x1)]

Poke:

[y1 ∈ keys]

∨ [¬(y1 ∈ keys) ∧ ¬(y1 = x1)]

127

• haskey ./ remove

Simple:

[y1 = x1 ∧ 1 = size ∧ ¬(y1 ∈ keys)]

∨ [y1 = x1 ∧ ¬(1 = size) ∧ ¬(y1 ∈ keys)]

∨ [¬(y1 = x1)]

Poke:

[x1 ∈ keys ∧ ¬(y1 = x1)]

∨ [¬(x1 ∈ keys)]

• haskey ./ size

Simple:

true

Poke:

true

• put ./ put

Simple:

[x2 = y2 ∧ x2 = H[y1] ∧ y1 ∈ keys]

∨ [x2 = y2 ∧ x2 = H[y1] ∧ ¬(y1 ∈ keys) ∧ ¬(y1 = x1)]

∨ [x2 = y2 ∧ ¬(x2 = H[y1]) ∧ ¬(y1 = x1)]

∨ [¬(x2 = y2) ∧ ¬(y1 = x1)]

Poke:

[H[y1] = y2 ∧ x2 = H[x1] ∧ size + 1 = 1 ∧ y1 ∈ keys]

∨ [H[y1] = y2 ∧ x2 = H[x1] ∧ size + 1 = 1 ∧ ¬(y1 ∈ keys) ∧ ¬(y1 = x1)]

∨ [H[y1] = y2 ∧ x2 = H[x1] ∧ ¬(size + 1 = 1) ∧ x1 ∈ keys]

∨ [H[y1] = y2 ∧ x2 = H[x1] ∧ ¬(size + 1 = 1) ∧ ¬(x1 ∈ keys) ∧ ¬(y1 = x1)]

∨ [H[y1] = y2 ∧ ¬(x2 = H[x1]) ∧ ¬(y1 = x1)]

∨ [¬(H[y1] = y2) ∧ ¬(y1 = x1)]

• put ./ remove

Simple:

¬(y1 = x1)

128

Poke:

¬(y1 = x1)

• put ./ size

Simple:

x1 ∈ keys

Poke:

x1 ∈ keys

• remove ./ remove

Simple:

[1 = size ∧ y1 = x1 ∧ ¬(y1 ∈ keys)]

∨ [1 = size ∧ ¬(y1 = x1)]

∨ [¬(1 = size) ∧ y1 = x1 ∧ ¬(y1 ∈ keys)]

∨ [¬(1 = size) ∧ ¬(y1 = x1)]

Poke:

[keys\{x1} = {y1}]

∨ [¬(keys\{x1} = {y1}) ∧ y1 ∈ {x1} ∧ ¬(y1 ∈ keys)]

∨ [¬(keys\{x1} = {y1}) ∧ ¬(y1 ∈ {x1})]

• remove ./ size

Simple:

[1 = size ∧ ¬(x1 ∈ keys)]

∨ [¬(1 = size) ∧ ¬(x1 ∈ keys)]

Poke:

¬(x1 ∈ keys)

• size ./ size

Simple:

true

Poke:

true

129

A.1.6 Stack

Stack definition

name: stack

preamble: |
(declare-sort E 0)

state:
- name: size

type: Int
- name: top

type: E
- name: nextToTop

type: E
- name: secondToTop

type: E
- name: thirdToTop

type: E

states_equal:
definition:

(and (= size_1 size_2)
(or (= size_1 0)

(and (= size_1 1) (= top_1 top_2))
(and (= top_1 top_2) (= nextToTop_1 nextToTop_2))))

methods:
- name: push

args:
- name: v

type: E
return:

- name: result
type: Bool

requires: |
(>= size 0)

ensures: |
(and (= size_new (+ size 1))

(= top_new v)
(= nextToTop_new top)
(= secondToTop_new nextToTop)
(= thirdToTop_new secondToTop)
(= result true))

terms:
Int: [size, 1, (+ size 1)]
E: [top, nextToTop, secondToTop, thirdToTop, $1]

