
Factor Graphs for Relational Regression

by

Sumit Prakash Chopra

A dissertation submitted in partial fulfillment

of the requirements for the degree of

Doctor of Philosophy

Department of Computer Science

New York University

January 2009

Yann LeCun

c© Sumit Prakash Chopra

All Rights Reserved, 2009

DEDICATION

To my father Mr. Lakshmi Naraian Chopra, and mother Mrs. Shashi Kanta Chopra. This thesis

would not have been possible without them.

My mother is one person who has sacrificed the most during the past 5 years, being alone

in India. She has always selflessly supported me and encouraged me in whatever I intended to

endeavor. She always managed to provide me with the best possible resources, even if at times

it involved budgeting herself.

My father, my best friend, my mentor, and my inspiration. He was always there to guide me

and encourage me at every step of this journey. Whatever I am today is only because of him. He

would have been the happiest person on this earth to see the first page of this dissertation. I miss

you dad.

iii

ACKNOWLEDGMENTS

It is hard to express in words how thankful I am to my advisor Prof. Yann LeCun, whose guid-

ance and support has made this journey truly magnificent. He has not only been my advisor but

also a friend who has taught me so many things beyond research. I will never forget the discus-

sions we had while at Disney Land in Los Angeles, and over countless lunch/dinner meetings. I

would also like to especially thank Prof. Foster Provost whose diligent comments and sugges-

tions have helped in improving my dissertation in particular and outlook for research in general.

He too has been a genuine source of inspiration and guidance relating to research and beyond.

There are so many people whose support and friendship I have enjoyed during the course of

my Ph.D. In particular I would like to sincerely thank Raia Hadsell, and Trivikaraman Thampy.

Raia, who was my office mate for 5 years, and co-author of a number of papers has also been a

great friend. I have learnt a lot from her during our numerous splendid discussions. “Thampy is

Thampy”. A true friend who has taught me so many things in the short duration since I’ve known

him. He has always been beside me during the highs and the lows for which I’m very grateful. I

would like to acknowledge my friends Shuchi Pandya, Kranthi Gade, Prashant Puniya, and Mo-

hit Gupta for their support, and encouragement, and making this journey immensely pleasurable.

I would also like to thank members of CBLL and MRL for their support and friendship.

One person without whom this thesis would not have been a possibility is Dr. Neelima

Gupta. She is the person who introduced me to research and has always gone out of the way to

support me, guide me, and inspire me to achieve my goals. I cannot thank her enough for all the

sacrifices she made, such as ignoring her family, to help me when I needed it.

Finally I would like to thank my extraordinary parents for their relentless support and en-

couragement in all aspects of life, and making me a person who I am today.

iv

ABSTRACT

Traditional methods for supervised learning treat the input data as a set of independent and iden-

tically distributed points in a high-dimensional space. These methods completely ignore the rich

underlying relational structure that might be inherent in many important problems. For instance,

the data samples may be related to each other in ways such that the unknown variables associated

with any sample not only depends on its individual attributes, but also depends on the variables

associated with related samples. One regression problem of this nature, whose importance is

emphasized by the present economic crises, is understanding real estate prices. The price of a

house clearly depends on its individual attributes, such as, the number of bedrooms. However,

the price also depends on the neighborhood in which the house lies and on the time period in

which it was sold. This effect of neighborhood and time on the price is not directly measurable.

It is merely reflected in the prices of other houses in the vicinity that were sold around the same

time period. Uncovering and using these spatio-temporal dependencies can certainly help better

understand house prices, while at the same time improving prediction accuracy.

The models used to achieve this task fall in the class of Statistical Relational Learning. The

underlying probabilistic graphical model takes as input a single instance of the entire collection

of samples along with their relationship structure. The dependencies among samples is learnt

with the help of parameter sharing and collective inference. The drawback of most such mod-

els proposed so far is that they cater only to classification problems. To this end, we propose

a relational factor graph framework for doing regression in relational data. A single factor

graph is used to capture, one, dependencies among individual variables of data points, and two,

dependencies among variables associated with multiple data points. The proposed models are

capable of capturing hidden inter-sample dependencies via latent variables. They also allow for

v

log-likelihood functions that are non-linear in parameter space thereby allowing for considerably

more complex architectures. Efficient inference and learning algorithms are proposed.

The models are applied to predicting the prices of real estate properties. A by-product of it is

a house price index. The relational aspect of the model accounts for the hidden spatio-temporal

influences on the price of every house. The experiments show that one can achieve considerably

superior performance by identifying and using the underlying spatio-temporal structure associ-

ated with the problem. To the best of our knowledge this is the first work in the direction of

relational regression, especially in the frame-based class of statistical relational learning models.

Furthermore, this is also the first work in constructing house price indices by simultaneously

accounting for the spatio-temporal effects on house prices using large-scale industry standard

data set.

vi

TABLE OF CONTENTS

Dedication ii

Acknowledgments iii

Abstract iv

List of Figures x

List of Tables xiv

Introduction 1

0.1 Statistical Relational Learning . 3

0.1.1 Previous Work in Statistical Relational Learning 4

0.2 Relational Regression . 7

0.3 Real Estate Price Prediction . 8

0.3.1 Background . 8

0.3.2 A Relational Regression Problem . 11

0.3.3 Previous Work . 12

0.4 Contribution and Outline . 15

1 Energy Based Models 18

1.1 Inference in Energy Based Models . 18

1.1.1 Examples of Energy Based Architectures 22

1.2 Learning in Energy Based Models . 24

1.2.1 Designing a Loss Functional . 25

vii

1.2.2 Examples of Loss Functions . 27

1.2.3 Example Architectures Revisited . 32

1.3 Energy Based Models and Probabilistic Models 34

1.4 Latent Variable Architectures . 40

1.4.1 An Example of Latent Variable Architecture 42

1.5 Summary . 44

2 Factor Graphs for Energy Based Models 46

2.1 Factor Graphs . 47

2.1.1 Factor Graph Examples . 49

2.2 Efficient Inference in Factor Graphs . 51

2.2.1 The logsumexp-sum Algorithm . 54

2.2.2 Other Algebras . 57

2.3 General Inference in Factor Graph Models . 63

2.4 Learning in Factor Graphs . 64

3 Factor Graphs for Relational Regression 67

3.1 Relational Factor Graphs for Regression . 71

3.2 Relational Factor Graph for House Price Prediction 72

3.3 Efficient Inference in Relational Factor Graphs 75

3.4 Efficient Training of a Relational Factor Graph 79

4 Spatial Models for House Price Prediction 82

4.1 Dataset . 82

4.1.1 The Full Deeds Tape . 83

4.1.2 The Tax-Roll Tape . 84

viii

4.1.3 Other Neighborhood Fields: Census Tracts and School District 85

4.1.4 Data Subset Used for Spatial Model 86

4.2 Factor Graphs for House Price Prediction . 88

4.2.1 Learning . 93

4.2.2 Inference . 96

4.3 Experiments . 96

4.3.1 Non-Relational Models . 97

4.3.2 Relational Factor Graph . 99

4.4 Results and Discussion . 100

4.4.1 The Desirability Maps . 100

5 Spatio-Temporal Models for House Price Index Construction 103

5.1 Dataset . 105

5.2 Spatio-Temporal Latent Manifold Index Model 108

5.2.1 The Spatio-Temporal Factor Graph 110

5.2.2 The Learning Algorithm . 118

5.2.3 The Testing Algorithm . 123

5.3 Experiments . 124

5.3.1 Repeat Sales indices . 125

5.3.2 Spatio-Temporal Model . 127

5.4 Results and Discussion . 128

6 More Results on Energy Based Models 136

6.1 Sufficient Conditions for Good Loss Functions 136

6.1.1 Conditions on the Energy . 137

6.1.2 Sufficient Conditions on the Loss Functional 137

ix

6.1.3 Which Loss Functions are “Good” or “Bad” 140

Conclusion 148

Bibliography 148

x

LIST OF FIGURES

1.1 A model measures the compatibility between observed variables X and variables to be

predicted Y using an energy function E(Y, X). For example, X could be the pixels of

an image, and Y a discrete label describing the object in the image. Given X , the model

produces the answer Y that minimizes the energy E. 20

1.2 Simple learning models viewed as EBMs: (a) a standard regressor: The energy is the

discrepancy between the output of the regression function GW (X) and the answer Y .

The best inference is simply Y ∗ = GW (X); (b) an implicit regression architecture:

X and Y are passed through two functions G1W1
and G2W2

. This architecture allows

multiple values of Y to have low energies for a given X 22

1.3 How training affects the energies of the possible answers in the discrete case: the energy

of the correct answer is decreased, and the energies of incorrect answers are increased,

particularly if they are lower than that of the correct answer. 26

1.4 The effect of training on the energy surface as a function of the answer Y in the con-

tinuous case. After training, the energy of the correct answer Y i is lower than that of

incorrect answers. 27

1.5 The hinge loss (left) penalize E(W,Y i, Xi)−E(W, Ȳ i, Xi) linearly. The square-square

loss (right) separately penalizes large values of E(W,Y i, Xi) (solid line) and small

values of E(W, Ȳ i, Xi) (dashed line) quadratically. 29

xi

1.6 (a): Architecture of an energy-based face detector. Given an image, it outputs a small

value when the image is filled with a human face, and a high value equal to the threshold

T when there is no face in the image. (b): Architecture of an energy-based face detector

that simultaneously locates and detects a face in an input image by using the location of

the face as a latent variable. 43

2.1 Factor graph representing the factorization E(x1, x2, x3, x4, x5) = Ea(x1)+Eb(x2)+

Ec(x1, x2, x3) + Ed(x3, x4) + Ee(x3, x5). 48

2.2 The factor graph of figure 2.1 drawn in the form of a tree with arrows indicating the flow

of messages. The node corresponding to the variable x1 is chosen as the arbitrary root

node. 54

2.3 Figure showing the messages passed between various nodes in the factor graph during

the logsumexp-sum algorithm. 56

2.4 Each possible configuration of z and y can be represented by a path in a trellis. Here

z1, z2, y1 are binary variables and y2 is a ternary variable. 59

3.1 The factor graph used for the problem of house price prediction, showing the connec-

tions between three samples. The factors Ei
xyz capture the dependencies between the

features of individual samples and their answer variable Y i, as well as the dependence

on local latent variables Di. The factors Ei
zz captures the dependencies between the

hidden variables of multiple samples. If the sample i is related to sample j, then there

is a link from the variable Zj to the factor Ei
zz . 73

3.2 The augmented factor graph with factors corresponding to the test sample X0 used for

inference of Y 0. 76

xii

3.3 (a) Figure showing the connections between the two factors associated with every sam-

ple i. ((b) Top), However, when the energy of factors Ei
zz and Ei

xyz is quadratic in Di,

the factor Ei
zz can be collapsed into the the factor Ei

xyz . In such a situation finding the

minimum-energy value of ZN i can be performed without explicitly computing the opti-

mal value of Di. This is done by simply replacing Di by H(ZN i) in the factor Ei
xyz ,

and back-propagating the gradients through the function G and H 79

4.1 The architecture of the factor associated with each sample. It consists of two trainable

components: the parametric function GW and the non-parametric function H 92

4.2 The learnt hidden “desirability” manifold over the Los Angeles county area. Each point

in the map correspond to a unique test sample and is color coded according to the

“desirability” of its location. The red color correspond to high desirability and the blue

color correspond to low desirability. 102

5.1 The relational factor graph used for constructing house price indices using a spatio-

temporal latent “normalized” price surface. 113

5.2 The reduced factor graph used for constructing house price indices using a latent “nor-

malized” price manifold over space and time. 118

5.3 The architecture of each factor in the factor graph of figure 5.2. It consists of two

trainable components: the set of parameters C and the non-parametric function H . . . 119

5.4 Plot showing the pattern of the Case-Shiller index and our Spatio-Temporal index. Other

than in the first 5 years, there is very little difference between the two indices. 129

6.1 Figure showing the various regions in the plane of the two energies EC and EI . EC

are the (correct answer) energies associated with (Xi, Y i), and EI are the (incorrect

answer) energies associated with (Xi, Ȳ i). 138

xiii

6.2 The architecture of a system where two RBF units with centers U1 and U2 are placed

on top of the machine GW , to produce distances d1 and d2. 142

6.3 (a): When using the RBF architecture with fixed and distinct RBF centers, only the

shaded region of the (EC , EI) plane is allowed. The non-shaded region is unattainable

because the energies of the two outputs cannot be small at the same time. The minimum

of the energy loss is at the intersection of the shaded region and vertical axis. (b): The

3-dimensional plot of the energy loss when using the RBF architecture with fixed and

distinct centers. Lighter shades indicate higher loss values and darker shades indicate

lower values. 143

6.4 The square-square loss in the space of energies EC and EI). The value of the loss

monotonically decreases as we move from HP2 into HP1, indicating that it satisfies

condition 6.3. 144

6.5 Figure showing the direction of gradient of the negative log-likelihood loss in the feasi-

ble region R in the space defined by the two energies EC and EI 145

xiv

LIST OF TABLES

4.1 Prediction accuracies of various algorithms on the test set. 101

5.1 The overall prediction errors for the Relational Factor graph and Case-Shiller model.

The errors are segmented according to the time periods. ARF Err: Absolute Relative

Forecasting percentage error, Med Err (Ab): Absolute Median percentage error, and

Med Err(Ac): Actual Median percentage error. 130

5.2 Error patterns for Case-Shiller and Relational Factor Graph model segmented with re-

spect to time between sales. ARF Err: Absolute Relative Forecasting percentage error,

Med Err (Ab): Absolute Median percentage error, and Med Err(Ac): Actual Median

percentage error. 131

5.3 Error patterns segmented according to the initial price of houses. ARF Err: Absolute

Relative Forecasting percentage error, Med Err (Ab): Absolute Median percentage er-

ror, and Med Err(Ac): Actual Median percentage error. 133

5.4 Error patterns segmented with respect to geography. ARF Err: Absolute Relative Fore-

casting percentage error, Med Err (Ab): Absolute Median percentage error, and Med

Err(Ac): Actual Median percentage error. 135

6.1 A list of loss functions, together with the margin which allows them to satisfy condi-

tion 6.3. A margin > 0 indicates that the loss satisfies the condition for any strictly

positive margin, and “none” indicates that the loss does not satisfy the condition. . . . 140

xv

INTRODUCTION

A majority of supervised learning algorithms assume that the input data is represented by a set

of points lying in a high-dimensional space. In addition they assume that these data points are

not related to each other in any way. In other words, the assumption that the data points are In-

dependently and Identically Distributed (I.I.D) is inherent in these algorithms. The fundamental

principle behind the working of these algorithms is to construct a high-level representation of

the attributes of data points (called features) and use these to solve the problem using standard

tools like neural networks, generalized linear models, or decision trees. These features could

either be hand-crafted based on the designers prior knowledge of the problem, or they could

be learnt. However, the bottom line is that these algorithms focus primarily on the individual

attribute-value representation. While such an approach is extremely useful in developing gen-

eral algorithms and analysis, and solving isolated tasks, such as, detecting a car in an image, this

approach completely ignores the rich contextual information and complex underlying structure

that could be inherent in the problem. Exploiting this contextual information and structure is

essential to moving beyond answering simple “yes/no” questions, pertaining to standard classi-

fication or detection, and solving more general and complex problems. For instance, in addition

to knowing whether there is a car in an image, a more interesting task would be to know that the

car is a ford sedan parked on a tree lined street in a New Jersey suburb: Scene Analysis.

Indeed, the importance of contextual information has been well acknowledged in the fields

of human and machine vision. When a human observes a scene, or studies a photograph, he/she

usually has at its disposal a wealth of information that is not captured by the image alone. Like-

wise in the domain of machine vision, while detecting a car in an image it is beneficial to use the

knowledge that the car is usually parked on the road and sky is always above the ground. Cap-

1

turing and exploiting these relationships among different objects (the context) not only helps in

detecting whether there’s a car in the image, it also provides some certainty about other objects

present in the image, and hence help solve the problem of scene analysis.

Contextual information is equally essential for reasoning in other domains as well. For

example, the box office revenue of a movie, while relying on its unique individual features, will

also depend on external factors such as what other movies are currently running in theaters,

and how did other movies by the same actor/director combination fared in the past. Likewise,

consider the problem of labeling a web-page. Web pages that are linked to each other are more

likely to be on the same topic. Thus if we know the label of a particular web-page and its link

structure we can say a lot about the labels of the web-pages that link to it and the pages that it

links to. In other words, in these problems the data samples interact with one another in highly

complex ways to influence the values of unknown variables associated with them. In these

scenarios, the notion of context is abstracted through these complex interdependencies among

different data samples exhibiting a rich logical structure. Identifying and exploiting this logical

structure is essential to solving complex interesting tasks.

More generally, in many problems the values of unknown variables associated with each

data point not only depends on the features specific to that data point, but also on the features

and variables associated with data points that are related to it. In such problems the standard

I.I.D assumption over the samples does not hold. Furthermore, these dependencies could either

be given as part of the training data (for example the link structure of the web-pages and its

type), or it could be hidden in which case it should be inferred from the data. We say that the

data possess an inherent relational structure in such problems. Problems of this nature, and the

corresponding algorithms that deal with it fall in the domain of Statistical Relational Learning.

An important problem that belongs to this class of problems is predicting the price of a

real estate properties. In addition to the individual attributes of the house, the spatial context

2

(influence of neighboring houses) and the temporal context (inflation) have a significant effect

on the price of the house. This problem and the relational models used to solve it are discussed

in far greater detail in the rest of this dissertation.

0.1 Statistical Relational Learning

Unlike in conventional problems with I.I.D assumption, where the uncertainty arises only at

the attribute level, in relational problems the uncertainty arises at many levels. Other than the

uncertainty in the attributes of the data points, the uncertainty could be in the type of the data

points, the number of data points, and the relationships among data points. Statistical Relational

Learning (SRL) is a research area that tries to learn and account for these multiple levels of un-

certainties found in domains with complex relational and rich probabilistic structure. Majority

of the SRL systems that have been designed so far can be distinguished along two major dimen-

sions: the first are the rule-based systems that are based on inductive logic, and second are the

frame-based or object-oriented systems. Though more recently people have also started to look

at systems which are a combination of frame-based and rule-based. In this text, we shall only

focus on the frame-based systems.

The underlying probabilistic models in most frame-based SRL systems is based on graphical

models, which involve both directed models (e.g., Bayesian networks), which can represent

causal relationships and are capable of representing complex generative models, and undirected

models (e.g., Markov networks), which can represent complex non-causal relationships. The

difference between the so called “flat” models (used in I.I.D setting) and relational models is that

a “flat” model takes as input a sequence of I.I.D samples, whereas in a relational model the input

to the system is usually just a single, richly connected instance of the entire collection of data.

Dependencies among individual attributes of samples, and among different samples is captured

3

by making the underlying graphical models hierarchical. In order to perform any meaningful

learning on these models it is imperative to have some form of parameter sharing: the ability

to constrain potentially distinct parameters to the same value. When the same set of parameters

are used at multiple places of the model, one can hope to extract meaningful statistics from the

data. It not only provides us the ability to model rich classes of distributions compactly, but it

also enables us to robustly estimate the parameters feasibly. The hierarchical property of the

underlying graphical models allows for such parameter sharing. In fact the power of relational

models lie in their ability in parameter sharing. Another important and powerful feature of

relational models is their ability to do collective inference. This involves making simultaneous

judgments about the same variables for a set of related data instances.

There are a number of important issues that arise in the SRL framework. One of the most

common issue is feature selection and aggregation. Richness of the complex structure along with

the need of compact parameterization gives rise to the need of constructing relational features

and aggregates which capture the local neighborhood of a random variable. Another common is-

sue is model selection, which involves doing some form of heuristic search over the model space

in order to find the best one. Structural uncertainty, which involves uncertainty over relation-

ships, is another issue that the researchers have tried to address recently. Earlier SRL approaches

assumed a single relational skeleton, which defined the set of random variables and the probabil-

ity distribution over them. Now, however researchers have tried to address this issue at different

levels, such as uncertainty in the number of related objects, and uncertainty in the identity of

neighbors.

0.1.1 Previous Work in Statistical Relational Learning

One of the first attempts at relational learning was by Winston, in (Winston, 1975) where he

introduced the arch learning system. It was an online system which was trained using a sequence

4

of positive and negative examples. The system maintained a “current” hypothesis which was

used to make a prediction of new example. If the prediction was correct no change was made to

the hypothesis. However if the prediction was incorrect then the hypothesis was generalized or

specialized based on the nature of the mistake.

Later on people worked along the lines of influence propagation. This involves iteratively

refining the prediction of a sample by propagating information from other samples that are con-

nected to it through the relationship graph. The intuition is that if we know something about

one data point, then we can use this knowledge to reach conclusion about other data points that

are related to it. For instance, in the web-page classification problem, if we know the label of

one web-page then we should be able to propagate this information to the web-pages that it

links to and to the web-pages that link to it. These, in turn, will propagate information to other

web-pages. After sufficient number of iterations the hope is that the system converges to the

correct answer. A number of researchers have proposed algorithms along these lines (Egghe and

Rousseau, 1990; Chakrabarti et al., 1998; Kleinberg, 1999; Slattery and Mitchell, 2000; Neville

and Jensen, 2000; Cohn and Chang, 2000; Hofmann and Puzicha, 1999; Cohn and Hofmann,

2001).

More recently people have worked along the lines of probabilistic graphical models, both di-

rected and undirected. The first attempt in this direction was the Probabilistic Relational Model

(PRM). PRMs were introduced in (Koller and Pfeffer, 1998; Friedman et al., 1999) as an exten-

sion of Bayesian networks to relational data. A PRM is a single Bayesian network (a directed

graphical model) over the entire data that specifies the joint probability distribution over all the

attributes and samples. Learning algorithms for PRMs have originally been generative (Taskar

et al., 2001). Furthermore, PRMs being based on directed graphical models, fail to capture

cyclic dependencies between data points. Discriminative extensions to PRMs, called Relational

Markov Networks (RMN) were later proposed by Taskar et. al., in (Taskar et al., 2002). RMNs

5

are essentially Conditional Random Fields (CRFs) extended to handle relational data. Thus

unlike PRMs, RMNs are undirected discriminative models that can capture cyclic dependen-

cies between samples. RMNs have been applied to tasks in which the variables to be predicted

(the answer variables) are discrete, and the inter-sample dependencies act on the labels. When

the relational graph has cycles, the partition function of the conditional distribution of labels

given the inputs is intractable and one must resort to approximate methods, such as loopy belief

propagation. Furthermore, most RMNs presented in the literature are parametric models with

a log-likelihood function that is linear in the parameters that are subject to learning. Another

line of work is due to Neville and Jensen (Neville and Jensen, 2007) in which they introduce

Relational Dependency Networks (RDNs). RDNs extend propositional dependency networks

to relational domains. Like dependency networks they have some advantages over directed and

undirected graphical networks. Heckerman et al., in (Heckerman et al., 2004) describe a graph-

ical language for probabilistic entity-relationship models (PERs) which also fall in the class of

relational models.

Finally a completely different line of work in relational learning involves designing rule-

based or logic-based formalism. This can further be categorized into two sub-categories. The

first includes models that are purely logic-based, such as Poole’s work on probabilistic Horn ab-

duction (Poole, 1993) and independent choice logic (Poole, 1997), Ngo and Haddawy’s work on

probabilistic knowledge bases (Ngo and Haddaway, 1997), and Sato’s work on the PRISM sys-

tem (Sato, 1995), and Ng and Subrahmanian’s work on probabilistic logic programming (Ng and

Subrahmanian, 1992). The other class of work involves combining probabilistic graphical mod-

els with the logic programs, such as, Bayesian Logic Program (BLPs) by (Kersting et al., 2000),

Stochastic Logic Programs (SLPs) (Muggleton, 2000), and Markov Logic Networks (Richardson

and Domingos, 2006).

6

0.2 Relational Regression

Almost all of the above mentioned models, especially in the domain of frame-based or object-

oriented systems, are designed to deal with variables that take discrete values. Hence these

models are useful only for classification tasks. There are no straight forward generalizations of

these models that will enable them to handle continuous variables. However, there are many

important real world problem where one is not just restricted to performing classification but

is required to do regression. Problems of this nature fall in the class of Relational Regression,

and their solution requires relational models which can handle continuous variables. In the

mid 70’s Besag in (Besag, 1974; Besag, 1975; Besag, 1986), proposed models for problems in

which discrete and continuous variables exhibited spatial stochastic interactions. However these

models either assumed a fixed lattice structure over the interactions or they assumed a Markovian

assumption over the interactions.

We propose novel factor graph based relational models which can be used for solving rela-

tional regression problems. The proposed model can handle any arbitrary interactions among

data points and does not assume any structure over the interactions. In addition to handling con-

tinuous variables, the proposed models can account for uncertainties in the types of relationships

among data points by being able to handle dependencies among them which are hidden and not

given directly as part of the data. Furthermore, the hidden variables that capture these dependen-

cies could themselves be continuous. These models allow for the log-likelihood functions to be

non-linear in the parameter space, which leads to non-convex loss functions but are considerably

more flexible. These models also eliminates the intractable partition function problem through

appropriate design of the relational and non-relational factors of the factor graph. We apply the

proposed models to the problem of real estate price prediction which is an important practical

problem that falls in the domain of relational regression.

7

0.3 Real Estate Price Prediction

0.3.1 Background

Even though the problem of understanding real estate prices is of fundamental importance, it

is fair to say that till date very little has been understood so far. The evidence of this lack of

understanding is illustrated by the recent events in the market, such as the sub-prime crisis, and

the use by Congress of tax-payer guarantees on mortgages that remain at risk, and whose value

depends on house prices. These recent turn of events have generated massive interest among the

people in industry and in academics in trying to understand the economics behind house prices.

Answers to a large number of questions are sought as part of this effort. For instance, what is the

level of house price risk that the financial sector is currently bearing in terms of likely default on

outstanding mortgages? How does ownership of a risky home impact the ability of consumers

to smooth life cycle consumption shocks by borrowing against and/or selling the home? How

much financial risk is involved in promising use of future taxes to support guarantees being

offered by Fannie Mae and Freddie Mac? How predictable are house prices, and what are the

key economic fundamentals impacting the evolution of house prices? What is the nature and

extent of any mean reversion in house prices? To what extent can individual house price risk be

hedged by index-based securities?