- name: pop
args: []
return:

- name: result
type: E

requires: |
(>= size 1)

ensures: |
(and (= size_new (- size 1))

(= result top)
(= top_new nextToTop)
(= nextToTop_new secondToTop)
(= secondToTop_new thirdToTop))

130

terms:
Int: [size, 1, (- size 1), 0]
E: [top, nextToTop, secondToTop, thirdToTop]

- name: clear
args: []
return:

- name: result
type: Bool

requires: |
(>= size 0)

ensures: |
(and (= size_new 0)

(= result true))
terms:

Int: [size, 0]
E: [top, nextToTop, secondToTop, thirdToTop]

predicates:
- name: "="

type: [Int, Int]
- name: "="

type: [E, E]

• clear ./ clear

Simple:

true

Poke:

true

• clear ./ pop

Simple:

false

Poke:

false

• clear ./ push

Simple:

false

Poke:

false

• pop ./ pop

Simple:

131

nextToTop = top

Poke:

nextToTop = top

• push B pop

Simple:

[1 = size ∧ nextToTop = top ∧ nextToTop = thirdToTop ∧ nextToTop = x1]

∨ [1 = size ∧ nextToTop = top ∧ ¬(nextToTop = thirdToTop) ∧ nextToTop = x1]

∨ [1 = size ∧ ¬(nextToTop = top) ∧ nextToTop = thirdToTop ∧ nextToTop = secondToTop ∧ top = x1]

∨ [1 = size ∧ ¬(nextToTop = top) ∧ nextToTop = thirdToTop ∧ ¬(nextToTop = secondToTop) ∧ top = x1]

∨ [1 = size ∧ ¬(nextToTop = top) ∧ ¬(nextToTop = thirdToTop) ∧ nextToTop = secondToTop ∧ top = x1]

∨ [1 = size ∧ ¬(nextToTop = top) ∧ ¬(nextToTop = thirdToTop) ∧ ¬(nextToTop = secondToTop) ∧ top =

x1]

∨ [¬(1 = size) ∧ ¬(0 = size) ∧ nextToTop = thirdToTop ∧ nextToTop = secondToTop ∧ top = x1]

∨ [¬(1 = size) ∧ ¬(0 = size) ∧ nextToTop = thirdToTop ∧ ¬(nextToTop = secondToTop) ∧ top = x1]

∨ [¬(1 = size) ∧ ¬(0 = size) ∧ ¬(nextToTop = thirdToTop) ∧ nextToTop = secondToTop ∧ top = x1]

∨ [¬(1 = size) ∧ ¬(0 = size) ∧ ¬(nextToTop = thirdToTop) ∧ ¬(nextToTop = secondToTop) ∧ top = x1]

Poke:

¬(0 = size) ∧ top = x1

• pop B push

Simple:

[nextToTop = y1 ∧ nextToTop = top]

∨ [¬(nextToTop = y1) ∧ nextToTop = thirdToTop ∧ nextToTop = secondToTop ∧ y1 = top]

∨ [¬(nextToTop = y1) ∧ nextToTop = thirdToTop ∧ ¬(nextToTop = secondToTop) ∧ y1 = top]

∨ [¬(nextToTop = y1) ∧ ¬(nextToTop = thirdToTop) ∧ nextToTop = secondToTop ∧ y1 = top]

∨ [¬(nextToTop = y1) ∧ ¬(nextToTop = thirdToTop) ∧ ¬(nextToTop = secondToTop) ∧ y1 = top]

Poke:

y1 = top

132

• push ./ push

Simple:

[thirdToTop = y1 ∧ thirdToTop = x1]

∨ [¬(thirdToTop = y1) ∧ y1 = x1]

Poke:

y1 = x1

133

Bibliography

[1] Francesco Alberti, Silvio Ghilardi, and Natasha Sharygina. Decision procedures

for flat array properties. In TACAS, volume 8413 of LNCS, pages 15–30. Springer,

2014.