In order to answer the above questions and more, there is a need to solve two fundamental

problems. First, there is a need for models that are able to accurately predict the prices of houses,

not only in the near future but also in the distant future. Furthermore the prediction should be

supplemented by a better aggregate understanding of the real estate market in the geographic

region. More formally, the problem involves designing a model that predicts the price of a real

estate property P , given the set of features X associated with it. These features include attributes

8

that are specific to the individual house, such as, the number of bedrooms, number of bathrooms,

the living area etc. They could also include information about the neighborhood in which it lies,

such as the census tract specific information: the average household income of the neighborhood,

average commute time to work, and school district information. This modeling approach, in

which the relevant object is expressed in terms of its constituent characteristics or features and an

estimate of the contributory value of each characteristic is obtained, is called Hedonic Modeling

in economics. The estimate of the prices obtained are called Hedonic Prices. However, just

using the attributes corresponding to an individual house is not sufficient in predicting its price.

The problem has a very strong spatio-temporal structure associated with it. Variables such as

the quality of the neighboring houses and the time at which the house is sold have a substantial

impact on its price. Note that the values of these variables is not given to us as part of the data.

Their values are only indirectly reflected in the selling price of neighboring houses in the space-

time domain. Uncovering this underlying structure and using it to refine the estimate for every

house, can substantially improve the prediction accuracy, while at the same time giving a high

level understanding of the real estate market in the geographic area.

The second fundamental problem that one needs to solve while pursuing answers to the above

mentioned questions is to understand the way in which the house prices move over time. For this

we need to have a dependable and precise measure that captures these movements. However it is

by no means an easy task. The principle difficulty is due to the fact that houses are heterogeneous

goods: no two houses are exactly the same. Secondly, houses are sold infrequently: between 3%

- 7% of all houses transact annually. Thirdly, as prices are negotiated, particular circumstances

for individual buyers and sellers can lead to the situation that even extremely similar houses sell

for very different amounts. Given this complex nature of the housing market it is convenient

and useful to capture the overall average price trends followed by a group of houses. This is

achieved by having a single price index for houses, called the House Price Index (HPI). A House

9

Price Index is simply one of many plausible measures of the central tendency of house price

appreciation for a particular group of properties. For almost any non-trivial use of the HPI,

the hope is that the index can be used to give a reasonable first approximation to current house

values, and therefore be relevant to prices of homes that have not been sold, but may be so in a

short period. Thus the underlying procedure for generating a useful HPI involves a model which

uses the index while predicting the house prices. The model parameters and the index should

be learnt simultaneously so as to minimize the prediction error. Traditionally in economics the

index is computed either using only the house specific features (the Hedonic Price Index), or

using only those houses that have been transacted in a short period of time (the repeat sales of

the houses). Index generated using this procedure is called the Repeat Sales Index. Both these

methods completely ignore the influence of the neighboring houses on the price of the current

house and hence are not able to capture the rich spatio-temporal structure that is inherent in the

problem. While computing the index if, in addition to taking into account the repeat sales of a

particular house, one also considers the sale prices of the neighboring houses in the dimensions

of time and space one can expect to generate a better index that predicts the house prices more

accurately and is free from various superfluous patterns in the error structure.

To summarize, designing models for accurately predicting the house prices in future, and

designing models for constructing aggregate price indices, are the two fundamental problems

that one needs to solve on our way to understanding real estate prices. Both these problems

have a strong underlying spatio-temporal structure that the model should uncover and exploit,

as opposed to dealing with individual houses independently of others. In this thesis we propose

novel models that try to answer both these questions, while at the same time uncovering the

hidden spatio-temporal structure that is inherent in the problem.

10

0.3.2 A Relational Regression Problem

We now show explicitly how the problem of house price prediction is actually a relational regres-

sion problem. Each house is described by a vector X of features that are specific to that house,

such as the number of bedrooms, number of bathrooms, etc. The price of a house is clearly a

function of these features: given a particular locality, a large 5 bedroom, 3 bathroom mansion

will be more expensive than a smaller 2 bedroom, 1 bathroom house. This is the hedonic compo-

nent of the house price. In addition, the price of a house is also influenced by the features of the

neighborhood in which it lies. Clearly, given two houses of similar characteristics, the house that

is located in an up-market locality will be more expensive than the one located in a poor locality.

Some of these neighborhood features that influence the price are directly measurable, such as the

quality of the local schools, median house hold income, average time of commute to work etc.

However most of the features, that make one particular neighborhood “desirable” to live in as

compared to other neighborhoods, are very difficult to measure directly, and are merely reflected

in the prices of houses in that area. These features can be modeled as hidden (latent) variables

and their influence on each other must be learnt collectively. In other words, while predicting the

prices, houses cannot be treated as independent of each other. Rather they are spatially related

in highly complex ways, whereby which they influence each other’s sale prices.

In addition to the spatial relationships among houses, there is also a temporal component to

it. The price of a house is also a function of the time period in which it is sold. Thus analogous

to spatial “desirability” one can associate the notion of “temporal desirability” to any particular

time period. Whether a particular time period, in which the current house is to be sold, has high

“desirability” or not is a function of the sale price of other houses sold around that period. If

the other houses are sold at a premium then it will have a positive effect on the sale price of the

current house. However if they are sold at a discounted price, then it will have a negative effect.

11

The exact form in which these neighboring houses (where the neighbors are in time domain)

influence the sale price of the current house is again not explicitly given to us and hence should

be modeled as hidden variables. Intuitively this effect will be more prominent when the houses

sold during the same period are also nearby houses. This indicates towards the fact that the

dependencies between houses is not just spatial or temporal, rather it is spatio-temporal.

In summary, the price of a house, in addition to depending on its individual attributes, also

depends on the quality of neighborhood in which it lies. Some of these neighborhood features

which define its quality are directly measurable, while other are not and are merely reflected in

the quality of the houses that comprise that neighborhood. In other words there is a complex rela-

tionship structure among houses, namely the spatio-temporal structure, influencing each other’s

prices. It is this dependency structure that makes this problem a relational regression problem.

0.3.3 Previous Work

The problem of predicting prices of real estate properties has a long history in the economics

literature. One line of methods use hedonic price equation to estimate the price of houses. The

price of a house is modeled as a function of only its attributes, each of which has an implicit

market price. Primarily the effort in this line of work has gone into trying different types of

functional forms for the hedonic equation. Linear parametric methods and their derivatives have

been long used by Goodman (Goodman, 1978), and Hallvorsen and Pollakowski (Halvorsen and

Pollakowski, 1981). An extension of the linear regression is the Box-Cox transformations pro-

posed by Box and Cox (Box and Cox, 1964). All the functional forms studied so far can be seen

as special cases of the quadratic Box-Cox transformation. However because these functional

forms were too restrictive, they usually resulted in poor performance. Some work has also been

done in the domain of non-linear methods. For example, Meese and Wallace in (Meese and

Wallace, 1991) used locally weighted regressions, whereas Clapp in (Clapp, 2004) and Anglin

12

and Gencay (Anglin and Gencay, 1996) used semi-parametric methods for the problem.

In line with the widely accepted belief that while predicting the price of a house, the price

of its neighbouring houses contain useful information, a number of people have also explored

the possibility of using spatio-temporal models. There is now a large hedonic price litrature on

the spatio-temporal correlation of prices. Can in (Can, 1990; Can, 1992), model house prices

using spatial autoregressions. Dubin (Dubin, 1992), Pace and Giley (Pace and Gilley, 1997), and

Basu and Thibodeau (Basu and Thibodeau, 1998) claim that it is hard to capture all spatial and

neighborhood effects using available data. Hence they directly model the spatial autocorrelation

of the regressions residuals. Finally, there is a class of models that recognizes that vicinity in

both space and time will matter. Such Spatio Temporal Autoregressive (STAR) models have

been developed by Pace et al (Pace et al., 1998) and Gelfand et al (Gelfand et al., 2004).

The focus of all of the above models is on House Price Index (HPI) construction and towards

estimating the model parameters efficiently and precisely. Very little emphasis is given to the

issue of accurately predicting the prices of unseen houses in the future (predictability). Not a

lot of work has been done in the direction of handling the problem from the machine learning

point of view. In the limited attempts at using machine learning methods, either the models are

too simplistic or the setting in which they have been applied (in particular the dataset) is not

representative of the real world situation. For instance, Do and Grudnitski (Do and Grudnitski,

1992), and Nguyen and Cripps in (Nguyen and Cripps, 2001) have used very simple neural

networks on a very small dataset. Some work has been done to automatically exploit the locality

structure present in the problem. Kauko in (Kauko, 2002), used the Self Organizing Map (SOM)

technique proposed by Kohonen (Kohonen, 1995) to automatically segment the spatial area and

learn a separate model for each segment. However, since SOM does not produces a mapping

function, it is not possible to predict the price of a new sample that has not been seen before

during training.

13

Furthermore, because of the certain severe weaknesses of hedonic indexes, such as the hetro-

geneity among houses and the data tape of housing characteristic not being standardized across

municipalities, these indexes are hardly used in practice. Instead, the indexes that have become

very popular are based on the repeat sales of houses, which attempt to get around various prob-

lems associated with hedonic indexes. The idea is by only looking at houses that have been sold

more than once during a period of time, one can get an index that can control for heterogeneities

among houses. One of the first works along these lines was due to Bailey et. al., (Bailey et al.,

1963). However the underlying assumption behind their model is that houses do not change at-

tributes over time, and there is no selection bias in selecting only households that have been sold

at least twice. One of the major drawbacks of their model is that the error term is uncorrelated.

What this means is that if a house was sold more than twice, their is no relation of the errors cor-

responding to its two pairs of sales. Furthermore two possibly very similar houses would have

uncorrelated errors even if they sold and resold in exactly the same periods. Case and Shiller

in (Case and Shiller, 1989) try to address the limitations associated with this model by arguing

against a homoskedastic error term. They claim that the variance of the error term must depend

on the time interval between sales. The basic intuition is that changes in attributes, which this

model does not explicitly account for, are likely to be more the longer the time between sales, re-

sulting in a larger unexplained variance in prices for these households i.e. there is a drift in house

prices over time. Thus these observations are down-weighted while computing the index using a

Weighted Repeat Sales (WRS) index. Literature continued to move slowly till 1995 when Goet-

zmann and Spiegel in (Goetzmann and Spiegel, 1995) showed the importance of non-temporal

returns from houses while constructing any price-index using repeat sales. Later on in (Goetz-

mann and Spiegel, 1997), they incorporated locational returns in their distance weighted repeat

sales model, by accounting for the fact that houses in the same neighborhood are likely to exhibit

co-movements of returns and houses in different neighborhoods are likely to exhibit very little

14

correlation in returns. However in-spite of using a very small dataset they run into computational

issues.

0.4 Contribution and Outline

This thesis proposes novel models for doing regression in relational data using relational fac-

tor graphs. In a relational factor graph, single graph models the entire collection of samples

by capturing two sets of dependencies. It consists of factors which captures the dependencies

among variables associated with individual samples. In addition, it also captures the inter sam-

ple relationships using factors that take as input the variables associated with multiple samples.

The class of models proposed are different from those discussed in the literature in several ways.

Firstly, they pertain to relational regression problems in which the input and answer variables are

continuous. Secondly, they allow for arbitrary inter-sample dependencies. Furthermore, these

dependencies could be hidden and not given as part of the data. In such situations these are mod-

eled via hidden (latent) variables which themselves could be continuous. Thirdly, they allow the

use of log-likelihood functions that are non-linear in the parameter space, which leads to consid-

erably more flexible architectures at the cost of non-convex loss functions. Lastly, they eliminate

the intractable partition function problem and provide efficient inference and training algorithms

through appropriate design of the relational and non-relational factors. These models are applied

to the problem of understanding house prices, where two major questions are answered. First,

we propose a model that predicts the price of houses while at the same time capturing the re-

lationships among houses which are spatially close to each other. This is achieved by learning

a latent manifold over the geographic area, which also provides an aggregate understanding of

the housing market. Second, a model is proposed to construct house prices indices, with the

help of an explicitly learnt normalized price surface over space and time. The surface captures

15

the spatio-temporal relationships among transactions. In both cases we conclude that uncover-

ing and exploiting the relational structure associated with this problem significantly improves

performance.

The proposed models and their inference and learning framework is discussed in the light of

Energy Based Models. Chapter 1 gives a brief introduction to Energy Based Models. Here we

talk about the processes of inference and learning in EBMs. Learning in EBMs is accomplished

by minimizing a suitably chosen loss function that shapes the energy function in such a way

that its minimization will give the desired answer. The choice of energy function and inference

algorithm is solely dependent on the problem at hand. The choice of a loss function is indepen-

dent of these decisions. However there are some guidelines that specify which loss function will

work with which energy function. These are discussed in chapter 6. Chapter 2 introduces the

factor graph models in the light of energy based models. Here we discuss the algorithms used for

doing exact and approximate inference. Chapter 3 extends these factor graph models to address

the problem of relational regression. The ideas in this chapter are explained with the help of a

relational factor graph used for house price prediction. In spite of their complex link structure,

we show how efficient learning and inference can be achieved by clever design of the relational

and non-relational factors. In chapter 4 the relational factor graph model is actually used for pre-

dicting the prices of houses. The relational component of the model is used to help uncover the

underlying hidden spatial structure associated with the problem. This hidden spatial structure is

modeled as a learnable spatially smooth latent “desirability” manifold that spans the geographic

area. We show that using the information from this learnt manifold (which captures the neigh-

borhood effects of houses), along with the individual features of the house, one can improve

upon prediction substantially. In chapter 5, we extend these ideas to build a spatio-temporal

model for constructing house price indices. Akin to the “desirability” manifold of chapter 4,

we learn a non-parametric “normalized” price surface over space and time which satisfies the

16

spatio-temporal smoothness constraint. The price of a house is modeled as the product of the

“normalized” price and a city-wide global index (the House Price Index). Both the index and the

normalized prices are simultaneously learnt to minimize the prediction error. We show that our

estimated price index is very similar to standard repeat sales index (the Case-Shiller’s index) used

presently in the market. However, our model convincingly out-performs this index in prediction

accuracy, and also is free from the various superfluous patterns in the error structure exhibited

by this index. This can again be attributed to exploiting the underlying spatio-temporal structure

associated with the problem. To the best of our knowledge, the methods we propose are first

attempt to automatically learn the influence of the underlying spatio-temporal structure inherent

in the problem, and use it for index construction and prediction. Finally, unlike in the previous

works, the dataset used in all the above experiments is industry standard, and substantially larger

and very diverse. It has around 1.3 million transactions over the last 24 years spanning the entire

Los Angeles county. The dataset is explained in detail in chapter 4.

17

1
ENERGY BASED MODELS

The main purpose of statistical modeling and machine learning is to design models that are

capable of answering questions relating to Prediction, Classification, Decision Making, Ranking,

Detection, and Conditional Density Estimation. Most approaches involve designing models that

encode dependencies between different variables associated with the problem. By capturing

these dependencies, a model can then be used to determine the values of unknown variables

given the values of known variables, and use this information to answer questions of the above

type.

Energy-Based Models (EBMs) capture these dependencies by associating a scalar energy to

each configuration of the variables. This energy can be viewed as a measure of compatibility

between the values of variables. The process of inference, i.e., making a prediction or decision,

consists in fixing the value of observed variables and finding values of the remaining variables

that minimize the energy. Learning consists in finding an energy function that associates low

energies to the configuration of variables consistent with the training data and high energies to

others. A loss functional, which measures the quality of an energy function, is minimized during

the learning process in order to accomplish the task.

Within this common inference and learning framework, the wide choice of energy functions

and loss functionals allows for the design of many types of statistical models, both probabilistic

and non-probabilistic, providing a unified framework for the two approaches to learning.

1.1 Inference in Energy Based Models

Consider a model with two sets of variables, X and Y , as represented in Figure 1.1. Variable

X could be a vector containing the pixels from an image of an object. Variable Y could be a

18

discrete variable that represents the possible category of the object. For example, Y could take

six possible values: animal, human figure, airplane, truck, car, and “none of the above”. An

Energy Based Model can be viewed as a function that measures the “goodness” (or badness) of

each possible configuration of X and Y . The output of this function (which we call energy) can

be interpreted as the degree of compatibility between the values of X and Y . We use the conven-

tion that small energy values correspond to highly compatible configurations of the variables,

while large energy values correspond to highly incompatible configurations of the variables. We

will use the term energy function and denote it by E(Y, X). This energy function could also be

parameterized by a set of parameters W , in which case it is denoted by E(W,Y, X). The ar-

chitecture of an EBM is the internal structure of the parameterized energy function E(W,Y, X).

No particular restriction is placed on the nature of the variables X , Y , and the parameters W .

Given a fixed input X – which is observed from the world – the process of inference involves,

asking the model to produce a value of the unobserved variable Y that is most compatible with

the observed variable X . More precisely, in an energy based model the inference is done by

choosing a value Y ∗, from the set of all possible values of the unobserved variables Y , for which

the energy E(W,Y, X) is the smallest:

Y ∗ = argminY ∈YE(W,Y, X). (1.1)

When the size of the set Y is small, we can simply compute E(W,Y, X) for all possible values

of Y ∈ Y and pick the smallest.

In general, however, picking the best Y may not be straight forward, as in many applications

an exhaustive search over the set Y might be impractical. For example, when the model is used to

identify the person in a given facial image (face recognition), the set Y is discrete and finite, but

its cardinality may be tens of thousands (Chopra et al., 2005). Likewise, consider the situation

when the model is used to detect whether there’s a face in a given image or not? Furthermore, if

19

YX
Observed variables

(input)
Variables to be

predicted
(answer)

Human
Animal
Airplane
Car
Truck

Human
Animal

Airplane
Car

Truck

Energy Function E(Y, X)

E(Y, X)

Figure 1.1: A model measures the compatibility between observed variables X and variables to be

predicted Y using an energy function E(Y, X). For example, X could be the pixels of an image, and

Y a discrete label describing the object in the image. Given X , the model produces the answer Y that

minimizes the energy E.

the face is present, then what is its location and its pose (face detection)? In this case the set Y

contains a binary variable for each location indicating whether a face is present at that location,

and a set of continuous variables representing the size and orientation of the face (Osadchy

et al., 2005). We often think of X as a high-dimensional variable (e.g. an image) and Y as a

discrete variable (e.g. a label), but even Y could be a high dimensional variable making things

even more complex. For example, when the model is used to restore the image by removing the

noise, enhancing the resolution, or removing scratches (image restoration), the set Y contains all

possible images (all possible pixel combinations). It is a continuous and high-dimensional set.

Or when the model is used to recognize a handwritten sentence in an image, the set Y contains

all possible sentences of the English language, which is a discrete but infinite set of sequences

20

of symbols (LeCun et al., 1998a).

For each of the above situations, a specific inference procedure, must be employed to find

the Y that minimizes E(W,Y, X). In many real situations, the inference procedure will produce

an approximate result, which may or may not be the global minimum of E(W,Y, X) for a given

X . In fact, there may be situations where E(W,Y, X) has several equivalent minima. The best

inference procedure to use often depends on the internal structure of the model. For example, if

Y is continuous and E(W,Y, X) is smooth and well-behaved with respect to Y , one may use a

gradient-based optimization algorithm. If Y is a collection of discrete variables and the energy

function can be expressed as a sum of energy functions (called factors) that depend on different

subsets of variables, the efficient inference procedures for factor graphs, like the min-sum algo-

rithm, can be used (Kschischang et al., 2001b; MacKay, 2003). When each element of Y can be

represented as a path in a weighted directed acyclic graph, then the energy for a particular Y is

the sum of values on the edges and nodes along a particular path. In this case, the best Y can

be found efficiently using dynamic programming (e.g with the Viterbi algorithm or A∗). This

situation often occurs in sequence labeling problems such as speech recognition, handwriting

recognition, natural language processing, and biological sequence analysis (e.g. gene finding,

protein folding prediction, etc). Different situations may call for the use of other optimization

procedures, including continuous optimization methods such as linear programming, quadratic

programming, non-linear optimization methods, or discrete optimization methods such as simu-

lated annealing, graph cuts, or graph matching. In many cases, exact optimization is impractical,

and one must resort to approximate methods, including methods that use surrogate energy func-

tions (such as variational methods).

21

1.1.1 Examples of Energy Based Architectures

To substantiate the above discussion we demonstrate how traditional models like standard re-

gression can be formulated as energy-based models.

D(GW (X), Y)

X Y

E(W,Y, X)

GW (X)

E(W,Y, X)

X Y

GW (X)G1W1
(X) HW2(X)

||G1W1
(X)−G2W2

(Y)||L1

G2W2
(Y)

Figure 1.2: Simple learning models viewed as EBMs: (a) a standard regressor: The energy is the

discrepancy between the output of the regression function GW (X) and the answer Y . The best inference

is simply Y ∗ = GW (X); (b) an implicit regression architecture: X and Y are passed through two

functions G1W1
and G2W2

. This architecture allows multiple values of Y to have low energies for a given

X .

Regression

Figure 1.2(a) shows a simple architecture for regression or function approximation. The energy

function is the squared error between the output of a regression function GW (X) and the variable

to be predicted Y , which may be a scalar or a vector:

E(W,Y, X) =
1
2
||GW (X)− Y ||2. (1.2)

22

The inference problem is trivial: the value of Y that minimizes E is equal to GW (X). The

minimum energy is always equal to zero.

Implicit Regression

In practice, there are tasks in which for a single value of X multiple answers (Y) are equally

good. For example in robot navigation, turning left or right may get the robot around an obstacle

equally well, or in a language model in which the sentence segment “the cat ate the” can be

followed equally well by “mouse” or “bird”. More generally, the dependency between X and

Y sometimes cannot be expressed as a function that maps X to Y (e.g., consider the constraint

X2 + Y 2 = 1). In this case, which we call implicit regression, we model the constraint that

X and Y must satisfy and design the energy function such that it measures the violation of the

constraint. Both X and Y can be passed through functions, and the energy is a function of their

outputs (see Figure 1.2 (b)). A simple example is:

E(W,Y, X) =
1
2
||G1W1

(X)−G2W2
(Y)||2. (1.3)

For some problems, the function G1W1
must be different from the function G2W2

. In other cases,

G1W1
and G2W2

must be instances of the same function G.

An interesting example is the Siamese architecture (Bromley et al., 1993b): variables X1

and X2 are passed through two instances of a function GW . A binary label Y determines the

constraint on GW (X1) and GW (X2): if Y = 0, GW (X1) and GW (X2) should be equal, and

if Y = 1, GW (X1) and GW (X2) should be different. In this way, the regression on X1 and

X2 is implicitly learned through the constraint Y rather than explicitly learned through supervi-

sion. Siamese architectures were originally designed for signature verification (Bromley et al.,

1993b). More recently they have been used to learn a similarity metric with application to face

verification in (Chopra et al., 2005), and for unsupervised learning of manifolds in (Hadsell et al.,

2006).

23

1.2 Learning in Energy Based Models

In the supervised learning framework, the task of training an EBM consists of finding an energy

function that produces the best Y for any X . The search for the best energy function is performed

within a family of energy functions E indexed by parameters W :

E = {E(W,Y, X) : W ∈ W}. (1.4)

Since no particular restriction is placed on the nature of X , Y , and W , E could take any com-

plicated form. For instance when X and Y are real vectors, E could be a simple linear combi-

nation of basis functions (as in the case of kernel methods), or a set of neural net architectures

and weight values. When X and Y are variable-size images, sequences of symbols or vectors,

or more complex structured objects, E may represent a considerably richer class of functions.

Since little restriction is placed on the nature of E , one can capture highly complex dependencies

among variables. This is one of the main advantages of the energy-based approach.

For the purpose of training we are given a set of training samples S = {(Xi, Y i) : i =

1 . . . P}, where Xi is the input for the i-th training sample, and Y i is the corresponding desired

answer. In order to find the best energy function in the family E , we need a way to assess the

quality of any particular energy function, based solely on two elements: the training set, and our

prior knowledge about the task. This quality measure is called the loss functional (i.e. a function

of function) and is denoted by L(E,S). For simplicity, we often consider it as a function of the

parameters W and denote it by L(W,S) and call it the loss function. The learning problem is to

find the W that minimizes the loss:

W ∗ = min
W∈W

L(W,S). (1.5)

When the data is assumed to be independent and identically distributed (i.i.d), the loss functional

can be expressed as the average of the per-sample loss functional taken over the entire set of

24

training samples. That is,

L(W,S) =
1
P

P∑
i=1

L(Y i, E(W,Y, X i)) + R(W), (1.6)

where L(Y i, E(W,Y, X i)) is the per-sample loss functional, which depends on the desired

answer Y i and on the energies obtained by keeping the input sample fixed and varying the

answer Y . Thus, for each sample, we evaluate a “slice” of the energy surface. The term R(W)

is the regularizer, and can be used to embed our prior knowledge about which energy functions

in our family are preferable to others (in the absence of training data). With this definition, the

loss is invariant under permutations of the training samples and under multiple repetitions of the

training set.

For the guarantee of good generalization performance (performance on unseen test set), we

can rely on general results from statistical learning theory. These results guarantee that, un-

der simple interchangeability conditions on the samples and general conditions on the family of

energy functions (finite VC dimension), the deviation between the value of the loss after mini-

mization on the training set, and the loss on a large, separate set of test samples is bounded by a

quantity that converges to zero as the size of training set increases (Vapnik, 1995).

1.2.1 Designing a Loss Functional

Training an EBM consists of choosing an energy function from the family E of energy functions

so that for any given X , the inference algorithm will produce the desired value of Y . This process

can be viewed as “carving” the energy function, by adjusting the parameters W so that for any

given X , the inference algorithm returns the desired value Y . Since the inference algorithm

selects the Y with the lowest energy, the learning procedure must shape the energy surface so

that the desired value of Y has lower energy than all other (undesired) values. Figures 1.3 and 1.4

show examples of energy as a function of Y for a given input sample Xi in cases where Y is a

25

discrete variable and a continuous scalar variable. We note three types of answers:

• Y i: the correct answer

• Y ∗i: the answer produced by the model, i.e. the answer with the lowest energy.

• Ȳ i: the most offending incorrect answer, i.e. the answer that has the lowest energy among

all the incorrect answers. To define this answer in the continuous case, we can simply

view all answers within a distance ε of Y i as correct, and all answers beyond that distance

as incorrect.

Human
Animal
Airplane

Car
Truck

E(Y, X)

After
training

Human
Animal
Airplane

Car
Truck

E(Y, X)

Figure 1.3: How training affects the energies of the possible answers in the discrete case: the energy of

the correct answer is decreased, and the energies of incorrect answers are increased, particularly if they

are lower than that of the correct answer.

As mentioned before, this process of “carving” the energy function to take the desired shape

is accomplished by minimizing, with respect to the parameters W , a loss functional, which in

turn is a sum of per-sample loss functionals. Intuitively, the per-sample loss functional should

be designed in such a way that it assigns a low loss to well-behaved energy functions: energy

functions that give the lowest energy to the correct configuration of variables (X, Y) and higher

energy to all other (incorrect) configurations. Conversely, energy functions that do not assign the

lowest energy to the correct answers should have a high loss.