[2] Farhana Aleen and Nathan Clark. Commutativity analysis for software paral-

lelization: letting program transformations see the big picture. In Proceedings

of the 14th international conference on Architectural support for programming lan-

guages and operating systems (ASPLOS-XII), pages 241–252. ACM, 2009.

[3] Franz Baader and Tobias Nipkow. Term rewriting and all that. Cambridge Uni-

versity Press, 1998.

[4] Kshitij Bansal, Clark Barrett, Andrew Reynolds, and Cesare Tinelli. Decision

procedure for finite sets and cardinality in SMT (under preparation).

[5] Kshitij Bansal, Eric Koskinen, and Omer Trip. Commutativity condition refine-

ment (under submission).

[6] Kshitij Bansal, Andrew Reynolds, Tim King, Clark Barrett, and Thomas Wies.

Deciding local theory extensions via e-matching. In Proceedings of the 27th Inter-

national Conference on Computer Aided Verification (CAV), 2015. San Francisco,

USA.

134

[7] Mike Barnett, K. Rustan M. Leino, and Wolfram Schulte. The Spec# program-

ming system: an overview. In Proceedings of the 2004 International Conference on

Construction and Analysis of Safe, Secure, and Interoperable Smart Devices, CAS-

SIS’04, pages 49–69, 2005.

[8] Clark Barrett, Christopher L. Conway, Morgan Deters, Liana Hadarean, Dejan

Jovanovic, Tim King, Andrew Reynolds, and Cesare Tinelli. Cvc4. In CAV,

pages 171–177, 2011.

[9] Clark Barrett, Christopher L. Conway, Morgan Deters, Liana Hadarean, Dejan

Jovanović, Tim King, Andrew Reynolds, and Cesare Tinelli. CVC4. In Ganesh

Gopalakrishnan and Shaz Qadeer, editors, Proceedings of the 23rd International

Conference on Computer Aided Verification (CAV ’11), volume 6806, pages 171–

177. Springer, July 2011.

[10] David A. Basin and Harald Ganzinger. Complexity analysis based on ordered

resolution. In Proceedings, 11th Annual IEEE Symposium on Logic in Computer

Science, New Brunswick, New Jersey, USA, July 27-30, 1996, pages 456–465. IEEE,

1996.

[11] Ahmed Bouajjani, Cezara Dragoi, Constantin Enea, and Mihaela Sighireanu. Ac-

curate invariant checking for programs manipulating lists and arrays with infinite

data. In ATVA, volume 7561 of LNCS, pages 167–182. Springer, 2012.

[12] Aaron R. Bradley, Zohar Manna, and Henny B. Sipma. What’s decidable about

arrays? In VMCAI, volume 3855 of LNCS, pages 427–442. Springer, 2006.

135

[13] Angelo Brillout, Daniel Kroening, Philipp Rümmer, and Thomas Wahl. An

interpolating sequent calculus for quantifier-free presburger arithmetic. J. Autom.

Reasoning, 47(4):341–367, 2011.

[14] Austin T. Clements, M. Frans Kaashoek, Nickolai Zeldovich, Robert Tappan

Morris, and Eddie Kohler. The scalable commutativity rule: Designing scalable

software for multicore processors. ACM Trans. Comput. Syst., 32(4):10, 2015.

[15] Leonardo de Moura and Nikolaj Bjørner. Efficient E-Matching for SMT solvers.

In Automated Deduction - CADE-21, 21st International Conference on Automated

Deduction, Bremen, Germany, July 17-20, 2007, Proceedings, volume 4603 of Lec-

ture Notes in Computer Science, pages 183–198. Springer, 2007.

[16] Leonardo de Moura and Nikolaj Bjørner. Z3: An efficient SMT solver. In

TACAS, pages 337–340, 2008.