With a properly designed loss function, the learning process should have the effect of “push-

ing down” on E(W,Y i, X i), and “pulling up” on the incorrect energies, particularly on E(W, Ȳ i, X i).

26

Answer
Ȳ iY i

pull up

push down

(Y)

E
(W

,·
,X

i)

Answer
Ȳ iY i

(Y)

E
(W

,·
,X

i)After
training

Figure 1.4: The effect of training on the energy surface as a function of the answer Y in the continuous

case. After training, the energy of the correct answer Y i is lower than that of incorrect answers.

Different loss functions do this in different ways. Chapter 6 gives sufficient conditions that a loss

function must satisfy in order to be guaranteed to shape the energy surface correctly. We show

that some widely used loss functions do not satisfy the conditions, while others do.

Properly designing the architecture of the energy function and the loss function is critical.

Any prior knowledge we may have about the task at hand is embedded into the architecture

and into the loss function (particularly the regularizer). Unfortunately, not all combinations of

architectures and loss functions are allowed. With some combinations, minimizing the loss will

not make the model produce the correct answers. Choosing the combinations of architecture and

loss functions that can learn effectively and efficiently is critical to the energy-based approach.

1.2.2 Examples of Loss Functions

A number of loss functions have been proposed in the literature. Here we discuss a few common

loss functions that have been used. A more elaborate list is given in (LeCun et al., 2006). We

also comment on whether the loss function is “good” or “bad” depending on whether it is able

to “carve” an appropriate energy landscape or not. A more formal treatment to this discussion

27

is given in chapter 6, where we give sufficient conditions that any loss function should satisfy

in order to be classified as “good”. For the time being, we set aside the regularization term, and

concentrate on the data-dependent part of the loss function.

Energy Loss

This is the simplest of all the loss functions and is also very popular for learning regression

functions and neural network training. For a training sample (Xi, Y i), the per-sample loss is

defined simply as:

Lenergy(Y i, E(W,Y, X i)) = E(W,Y i, X i). (1.7)

In spite of its popularity it cannot be used to train most architectures. This is because, while

this loss will push down on the energy of the desired answer, it makes no attempt to pull up on

the energies of other answers. With some architectures, this can lead to a collapsed solution in

which the energy is constant and equal to zero. The energy loss will only work with architec-

tures that are designed in such a way that pushing down on E(W,Y i, X i) will automatically

make the energies of the other answers larger. A simple example of such an architecture is

E(W,Y i, X i) = ||Y i−G(W,Xi)||2, which corresponds to regression with mean-squared error

with G being the regression function.

Generalized Perceptron Loss

For a training sample (Xi, Y i), the per-sample loss is defined as

Lperceptron(Y i, E(W,Y, X i)) = E(W,Y i, X i)−min
Y ∈Y

E(W,Y, Xi). (1.8)

This loss is always positive, since the second term is a lower bound on the first term. Minimizing

this loss has the effect of pushing down on E(W,Y i, X i), while pulling up on the energy of the

answer produced by the model.

While the perceptron loss has been widely used in many settings, including for models with

28

!5 !4 !3 !2 !1 0 1 2
0

0.5

1

1.5

2

2.5

3

3.5

4

E
I
 ! E

C

L
o
s
s
:
L

m

0 0.5 1 1.5 2 2.5 3 3.5 4
0

2

4

6

8

10

12

14

16

Energy:

L
o
s
s
:
L

E
C

E
I

/

Figure 1.5: The hinge loss (left) penalize E(W,Y i, Xi)−E(W, Ȳ i, Xi) linearly. The square-square loss

(right) separately penalizes large values of E(W,Y i, Xi) (solid line) and small values of E(W, Ȳ i, Xi)

(dashed line) quadratically.

structured outputs such as handwriting recognition (LeCun et al., 1998a) and parts of speech

tagging (Collins, 2002), it has a major deficiency: there is no mechanism for creating an energy

gap between the correct answer and the incorrect ones. Hence, as with the energy loss, the

perceptron loss may produce flat (or almost flat) energy surfaces if the architecture allows it.

Consequently, a meaningful, uncollapsed result is only guaranteed with this loss if a model is

used that cannot produce a flat energy surface such as the one in the paper by Collins (Collins,

2002). For other models, one cannot guarantee anything.

Generalized Margin Losses

We now describe a general class of loss functions called generalized margin loss, which uses

some form of margin to create an energy gap between the correct answer and the incorrect

answers. The loss functions that belong to this class are the hinge loss, log loss, LVQ2 loss,

minimum classification error loss, square-square loss, and square-exponential.

Definition 1.1. Let Y be a discrete variable. Then for a training sample (Xi, Y i), the most

offending incorrect answer Ȳ i is the answer that has the lowest energy among all answers that

29

are incorrect:

Ȳ i = argminY ∈YandY 6=Y iE(W,Y, Xi). (1.9)

If Y is a continuous variable then the definition of the most offending incorrect answer can

be defined in a number of ways. The simplest definition is as follows.

Definition 1.2. Let Y be a continuous variable. Then for a training sample (Xi, Y i), the most

offending incorrect answer Ȳ i is the answer that has the lowest energy among all answers that

are at least ε away from the correct answer:

Ȳ i = argminY ∈Y,‖Y−Y i‖>εE(W,Y, Xi). (1.10)

The form of any generalized margin loss is given by:

Lmargin(W,Y i, X i) = Qm

(
E(W,Y i, X i), E(W, Ȳ i, X i)

)
. (1.11)

It can be seen as a more robust version of the generalized perceptron loss, since it explicitly

uses the energy of the most offending incorrect answer in the contrastive term. Furthermore,

it uses a positive parameter m, called the margin, to create an energy gap between the cor-

rect answer and the most offending incorrect answer. Qm(e1, e2) is a convex function in e1

and e2, whose gradient has a positive dot product with the vector [1,−1] in the region where

E(W,Y i, X i) + m > E(W, Ȳ i, X i). In other words, the loss surface is slanted toward low val-

ues of E(W,Y i, X i) and high values of E(W, Ȳ i, X i) wherever E(W,Y i, X i) is not smaller

than E(W, Ȳ i, X i) by at least m.

Hinge Loss: A particularly popular example of generalized margin loss is the hinge loss,

which is used in combination with linearly parameterized energies and a quadratic regularizer

in support vector machines, support vector Markov models (Altun and Hofmann, 2003), and

maximum-margin Markov networks (Taskar et al., 2003):

Lhinge(W,Y i, X i) = max
(
0,m + E(W,Y i, X i)− E(W, Ȳ i, X i)

)
, (1.12)

30

where m is the positive margin. The shape of this loss function is given in Figure 1.5. The

difference between the energies of the correct answer and the most offending incorrect answer

is penalized linearly when larger than −m. The hinge loss only depends on energy differences,

hence individual energies are not constrained to take any particular value.

Square-Square Loss: Unlike the hinge loss, the square-square loss treats the energy of the

correct answer and the most offending answer separately (LeCun and Huang, 2005; Hadsell

et al., 2006):

Lsq−sq(W,Y i, X i) = E(W,Y i, X i)2 +
(
max(0,m− E(W, Ȳ i, X i))

)2
. (1.13)

Large values of E(W,Y i, X i) and small values of E(W, Ȳ i, X i) below the margin m are both

penalized quadratically (see Figure 1.5). Unlike the margin loss, the square-square loss “pins

down” the correct answer energy at zero and “pins down” the incorrect answer energies above

m. Therefore, it is only suitable for energy functions that are bounded below by zero, notably in

architectures whose output module measures some sort of distance.

Other loss functions that belong to this class are the log loss, LVQ2 loss, minimum classifi-

cation error loss, and square-exponential which are discussed in detail in (LeCun et al., 2006).

Negative Log-Likelihood Loss

The negative log-likelihood loss, which is motivated from probabilistic modeling, is defined as:

Lnll(W,Y i, X i) = E(W,Y i, X i) + Fβ(W,Y, X i). (1.14)

Where F is the free energy of the ensemble {E(W, y, Xi), y ∈ Y}:

Fβ(W,Y, X i) =
1
β

log
(∫

y∈Y
exp

(
−βE(W, y, Xi)

))
. (1.15)

where β is a positive constant akin to an inverse temperature. This loss can only be used if the

exponential of the negative energy is integrable over Y , which may not be the case for some

choices of energy function or Y .

31

While many of the previous loss functions involved only E(W, Ȳ i, X i) in their contrastive

term, the negative log-likelihood loss combines all the energies for all values of Y in its con-

trastive term Fβ(W,Y, X i). This term can be interpreted as the Helmholtz free energy (log

partition function) of the ensemble of systems with energies E(W,Y, Xi), Y ∈ Y . This con-

trastive term causes the energies of all the answers to be pulled up. The energy of the correct

answer is also pulled up, but not as hard as it is pushed down by the first term. This can be seen

in the expression of the gradient for a single sample:

∂Lnll(W,Y i, X i)
∂W

=
∂E(W,Y i, X i)

∂W
−
∫

Y ∈Y

∂E(W,Y, Xi)
∂W

P (Y |Xi,W), (1.16)

where P (Y |Xi,W) is obtained through the Gibbs distribution:

P (Y |Xi,W) =
e−βE(W,Y,Xi)∫

y∈Y e−βE(W,y,Xi)
. (1.17)

Hence, the contrastive term pulls up on the energy of each answer with a force proportional to

the likelihood of that answer under the model.

Unfortunately, for many interesting problems the integral over Y is intractable. Considerable

efforts has been devoted in trying to approximate it with approaches, such as, clever organization

of the calculations, Monte-Carlo sampling methods, and Variational methods. While these meth-

ods have been devised as approximate ways of minimizing the NLL loss, they can be viewed in

the energy-based framework as different strategies for choosing the Y ’s whose energies will be

pulled up. A more elaborate treatment on the relationship between energies and probabilities via

the Gibbs distribution, and interpretation of approximate methods is given in Section 1.3.

1.2.3 Example Architectures Revisited

In this section we again look at the example architectures discussed in section 1.1.1, and see how

they can be trained using the various loss functions discussed above.

32

Regression

The architecture for solving regression problems (Figure 1.2(a)) can be trained using any of the

above discussed loss functions. In particular its training with with the energy loss, the perceptron

loss, and the negative log-likelihood loss are all equivalent, because the contrastive term of the

perceptron loss is zero, and that of the NLL loss is constant (it is a Gaussian integral with a

constant variance):

Lenergy(W,S) =
1
P

P∑
i=1

E(W,Y i, X i) =
1

2P

P∑
i=1

||GW (Xi)− Y i||2. (1.18)

This corresponds to standard regression with mean-squared error.

A popular form of regression occurs when G is a linear function of the parameters:

GW (X) =
N∑

k=1

wkφk(X) = W T Φ(X). (1.19)

The φk(X) are a set of N features, and wk are the components of an N -dimensional parameter

vector W . For concision, we use the vector notation W T Φ(X), where W T denotes the transpose

of W , and Φ(X) denotes the vector formed by each φk(X). With this linear parameterization,

training with the energy loss reduces to an easily solvable convex least-squares minimization

problem.

In simple models, the feature functions are hand-crafted by the designer, or separately trained

from unlabeled data. In the dual form of kernel methods, they are defined as φk(X) = K(X, Xk),

k = 1 . . . P , where K is the kernel function. In more complex models such as multilayer neural

networks and others, the φ’s may themselves be parameterized and subject to learning, in which

case the regression function is no longer a linear function of the parameters and hence the loss

function may not be convex in the parameters.

33

Implicit Regression

Particular instances of the implicit regression architecture, namely the Siamese architecture have

been trained using the square-exponential loss for learning similarity metric for face verifica-

tion (Chopra et al., 2005), and using a square-square loss (Eq. 1.13) for unsupervised learning

of manifolds (Hadsell et al., 2006). Bengio et al (Bengio et al., 2003) train their energy-based

language model using a negative log-likelihood loss. However because of the high cardinality

of Y (equal to the size of the English dictionary), they had to use approximations (importance

sampling) and had to train the system on a cluster machine.

Note that even though here only very simple architectures are presented in the light of energy

based models, one can design architectures to solve far more complicated problems. For instance

energy based models have been effectively used for problems in the domain of structured predic-

tion, which requires generating outputs with complex internal structure (Driancourt et al., 1991a;

Driancourt et al., 1991b; Driancourt and Gallinari, 1992b; Driancourt and Gallinari, 1992a; Dri-

ancourt, 1994; Bengio et al., 1990; Bourlard and Morgan, 1990; Bottou, 1991; Haffner et al.,

1991; Haffner and Waibel, 1991; Bengio et al., 1992; Haffner and Waibel, 1992; Haffner, 1993a;

Morgan and Bourlard, 1995; Konig et al., 1996). The present thesis proposes novel energy-based

models for the task of Statistical Relational Regression, which requires treating the entire data

as a single instance of input to the model and collectively learning the parameters to perform

regression in a non I.I.D setting.

1.3 Energy Based Models and Probabilistic Models

Energy Based Models provide a unified framework for many probabilistic and non-probabilistic

approaches to learning, particularly for non-probabilistic training of graphical models and other

structured models. Most probabilistic models can be viewed as special types of energy-based

34

models in which the energy function satisfies certain normalizability conditions, and in which

the loss function, optimized by learning, has a particular form. In this section we explore this

connection in detail and show how Energy-based learning can be seen as an alternative to prob-

abilistic estimation for prediction, classification, or decision-making tasks.

Denote the set of given training samples by S = {(Xi, Y i) : i = 1 . . . P}, where Xi is the

input for the i-th training sample, and Y i is the corresponding desired answer. Let us denote

by X = {X1, . . . , XP } the collection of all inputs and by Y = {Y 1, . . . , Y P } the collection

of all outputs. Let W be the set of trainable parameters of the model. One valid and widely

used estimator of the parameters W is the maximum likelihood estimator (MLE) or maximum

conditional likelihood estimator, which involves finding the parameters W that maximizes the

conditional likelihood of the output variables given the set of inputs: P (Y|X,W). If one goes

more along the lines of Bayesian learning then a prior distribution is introduced over the param-

eters W . Using Bayes theorem, the posterior distribution for W is proportional to the product of

the prior distribution and the conditional likelihood function

P (W |Y,X,) ∝ P (Y|X,W)P (W). (1.20)

The parameters W can now be determined by setting them to the value that maximizes this

posterior distribution. This technique is also called maximum posterior (MAP).

Consider first the maximum likelihood scenario. Assuming that the data samples are inde-

pendent and identically distributed (i.i.d) we can write the conditional likelihood of the desired

answers, given the inputs as

P (Y|X,W) = P (Y 1, . . . , Y P |X1, . . . , XP ,W) =
P∏

i=1

P (Y i|Xi,W). (1.21)

Applying the maximum likelihood estimation principle, we seek the value of W that maximizes

the above product, or the one that minimizes the negative log of the above product (log being a

35

monotonic function):

− log
P∏

i=1

P (Y i|Xi,W) =
P∑

i=1

− log P (Y i|Xi,W). (1.22)

We now show that minimizing the above negative log-likelihood is actually equivalent to min-

imizing the negative log-likelihood loss in the energy based setting, when the probabilities are

defined in terms of energies.

One way of converting a collection of arbitrary (un-normalized) energies into a collection

of normalized probabilities, is through Gibbs distribution. That is, given an energy E(Y, X)

associated with some configuration (Y, X), the corresponding probability will be

P (Y |X) =
e−βE(Y,X)∫

y∈Y e−βE(Y,X)
, (1.23)

where β is an arbitrary positive constant akin to an inverse temperature, and the denominator

is called the partition function. The choice of Gibbs distribution may seem arbitrary, but other

probability distributions can be obtained (or approximated) through a suitable re-definition of

the energy function. It should be noted that whether the numbers obtained this way are good

probability estimates does not depend on how energies are turned into probabilities, but on how

the energy function E(Y, X) is estimated from data. Furthermore, the above transformation of

energies into probabilities is only possible if the integral
∫
y∈Y e−βE(Y,X) converges. Clearly this

is somewhat of a restriction on the types of energy functions that can be used and on the do-

main Y of the output variables. Whereas if you are working only with energies there is no such

requirement for proper normalization. This allows for much more flexibility in designing the ar-

chitecture of learning machines. In that sense, one can view the energy-based model framework

as a superset of probabilistic framework.

Given the above transformation, the negative log of the conditional likelihood can be written

36

as

− log
P∏

i=1

P (Y i|Xi,W) =
P∑

i=1

βE(W,Y i, X i) + log
∫

y∈Y
e−βE(W,y,Xi). (1.24)

The final form of the negative log-likelihood loss is obtained by dividing the above expression

by P and β (which has no effect on the position of the minimum):

Lnll(W,S) =
1
P

P∑
i=1

(
E(W,Y i, X i) +

1
β

log
∫

y∈Y
e−βE(W,y,Xi)

)
. (1.25)

Thus we conclude that maximizing the conditional likelihood of the data in probabilistic models

is the same as minimizing the NLL loss function in energy based models when the probabilities

are defined as a function of energies via the Gibbs distribution.

Note that the contrastive term in the NLL loss function (the integral term) tries to pull up on

the energies of all the answers. As mentioned earlier, the force with which the loss pulls up on

the energies of these answers is proportional to the likelihood of that answer under the model.

Unfortunately, there are many interesting models for which computing this integral over Y is

intractable. Considerable effort has been devoted towards designing methods that approximate

it. Among various techniques the major ones are:

• Clever organization of the calculations by exploiting the fact that the energy function can

be factored into a sum of energy functions.

• Monte-Carlo sampling methods, which tries to approximate the integral in the derivative

of the loss function (equation 1.16) by sampling from the conditional distribution.

• Variational methods, which searched for a surrogate distribution which is simpler to work

with and is as close as possible to the conditional distribution. A by-product of these

methods is a lower bound on the partition function.

The first technique, which exploits the factors of the energy function, forms the central theme of

this dissertation and is discussed in great detail in the next and the following chapters. The idea

37

behind variational methods is discussed primarily from the context of inference in factor graphs

in the next chapter. Here we shed some light on the Monte-Carlo based sampling methods which

directly seek to approximate the above integral.

Monte-Carlo Sampling Methods

In this method the joint distribution, on which it is hard to do inference, is approximated by a

set of instantiations (also called samples) of its variables. These samples represent a part of the

probability mass. The actual use of these methods is for solving problems that involve computing

the expectation of some function f(X) relative to the joint distribution p(X)

Φ =
∑
X

p(X)f(X). (1.26)

For instance while computing the derivative of the negative log likelihood loss in equation 1.16,

when the cardinality of the set Y is huge, the integral which is given by

Φ =
∫

Y ∈Y

∂E(W,Y, Xi)
∂W

P (Y |Xi,W), (1.27)

is computed by sampling from the conditional distribution P (Y |Xi,W) and approximating it

with the sum

Φ ≈ 1
|R|

∑
r∈R

∂E(W, r,Xi)
∂W

, (1.28)

where R is the set of samples from P (Y |Xi,W).

One common approach for sampling is called Markov Chain Monte Carlo (MCMC). Since

it is very difficult to sample from the joint distribution directly, the idea behind this approach

is to construct a process which gradually samples from distributions that are closer and closer

to the actual joint distribution. This is accomplished by constructing a Markov Chain which is

defined in terms of a set of states and a transition model from one state to another. The chain

defined a process that evolves stochastically from state to state. More formally, let X denote the

38

set of all possible values the set of variables X can take. This is also called the state space of

X . Let T (x → x′) denote the transition probability of going from the state x to the state x′.

Note that both x, and x′ are the elements of the state space X . This is the transition model that

is associated with the Markov Chain. Let X(t) be the random variable giving the state of the

chain at time t. Assume that the initial state X(0) is distributed according to some initial state

distribution q(0)(X(0)). The distribution over the states at subsequent times can be defined by

the chain dynamics

q(t+1)(X(t+1) = x′) =
∑
x∈X

q(t)(X(t) = x)T (x→ x′). (1.29)

This means that the probability of being is state x′ at time t + 1 is the sum over all possible

states x that the chain could have been at time t, of the probability of being in state x times the

probability that the chain took a transition from x to state x′. As the process converges we would

expect the distribution q(t+1) to be close to q(t). That is

q(t)(x′) ≈ q(t+1)(x′) =
∑
x∈X

q(t)(X(t) = x)T (x→ x′). (1.30)

Furthermore, at convergence from the resulting distribution π(X), we would expect the proba-

bility of being in a state is the same as the probability of transitioning into it from a randomly

sampled predecessor

π(X = x′) =
∑
x∈X

π(X = x)T (x→ x′). (1.31)

This is called the stationary distribution.

The idea behind MCMC sampling is to design the Markov Chain (the transition probability

function T) in such a way that its stationary distribution π is the same as the joint distribution

p from which the samples are sought. There are a number of other requirements that a Markov

Chain should satisfy in order for this to happen. One among them is that it should have a unique

39

stationary distribution. This can be achieved if the chain satisfies the regularity property or the

ergodic property.

While these approximate methods have been designed as ways of minimizing the NLL loss,

another way of looking at them is in the light of energy-based framework. Essentially, all these

methods (particularly the sampling method) are trying to do is, come up with intelligent ways of

choosing the incorrect answers Y ’s whose energies needs to be pulled up.

1.4 Latent Variable Architectures

In the usual scenario for an energy based model, the energy is minimized with respect to the

variables to be predicted Y , given the observed variables X . During training, the correct value

of Y is given for each training sample. However there are numerous applications where it is

convenient to use energy functions that depend on a set of hidden variables Z whose correct

value is never (or rarely) given to us, even during training. For example, we could imagine

training a face detection system with data for which the scale and pose information of the faces

is not available. For these architectures, the inference process for a given set of variables X and

Y involves minimizing over these unseen variables Z:

E(Y, X) = min
z∈Z

E(z, Y,X). (1.32)

Such hidden variables are called latent variables, by analogy with a similar concept in proba-

bilistic modeling. The fact that the evaluation of E(Y, X) involves a minimization over Z does

not significantly impact the approach described so far, but the use of latent variables is so ubiq-

uitous that it deserves special treatment. In particular, some insight can be gained by viewing the

inference process in the presence of latent variables as a simultaneous minimization over Y and

Z:

Y ∗ = argminy∈Y,z∈ZE(z, y,X). (1.33)

40

Latent variables can be viewed as intermediate results on the way to finding the best output Y . At

this point, one could argue that there is no conceptual difference between the Z and Y variables:

Z could simply be folded into Y . The distinction arises during training: we are given the correct

value of Y for a number of training samples, but we are never given the correct value of Z.

Latent variables are very useful in situations where a hidden characteristic of the process

being modeled can be inferred from observations, but cannot be predicted directly. One such

example is in recognition problems. For example, in face recognition the gender of a person

or the orientation of the face could be a latent variable. Knowing these values would make

the recognition task much easier. Likewise in invariant object recognition the pose parameters

of the object (location, orientation, scale) or the illumination could be latent variables. They

play a crucial role in problems where segmentation of the sequential data must be performed

simultaneously with the recognition task. A good example is speech recognition, in which the

segmentation of sentences into words and words into phonemes must take place simultaneously

with recognition, yet the correct segmentation into phonemes is rarely available during training.

Similarly, in handwriting recognition, the segmentation of words into characters should take

place simultaneously with the recognition.

When the best value of the latent variable for a given X and Y is ambiguous, one may

consider combining the contributions of the various possible values by marginalizing over the

latent variables as opposed just minimizing over them. In particular, in the presence of latent

variables the joint conditional probability distribution over Y and Z given X is given by the

Gibbs distribution

P (Z, Y |X) =
e−βE(Z,Y,X)∫

y∈Y,z∈Z e−βE(z,y,X)
. (1.34)

The marginalizing over the latent variables Z gives

P (Y |X) =

∫
z∈Z e−βE(z,Y,X)∫

y∈Y,z∈Z e−βE(z,y,X)
. (1.35)

41

Then finding the best Y after this marginalization over Z reduces to computing

Y ∗ = argminy∈Y −
1
β

log
∫

z∈Z
e−βE(z,y,X). (1.36)

This is actually a conventional energy-based inference in which the energy function has merely

been redefined from E(Z, Y, X) to F(Z) = − 1
β log

∫
z∈Z e−βE(z,Y,X), which is the free energy

of the ensemble {E(z, Y,X), z ∈ Z}. The above inference formula by marginalization reduces

to the previous inference formula by minimization when β →∞ (zero temperature).

1.4.1 An Example of Latent Variable Architecture

To illustrate the concept of latent variables, we consider the task of face detection: determine

whether a face is present in a small image or not. Imagine that we are provided with a face

detecting function Gface(X) which takes a small image window as input and produces a scalar

output. It outputs a small value when a human face fills the input image, and a large value if

no face is present (or if only a piece of a face or a tiny face is present). An energy-based face

detector built around this function is shown in Figure 1.6(a). The variable Y controls the position

of a binary switch (1 = “face”, 0 = “non-face”). The output energy is equal to Gface(X) when

Y = 1, and to a fixed threshold value T when Y = 0:

E(Y, X) = Y Gface(X) + (1− Y)T.

The value of Y that minimizes this energy function is 1 (face) if Gface(X) < T and 0 (non-face)

otherwise.

Let us now consider the more complex task of detecting and locating a single face in a large

image. We can apply our Gface(X) function to multiple windows in the large image, compute

which window produces the lowest value of Gface(X), and detect a face at that location if the

value is lower than T . This process is implemented by the energy-based architecture shown

42

E(W,Y, X)

X Y

"face" (= 1)
or

"no face" (= 0)

GW (X) TGface(X)

X Y

"face" (= 1)
or

"no face" (= 0)

GW (X)

T

Z

E(W,Z, Y, X)

position
of

face

Gface(X) Gface(X) Gface(X) Gface(X)

(a) (b)

Figure 1.6: (a): Architecture of an energy-based face detector. Given an image, it outputs a small value

when the image is filled with a human face, and a high value equal to the threshold T when there is no

face in the image. (b): Architecture of an energy-based face detector that simultaneously locates and

detects a face in an input image by using the location of the face as a latent variable.

in Figure 1.6(b). The latent “location” variable Z selects which of the K copies of the Gface

function is routed to the output energy. The energy function can be written as

E(Z, Y, X) = Y

[
K∑

k=1

δ(Z − k)Gface(Xk)

]
+ (1− Y)T, (1.37)

where the Xk’s are the image windows. Locating the best-scoring location in the image consists

in minimizing the energy with respect to Y and Z. The resulting value of Y will indicate whether

a face was found, and the resulting value of Z will indicate the location.

43

1.5 Summary

EBMs provide a unified framework for inference and learning. They capture dependencies

among variables by assigning a scalar energy to each configuration of the variables. Given a

training set S, building and training an energy-based model involves specifying four compo-

nents:

1. First is the architecture of the model. This is essentially the internal structure of the energy

function E(W,Y, X). Its design is governed by the prior knowledge that one might have

about the task to be solved. No restriction is placed on the functional form of E.