[17] Leonardo Mendonça de Moura and Grant Olney Passmore. The strategy chal-

lenge in SMT solving. In Automated Reasoning and Mathematics - Essays in Mem-

ory of William W. McCune, pages 15–44, 2013.

[18] Dimitar Dimitrov, Veselin Raychev, Martin T. Vechev, and Eric Koskinen. Com-

mutativity race detection. In Michael F. P. O’Boyle and Keshav Pingali, editors,

ACM SIGPLAN Conference on Programming Language Design and Implementa-

tion, PLDI ’14, Edinburgh, United Kingdom - June 09 - 11, 2014, page 33. ACM,

2014.

[19] Claire Dross, Sylvain Conchon, Johannes Kanig, and Andrei Paskevich. Rea-

soning with triggers. In Pascal Fontaine and Amit Goel, editors, SMT 2012,

volume 20 of EPiC Series, pages 22–31. EasyChair, 2013.

136

[20] George W. Ernst and William F. Ogden. Specification of abstract data types in

modula. ACM Trans. Program. Lang. Syst., 2(4):522–543, October 1980.

[21] L. Flon and J. Misra. A unified approach to the specification and verification

of abstract data types. In Proc. Specifications of Reliable Software Conf., IEEE

Computer Society, 1979.

[22] H. Ganzinger. Relating semantic and proof-theoretic concepts for polynomial

time decidability of uniform word problems. In Logic in Computer Science, 2001.

Proceedings. 16th Annual IEEE Symposium on, pages 81–90, 2001.

[23] Yeting Ge, Clark Barrett, and Cesare Tinelli. Solving quantified verification con-

ditions using satisfiability modulo theories. Annals of Mathematics and Artificial

Intelligence, 55(1-2):101–122, February 2009.

[24] Yeting Ge and Leonardo Moura. Complete instantiation for quantified formulas

in satisfiabiliby modulo theories. In Proceedings of the 21st International Con-

ference on Computer Aided Verification, CAV ’09, pages 306–320, Berlin, Heidel-

berg, 2009. Springer-Verlag.

[25] Robert Givan and David A. McAllester. New results on local inference relations.

In KR, pages 403–412. Morgan Kaufmann, 1992.

[26] GRASShopper tool web page. http://cs.nyu.edu/wies/software/

grasshopper. Accessed: Feb 2015.

[27] Maurice Herlihy and Eric Koskinen. Transactional boosting: A methodology

for highly concurrent transactional objects. In Proceedings of the 13th ACM SIG-

PLAN symposium on Principles and practice of parallel programming (PPoPP’08),

2008.

137

http://cs.nyu.edu/wies/software/grasshopper
http://cs.nyu.edu/wies/software/grasshopper

[28] David Hilbert and Wilhelm Ackermann. Grundzügeder theoretischen Logik (Prin-

ciples of Mathematical Logic), chapter 13, page 112. Springer-Verlag, 1950.

[29] C. A. R. Hoare. Software pioneers. In Manfred Broy and Ernst Denert, editors,

Software Pioneers, chapter Proof of Correctness of Data Representations, pages

385–396. Springer-Verlag New York, Inc., New York, NY, USA, 2002.

[30] Matthias Horbach and Viorica Sofronie-Stokkermans. Obtaining finite local the-

ory axiomatizations via saturation. In FroCoS, volume 8152 of LNCS, pages

198–213. Springer, 2013.

[31] Carsten Ihlemann, Swen Jacobs, and Viorica Sofronie-Stokkermans. On local

reasoning in verification. In TACAS, pages 265–281, 2008.

[32] Carsten Ihlemann and Viorica Sofronie-Stokkermans. System description: H-

pilot. In CADE, volume 5663 of LNCS, pages 131–139. Springer, 2009.