2. The second component is the inference algorithm. This involves specifying the method

for finding a value of Y that minimizes the energy function E(W,Y, X) for any given X .

If there are latent variables involved in the model, then one is free to either marginalize

or minimize over them in this step. It again depends on the problem at hand and what is

sought. The only restriction on the inference algorithm is that it should seek to find a Y

that minimizes the energy function E.

3. The third component is the loss function. The loss function L(W,S) measures the quality

of an energy function using the training set. The design of the loss function should be

such that its minimization should find an energy function E such that the value(s) of Y

for which E attains a minimum corresponds to the correct answer(s). Note that the design

of the loss function is independent of what inference algorithm one uses. Whether one is

marginalizing over the latent variables, or minimizing over them does not contribute in its

design.

4. The last component that must be specified while designing an energy based learning ma-

chine is the learning algorithm. This is the method for finding the set of parameters W

44

that minimizes the loss functional over the family of energy functions E , given the training

set. Again, how one minimizes over the parameters W does not affect the design of the

energy function. Though the shape of the loss function in the parameter space W might

be a factor in selecting a learning algorithm. For instance, for convex loss functions one

might use second order methods, while for non-convex functions gradient descent type

methods might work best.

45

2
FACTOR GRAPHS FOR ENERGY BASED

MODELS

In the previous chapter we discussed how energy-based models provide more flexibility in the

design of the architecture of learning machines over probabilistic models because of lack of

normalization. We discussed how learning can be made more efficient when instead of pulling

up on the energies of every answer (as in the NLL loss function in probabilistic models), one

only pulls up on the energies of the most offending incorrect answer. To this end we introduced

a number of “more general” loss functions, besides the NLL loss, whose contrastive term does

not involve integrating over the potentially huge space of answer variables. However, there

exists many situations where the energy is a function of very large number of variables. In such

scenarios the tasks such as marginalization or minimization over the set of hidden variables, or

even finding the most offending incorrect answer might be intractable. But when the full energy

function (which we call global energy function) can be expressed as a sum of a number of local

energy functions, then one can exploit this structure and design efficient inference algorithms.

Factor Graphs are a useful tool that can compactly represent these relationships among energy

functions. The framework also defines a way of doing inference using an algorithm based on the

“message passing” scheme which exploits this structure of the energy function. Factor graphs

were first introduced by Kschischang et al. in (Kschischang et al., 2001b), primarily in the

light of probabilistic learning. However they can be studied outside the context of probabilistic

models and we show that energy-based framework can be applied to them.

We first give a brief introduction to factor graphs for energy-based models in general, and

then discuss a “message passing” based algorithm which is used to do efficient inference using

46

them. This is called the logsumexp-sum algorithm. We then discuss the various algebras in which

algorithms similar to the logsumexp-sum algorithm can be applied. This leads to a number

of variants of this algorithm called the sum-product algorithm, min-sum algorithm, the max-

product algorithm. We then discuss a general approximate inference algorithm in factor graphs

in situations where the above message passing algorithms become infeasible. Finally we shed

some light on training in an energy-based factor graph.

2.1 Factor Graphs

More often than not we have to deal with complicated functions of a large number of variables

to perform tasks, such as, marginalization over one or a set of variables, or computing the con-

figuration of variables that minimizes or maximizes the value of the function. One approach is to

design algorithms which directly deal with the “global” energy function. However, this is likely

to be infeasible in most cases, especially when the number of variables is large and the cardinal-

ity of each variable is also large or the variables are continuous. Another approach is to exploit

the manner in which the “global” energy function can be written as a sum of “local” functions

each of which depends only on a subset of variables. In this case the algorithm is split into a

number of parts each of which deals with a particular “local” energy function, and hence with

only a subset of variables, making the computations efficient. Such factorization can be visual-

ized using factor graphs, which is a bipartite graph that expresses which variables are arguments

to which local functions. In addition there is a generic algorithm, called the logsumexp-sum algo-

rithm, that operates on the factor graph and computes the various marginal functions associated

with the global function. This algorithm is based on the message passing regime (Kschischang

et al., 2001b).

Consider, for example, the energy function of five variables E(x1, x2, x3, x4, x5). Suppose

47

Ea(x1) Eb(x2) Ec(x1, x2, x3) Ed(x3, x4) Ee(x3, x5)

x1 x2 x3 x4 x5

Figure 2.1: Factor graph representing the factorization E(x1, x2, x3, x4, x5) = Ea(x1) + Eb(x2) +

Ec(x1, x2, x3) + Ed(x3, x4) + Ee(x3, x5).

that this function can be written as a sum of five other energy functions, such that

E(x1, x2, x3, x4, x5) = Ea(x1) + Eb(x2) + Ec(x1, x2, x3) + Ed(x3, x4) + Ee(x3, x5). (2.1)

The function E is called the global energy function and the functions Ea, Eb, Ec, Ed, Ee are

called local energy functions. This factorization can be expressed using a factor graph shown in

Figure 2.1. This graph consists of two types of nodes. Each node in the shape of a hollow circle

corresponds to one variable, and is called the variable node. Each node in the shape of a filled

square corresponds to one local energy function (a factor), and is called factor node (also called

the subset node). An edge in this graph connects the variable node xi to a factor node Ej if and

only if the variable xi is an argument to the local function Ej .

More formally, let X = {xi : i = 1 . . . n} be the set of variables associated with the global

function. Let N = {1, . . . , n} be the set of indexes of these variables. For each i ∈ N , let xi

take on the value from the set Ai. The set Ai could either be discrete and finite for every i, or it

could be continuous. For the moment, in the interest of simplicity, we assume that it is discrete

and finite. We later deal with the continuous case. Let S be a non-empty subset of the index set

N , and let us denote by XS the subset of X whose indexes are in S. A particular assignment

48

of values to variables in the set X is referred to as the configuration of the variables. The

configurations of variables can be viewed as the elements of the cartesian product T =
∏

i∈N Ai,

called the configuration space.

Let E be a function that takes the elements of the set X as its arguments. Thus the domain

of E is T , and let R be the co-domain of E. We refer to this function E : T → R, as the global

energy function. The co-domain R could be any semiring, but for the moment we assume it to

be the set of real numbers. Let Q be the collection of the subsets of N , not including the empty

set. Suppose the function E can be written as a sum of a number of functions whose arguments

are indexed by the elements of Q. That is

E(x1, . . . , xn) =
∑
S∈Q

ES(XS). (2.2)

For every S ∈ Q, the function ES is called a local energy function. The factor graph corre-

sponding to the equation 2.2 is a bipartite graph with the vertex set N ∪ Q, and the edge set

{{i, S} : i ∈ N,S ∈ Q, i ∈ S}. The nodes which are elements of N (represented by hollow

circles) are called variable nodes, and the nodes which are elements of Q (represented by shaded

squares) are called factor nodes or subset nodes. There is an edge connecting a variable node i

to a factor node ES if and only if, the index i belongs to the set S. Hence a factor graph can be

viewed as a graphical representation of the relation “element of” in NxS.

2.1.1 Factor Graph Examples

We now give some practical examples where the factor graphs are a very useful tool. However

the examples we discuss are primarily from probabilistic models, and hence their is a slight dif-

ference between the factorization of the global function discussed above and here. In particular,

in these models the global function factorizes into a product of local functions rather than the

sum of functions. Thus the summation operator in equation 2.2 is replaced by a product opera-

49

tion. Factor graphs has a close relationship with a number of directed and undirected graphical

models, such as, Markov Chains, Hidden Markov Models (HMMs), Markov Random Fields,

and Bayesian Networks. The key feature of all these models is that they imply a non-trivial fac-

torization of the joint probability mass function. This factorization can be represented in terms

of factor graphs and the generic message passing algorithm and its variants can be applied to

them, which boils down to applying the forward/backward algorithm, the Viterbi algorithm, the

iterative “turbo” decoding algorithm and the belief propagation algorithm.

Markov Random Fields

Consider first the case of Markov random fields, which is an undirected graphical model. Let

V = {v1, . . . , vn} be the set of vertices of the undirected graph, each of which correspond to

a random variable. We know that under very general conditions, such as, positivity of the joint

probability density, the joint probability mass function of an MRF can be expressed in terms of

a collection of Gibbs potential functions, defined on the set Q of maximal cliques in the MRF

p(v1, . . . , vn) = Z−1
∏
E∈Q

gE(VE). (2.3)

This equation has the precise structure needed to represent it in terms of a factor graph, where

there is one factor corresponding to each maximal clique potential. In fact, in this case the

factor graph representation is preferred over the straight forward undirected graph representation,

because two distinct factorization can yield the same undirected graph, while it will result in

distinct factor graphs.

Bayesian Networks

Bayesian networks are directed graphical models that captures dependencies between a collec-

tion of random variables. Each vertex v in a Bayesian network is associated with a random

variable. Let a(v) be the set of parent vertices of the vertex v (the set of vertices from which

50

there’s an edge to v). Then the joint probability distribution represented by the Bayesian network

takes the form

p(v1, . . . , vn) =
n∏

i=1

p(vi|a(vi)). (2.4)

If a(vi) = ∅, (vi has no parents), then we take p(vi|∅) = p(vi). Again this factorization can

be represented by a factor graph. Furthermore, when the sum-product algorithm is applied to a

factor graph corresponding to the Bayesian network the result is the Pearl’s “belief propagation

algorithm” (Kschischang et al., 2001b).

2.2 Efficient Inference in Factor Graphs

We now informally show how this factorization property of energy functions can be exploited to

achieve computationally efficient algorithms for inference. Consider the global energy function

E(x1, x2, x3, x4, x5). Let all the five variables x1, . . . , x5 be unknown variables, possibly latent

variables. For notational simplicity we do not write the known variables, because their values

remain fixed during inference. As discussed in chapter 1, section 1.4, inference would involve

marginalization over these variables, which involves computing

− 1
β

log
∑

x1,x2,x3,x4,x5

e−βE(x1,x2,x3,x4,x5). (2.5)

For small values of β (the inverse temperature) the above marginalization reduces to a minimiza-

tion operation over the energy function

min
x1,x2,x3,x4,x5

E(x1, x2, x3, x4, x5). (2.6)

Since β is a constant, for notational simplicity we remove it from the expression. At this point

let us define an operator called the logsumexp operator and denote it by “⊕”. Let x1, . . . , xN be

a set of variables, and f(x1, . . . , xN) be some function of these variables, then the logsumexp of

51

the function f with respect to these these set of variables, denoted by ⊕x1,...,xN f is defined as

⊕x1,...,xN f = − log
∑

x1,...,xN

e−f(x1,...,xN). (2.7)

Consider again the global function of five variables E(x1, x2, x3, x4, x5) given by equa-

tion 2.1, which is factorized into five local functions. Let each xi take on values from the discrete

and finite set Ai. Thus the domain of E is the set T = A1 ×A2 ×A3 ×A4 ×A5. Let R be the

co-domain of E, which could be, for example, a set of real numbers.The inference procedure for

this system involves computing

F = − log
∑

x1,x2,x3,x4,x5

e−E(x1,x2,x3,x4,x5) (2.8)

= ⊕x1,...,x5E(x1, x2, x3, x4, x5) (2.9)

Let us assume that each Ai has a cardinality of 10. One way to compute the above marginaliza-

tion is to directly sum over the exponentials of the global energy function E over the variables

x1, x2, x3, x4, x5. The number of summations required to achieve this is 104. However, if we

use the factorization given by equation 2.1 and exploit the distributive law, then the summation

over the variables can be broken down in the following way:

F

=− log
∑

x1,x2,x3,x4,x5

e−E(x1,x2,x3,x4,x5)

=− log
∑

x1,x2,x3,x4,x5

e−[Ea(x1)+Eb(x2)+Ec(x1,x2,x3)+Ed(x3,x4)+Ee(x3,x5)]

=⊕x1,...,x5 (Ea(x1) + Eb(x2) + Ec(x1, x2, x3) + Ed(x3, x4) + Ee(x3, x5))

=− log
∑
x1

e−Ea(x1) ·

(∑
x2

e−Eb(x2) ·

(∑
x3

e−Ec(x1,x2,x3) ·

(∑
x4

e−Ed(x3,x4)

)(∑
x5

e−Ee(x3,x5)

)))
(2.10)

52

We now show how the logsumexp operator distributes in a similar way. Let us denote by t the

term

t = e−Eb(x2) ·

(∑
x3

e−Ec(x1,x2,x3) ·

(∑
x4

e−Ed(x3,x4)

)(∑
x5

e−Ee(x3,x5)

))
(2.11)

Then the expression in equation 2.10 can be written as

F = − log
∑
x1

e−Ea(x1) ·
∑
x2

t (2.12)

= − log
∑
x1

e
log

“
e−Ea(x1)·

P
x2

t
”

(2.13)

= − log
∑
x1

e
log e−Ea(x1)+log

P
x2

t (2.14)

= − log
∑
x1

elog e−Ea(x1)+⊕x2 t (2.15)

= ⊕x1 (Ea(x1) +⊕x2t) (2.16)

Thus the logsumexp operator distributes over sum. Expanding t above and proceeding in the

same way, F in equation 2.10 can be written as

F

=− log
∑

x1,x2,x3,x4,x5

e−[Ea(x1)+Eb(x2)+Ec(x1,x2,x3)+Ed(x3,x4)+Ee(x3,x5)]

=⊕x1,...,x5 (Ea(x1) + Eb(x2) + Ec(x1, x2, x3) + Ed(x3, x4) + Ee(x3, x5))

=⊕x1 (Ea(x1) +⊕x2 (Eb(x2) +⊕x3 (Ec(x1, x2, x3) +⊕x4Ed(x3, x4) +⊕x5Ee(x3, x5))))

(2.17)

Thus the number of summations in this case is 10 × 10(10 + 10) = 2000. These ideas can be

generalized to any tree shaped factor graph, and the result is what we call the logsumexp-sum

algorithm, for efficiently computing the marginals with respect to all the variables. It is based on

passing “messages” between the nodes of the graphs along its edges (Kschischang et al., 2001b).