[33] Shachar Itzhaky, Anindya Banerjee, Neil Immerman, Ori Lahav, Aleksandar

Nanevski, and Mooly Sagiv. Modular reasoning about heap paths via effectively

propositional formulas. In POPL, pages 385–396. ACM, 2014.

[34] Swen Jacobs. Incremental instance generation in local reasoning. In Proceedings

of the 21st International Conference on Computer Aided Verification, CAV ’09,

pages 368–382, Berlin, Heidelberg, 2009. Springer-Verlag.

[35] Deokhwan Kim and Martin C. Rinard. Verification of semantic commutativity

conditions and inverse operations on linked data structures. In Proceedings of

the 32nd ACM SIGPLAN Conference on Programming Language Design and Im-

plementation, PLDI 2011, pages 528–541. ACM, 2011.

138

[36] Eric Koskinen and Matthew J. Parkinson. The push/pull model of transactions.

In ACM SIGPLAN Conference on Programming Language Design and Implemen-

tation, PLDI ’15, Portland, OR, USA, June, 2015, 2015.

[37] Eric Koskinen, Matthew J. Parkinson, and Maurice Herlihy. Coarse-grained

transactions. In Manuel V. Hermenegildo and Jens Palsberg, editors, Proceed-

ings of the 37th ACM SIGPLAN-SIGACT Symposium on Principles of Programming

Languages, POPL 2010, pages 19–30. ACM, 2010.

[38] Milind Kulkarni, Donald Nguyen, Dimitrios Prountzos, Xin Sui, and Keshav

Pingali. Exploiting the commutativity lattice. In Proceedings of the 32nd ACM

SIGPLAN Conference on Programming Language Design and Implementation,

PLDI 2011, pages 542–555. ACM, 2011.

[39] Viktor Kuncak, HuuHai Nguyen, and Martin Rinard. Deciding boolean alge-

bra with presburger arithmetic. Journal of Automated Reasoning, 36(3):213–239,

2006.

[40] Viktor Kuncak and Martin Rinard. Towards efficient satisfiability checking for

Boolean Algebra with Presburger Arithmetic. In Conference on Automateded

Deduction (CADE-21), volume 4603 of LNCS, 2007.

[41] Shuvendu K. Lahiri and Shaz Qadeer. Back to the future: revisiting precise

program verification using SMT solvers. In POPL, pages 171–182, 2008.

[42] K. Rustan M. Leino. Specifying and verifying programs in spec#. In Proceedings

of the 6th International Perspectives of Systems Informatics, Andrei Ershov Memorial

Conference, PSI 2006, page 20, 2006.

139

[43] Bertrand Meyer. Applying "design by contract". IEEE Computer, 25(10):40–51,

1992.

[44] Charles Gregory Nelson. Techniques for Program Verification. PhD thesis, Stan-

ford University, Stanford, CA, USA, 1980. AAI8011683.

[45] Yang Ni, Vijay Menon, Ali-Reza Adl-Tabatabai, Antony L. Hosking, Richard L.

Hudson, J. Eliot B. Moss, Bratin Saha, and Tatiana Shpeisman. Open nesting

in software transactional memory. In Proceedings of the 12th ACM SIGPLAN

Symposium on Principles and Practice of Parallel Programming, PPOPP 2007, pages

68–78. ACM, 2007.

[46] Ruzica Piskac, Thomas Wies, and Damien Zufferey. Automating Separation

Logic Using SMT. In CAV, volume 8044 of LNCS, pages 773–789. Springer,

2013.

[47] Ruzica Piskac, Thomas Wies, and Damien Zufferey. Automating separation logic

with trees and data. In CAV, volume 3855 of LNCS, pages 711–728. Springer,

2014.

[48] Ruzica Piskac, Thomas Wies, and Damien Zufferey. GRASShopper: Complete

Heap Verification with Mixed Specifications. In TACAS. Springer, 2014.

[49] Zvonimir Rakamaric, Jesse D. Bingham, and Alan J. Hu. An inference-rule-

based decision procedure for verification of heap-manipulating programs with

mutable data and cyclic data structures. In VMCAI, volume 4349 of LNCS, pages

106–121. Springer, 2007.

[50] Andrew Reynolds, Cesare Tinelli, Amit Goel, Sava Krstić, Morgan Deters, and

Clark Barrett. Quantifier instantiation techniques for finite model finding in

140

SMT. In M. P. Bonacina, editor, Proceedings of the 24th International Conference

on Automated Deduction (Lake Placid, NY, USA), volume 7898 of Lecture Notes in

Computer Science, pages 377–391. Springer, 2013.

[51] Andrew Reynolds, Cesare Tinelli, and Leonardo De Moura. Finding conflicting

instances of quantified formulas in SMT. In Formal Methods in Computer-Aided

Design (FMCAD), 2014.

[52] John C. Reynolds. Separation logic: a logic for shared mutable data structures.

In LICS, pages 55–74, 2002.

[53] Martin C. Rinard and Pedro C. Diniz. Commutativity analysis: A new anal-

ysis technique for parallelizing compilers. ACM Transactions on Programming

Languages and Systems (TOPLAS), 19(6):942–991, November 1997.

[54] Viorica Sofronie-Stokkermans. Hierarchic reasoning in local theory extensions.

In CADE-20, volume 3632 of LNCS, pages 219–234. Springer, 2005.

[55] Aaron Stump, Geoff Sutcliffe, and Cesare Tinelli. StarExec: a Cross-Community

Infrastructure for Logic Solving. In IJCAR, pages 367–373, 2014.

[56] Philippe Suter, Robin Steiger, and Viktor Kuncak. Sets with cardinality con-

straints in satisfiability modulo theories. In Verification, Model Checking, and

Abstract Interpretation (VMCAI), 2011.

[57] Calogero G. Zarba. Combining multisets with integers. In CADE-18, 2002.

[58] Calogero G. Zarba. Combining sets with integers. In Frontiers of Combining

Systems, 4th International Workshop, FroCoS 2002, pages 103–116, 2002.

141

[59] Calogero G. Zarba. Combining sets with elements. In Verification: Theory and

Practice, Essays Dedicated to Zohar Manna on the Occasion of His 64th Birthday,

volume 2772 of LNCS, pages 762–782. Springer, 2003.

142

	Acknowledgements
	Abstract
	List of Figures
	List of Tables
	Introduction
	First-order logic
	Syntax
	Semantics

	Satisfiability problem
	Satisfiability modulo theories
	This thesis

	Theory of finite sets and cardinality
	Preliminaries
	Language
	Tableau
	Graphs
	Notational convention

	Calculus
	Set reasoning rules
	Cardinality of sets
	Cardinality and membership interaction

	Correctness
	Completeness
	Soundness
	Termination

	Related work
	Conclusion

	Local theory extensions
	Background
	Example
	Semantic characterizations

	Formal definition
	Theory extensions
	Local theories and satisfiability problem

	Algorithm
	Correctness
	Psi-local theories

	Conclusion
	Bibliographical note

	An application: synthesizing commutavity conditions
	Problem
	Overview
	Iterative refinement algorithm
	Validity query
	System overview

	Evaluation
	Encoding the transition system
	Predicate generation (PGen)
	Ranking and picking predicates (Choose)
	Validation

	Conclusion

	Implementation and experiments
	Theory of finite sets with cardinality
	Proof strategy
	Data structures
	Experimental results: finite sets
	Experimental results: finite sets and cardinality

	Local theory extensions
	Experimental setup
	Experiment 1
	Experiment 2
	Experiment 3

	Conclusion
	Synthesizing commutavity conditions: additional data
	Data structure specifications and untruncated output
	Counter
	Counter (lifted, auto-generated)
	Accumulator
	Set
	HashTable
	Stack

	Bibliography