53

A “message” sent between two nodes can be seen as an appropriate description of the result of

the log-sum operation applied to a part of the energy function.

2.2.1 The logsumexp-sum Algorithm

The logsumexp-sum algorithm works by passing messages between nodes in a distributed manner

to compute the log-sum of the global energy function with respect to all the unknown varaibles.

To get an intuition behind message passing, imagine that each node of the factor graph has a pro-

cessor associated with it and the edges are the channels by which these processors communicate

with each other. These processors send some appropriate description of the result of the log-sum

operator applied to a part of the energy function (the messages) to each other. We first explain a

message passing algorithm that computes the log-sum of the energy function E with respect to

its unknown variables when the underlying factor graph is does not have cycles. The case where

the factor graph has cycles is handled separately.

Ea(x1)

Eb(x2)

Ec(x1, x2, x3)

Ed(x3, x4)

Ee(x3, x5)x1

x2

x3 x4

x5

root node

r

Figure 2.2: The factor graph of figure 2.1 drawn in the form of a tree with arrows indicating the flow of

messages. The node corresponding to the variable x1 is chosen as the arbitrary root node.

54

Let us denote by v the variable node corresponding to the variable xv. Let the cycle-free

factor graph be rooted at the node r. In the Figure 2.2 it is the node corresponding the variable

x1. The computations begins at the leaf nodes and the messages are sent upwards from the leaf

nodes to the root node. Let the message sent from the variable node to the parent factor node

be denoted by µ, and the message sent from the factor node to the variable node be denoted

by ξ. If the leaf node v is a variable node then it sends a trivial message, an identity function

(additive identity), to its parent w. If the leaf v is a factor node then it sends a description of

itself to its parent w. See figure 2.3. Each non leaf node v waits for the messages from all of

its children before sending a message to its parent w. If the node v is a variable node, and it

has received messages from all of its children, the message sent to its parent w is the sum of

messages received from all its children. That is

µv→w(xv) =
∑

h∈n(v)\{w}

ξh→v(xv). (2.18)

If the node v is a factor node corresponding to the local energy function Ej , the message sent to

its parent w is computed using a two step process. In the first step the function Ej is added to the

sum of messages received from its children. The second step involves applying the logsumexp

operator to the result with respect to all the variables except the variable associated with the

parent node w. That is

ξv→w(xv) = ⊕∼{xw}

Ev(Xv) +
∑

h∈n(v)\{w}

µh→v(xv)

 , (2.19)

where Xv is the collection of variables associated with the local energy function Ev, and the

operator ⊕∼xw means that you take a logsumexp with respect to all the variables except xw. We

call this the logsumexp summary operator. This is similar to the summary operator introduced by

Kschischang et al. in (Kschischang et al., 2001b). See figures 2.3 (c) and (d). The computation

terminates at the root node r associated with the variable xr where the final result of the log-sum

55

µv→w = 0

v

w

(a)

ξv→w = Ev(Xv)

v

w

(b)

µv→w(xv) =
∑

h∈n(v)\{w}

ξh→v(xv)

v1

v

v2 v3

w

(c)

ξv→w(xv) = ⊕∼{xw}

Ev(Xv) +
∑

h∈n(v)\{w}

µh→v(xv)

v1

v

v2 v3

w

(d)

Figure 2.3: Figure showing the messages passed between various nodes in the factor graph during the

logsumexp-sum algorithm.

operation is obtained by taking the sum of all the messages received at xr and performing the

final logsumexp to the result with respect to xr.

Note that a message passed on an edge between the variable node xk and the factor node

Ej , either from the variable node to factor node, or from the factor node to the variable node,

is a single argument function of xk, the variable associated with the edge. In fact one can

show (Kschischang et al., 2001b) that this message is simply a logsumexp summary for xk of

the sum of the local functions descending from the vertex that originates the message. Since the

algorithm operates by computing a number of logsumexps and sums, it is called the logsumexp-

sum algorithm.

56

2.2.2 Other Algebras

The logsumexp-sum algorithm of the previous section allows us to efficiently compute the marginals

over the unknown variables of the global energy function expressed as a factor graph. However

instead of computing the marginals with respect to the unobserved variables one could also seek

to minimize the energy function with respect to them. This constitutes an approximate inference

procedure. In addition, one might also want to know the configuration of variables that achieve

this value. Variants of the logsumexp-sum algorithm can be used to answer these questions.

Min-Sum and Max-Sum Algorithms

In the logsumexp-sum algorithm we made use of the following distributivity property of the “+”

operator over the logsumexp operator ⊕

a + (b⊕ c) = (a + b)⊕ (a + c) (2.20)

In equation 2.5, when β → −∞ the inference formula reduces to a minimization process. That

is

F

= min
x1,x2,x3,x4,x5

E(x1, x2, x3, x4, x5)

= min
x1,x2,x3,x4,x5

Ea(x1) + Eb(x2) + Ec(x1, x2, x3) + Ed(x3, x4) + Ee(x3, x5) (2.21)

In order to compute this, one can similarly exploit the distributivity of the “+” operator over min

operator

x + min{y, z} = min{x + y, x + z}. (2.22)

57

Thus the computation of F in equation 2.5 becomes

F

= min
x1,x2,x3,x4,x5

E(x1, x2, x3, x4, x5)

=min
x1

(
Ea(x1) + min

x2

(
Eb(x2) + min

x3

(
Ec(x1, x2, x3) + min

x4

Ed(x3, x4) + min
x5

Ee(x3, x5)
)))

(2.23)

In general the messages from the variable node to factor node are

µv→w(xv) =
∑

h∈n(v)\w

ξh→v(xv). (2.24)

Messages from the factor node to the variable node are of the form

ξv→w(xv) = min
∼{xw}

Ev(Xv) +
∑

h∈n(v)\w

µh→v(xv)

 , (2.25)

where the operator min∼{xw} involves minimization over all variables except the variable xw. If

the leaf node is a variable node, the message sent to its parent is the additive identity function 0.

If the leaf node is a factor node it sends the description of the local energy function associated

with it. These modifications lead to what we call the min-sum algorithm. When working with

the negative energies, the minimization operation is replaced by a maximization operation above

and we have the max-sum algorithm.

The min-sum algorithm can also be seen as computing the shortest path in a trellis graph.

For example consider an energy function E(y1, y2, z1, z2, z) which can be expressed as a sum of

four energy functions

E(y1, y2, z1, z2, z) = Ea(x, z1) + Eb(x, z1, z2) + Ec(z2, y1) + Ed(y1, y2), (2.26)

where y = [y1, y2] are the output variables and z = [z1, z2] are the latent variables.

58

Y1 Y2Z2Z1

0 0 0

0

1 1 1 1

2

E
a (X, 0)

Ea
(X

, 1)

Eb(X, 1, 1)

E
b (X

, 1, 0)

Eb(X, 0, 0)

E b
(X

, 0,
1)

0

0

0
Ec(1, 1)

E
c (1, 0)

E c
(0,

1)

Ec(0, 0) Ed(0, 0)

Ed
(0,

1)

Ed(1, 1)

Ed(1
, 2)

E
d (1, 0)

E d
(0,

2)

Figure 2.4: Each possible configuration of z and y can be represented by a path in a trellis. Here

z1, z2, y1 are binary variables and y2 is a ternary variable.

Assume that the variables z1, z2, and y1 can take two values and y2 can take three values.

The idea is to represent the set of possible configurations in the form of a trellis graph as shown

in the figure 2.4. The graph has a single start node and a single end node. The nodes in each of

the other column of the graph represents the possible values that the corresponding variable can

take. Each edge is weighted by the energy of the factor for the corresponding values of its input

variables. A path from the start node to the end node represent one possible configuration of the

variables. The sum of the weights along a path is equal to the total energy of that configuration.

Hence the inference problem reduces to finding the shortest path, which will be the path with

the lowest energy. This can be obtained by dynamic programming methods such as the Viterbi

algorithm, or the A∗ algorithm. The complexity of this algorithm is equal to the number of edges

in the graph, which in this case is 16. This is exponentially smaller than the number of paths

in general (corresponding to the total number of possible configuration), which in this case is

2× 2× 2× 3 = 24. Furthermore, if we are only interested in finding the values of z for a fixed

y and x, E(y, x) = minz′∈Z E(y, z′, x), we simply restrict the shortest path algorithm to the

edges that are compatible with the given values of y and x.

59

In many situations we not only seek the minimum value of the energy function but also the

configuration of variables which result in such a minimum. This can be achieved by storing

the values of variables at each node which results in the minimum value of the associated local

energy function. The actual configuration can then be obtained by backtracking from the root to

the leaves, collecting the stored values of the variables.

Sum-Product and Max-Product Algorithm

From the above discussion and the example, the logsumexp-sum algorithm is used to compute

the value of F which is of the form

F = − log
∑

x1,x2,x3,x4,x5

e−E(x1,x2,x3,x4,x5) (2.27)

= − log
∑

x1,x2,x3,x4,x5

e−[Ea(x1)+Eb(x2)+Ec(x1,x2,x3)+Ed(x3,x4)+Ee(x3,x5)]. (2.28)

Taking the negative exponential of F we get

G

= e−F ,

=
∑

x1,x2,x3,x4,x5

e−[Ea(x1)+Eb(x2)+Ec(x1,x2,x3)+Ed(x3,x4)+Ee(x3,x5)],

=
∑

x1,x2,x3,x4,x5

e−Ea(x1)e−Eb(x2)e−Ec(x1,x2,x3)e−Ed(x3,x4)e−Ee(x3,x5),

=
∑

x1,x2,x3,x4,x5

Ga(x1)Gb(x2)Gc(x1, x2, x3)Gd(x3, x4)Ge(x3, x5),

=
∑
x1

Ga(x1)
∑
x2

Gb(x2)
∑
x3

Gc(x1, x2, x3)(
∑
x4

Gd(x3, x4))(
∑
x5

Ge(x3, x5)). (2.29)

where Ga(x1) = e−Ea(x1) and so on. This is exactly the sum-product algorithm discussed

in (Kschischang et al., 2001b). In the general case over a tree based factor graph, the messages

60

passed from the variable node v to its sole parent node which is a factor node w is given by

µv→w(xv) =
∏

h∈n(v)

ξh→v(xv). (2.30)

If the node v is a factor node then the message sent to its solve parent node w, which is a variable

node is given by

ξv→w(xv) =
∑
∼{xw}

Gv(Xv)
∏

h∈n(v)

ξh→v(v)

 , (2.31)

where
∑

∼{xw} is the summary operator defined in (Kschischang et al., 2001b), and it involves

taking the sum over all the variables except xw. Let R be the co-domain of the function G. The

sum-product algorithm makes use of the distributivity of the multiplication operator “.” over the

sum operator “+” on the co-domain R of G. That is

a · (b + c) = a · b + a · c (2.32)

where a, b, c ∈ R.

The function G, usually in the context of sum-product algorithm, represents a joint proba-

bility distribution, either normalized or un-normalized. In such a case there are many situation

where one seeks the configuration of variables that maximizes this joint probability. The result

is the max-product algorithm which is identical to the sum-product algorithm with the summa-

tion operator replaced by the max operator. A slight variant of this algorithm can be used to

also return the configuration of variables that maximizes the joint probability. The basis of the

max-product algorithm is the application of distributive law of the multiplication operator over

the max operator under very mild conditions, on the co-domain R of the function G. That is

max{ab, ac} = a ·max{b, c}, (2.33)

when a ≥ 0.

61

This idea is readily generalized to arbitrary tree structured factor graphs. The message pass-

ing scheme works in exactly the same was as in the sum-product algorithm. The difference

though is in the messages passed. If v is a variable node the message that it sends to its parent w

is of the form

µv→w(xv) =
∏

h∈n(v)

ξh→v(xv), (2.34)

where n(v) are the neighboring nodes of v. If however v is a factor node then the message sent

to its parent w is

ξv→w(xv) = max
∼{xw}

Gv(Xv)
∏

h∈n(v)

µh→v(v)

 , (2.35)

where the operator max∼{w} is akin to the “summary” operator except it is for the max operator:

take the max of the argument over all the variables except w. The final maximization is per-

formed over the product of all the messages arriving at the root node. This gives the maximum

value of the global function G. Note that the choice of the root node is arbitrary and the final

result does not depend on it.

As shown in (Kschischang et al., 2001b), all the above modifications to the sum-product

algorithm are actually nothing but the sum-product algorithm applied to different semirings. In

general, if the co-domain of the global function is any semiring with two operations “+” and “.”

that satisfies the distributive law

a · (b + c) = a · b + a · c, (2.36)

∀a, b, c ∈ R. Then in any such semirings, a product of local functions is well defined, as is the

notion of summation of values of g. In addition the “summary” operator is also well defined,

and hence the sum-product algorithm can be applied to it.

62

2.3 General Inference in Factor Graph Models

If during the process of inference we are seeking to minimize over the latent variables, we can

exploit the knowledge of the structure of the energy function to perform efficient inference using

the logsumexp-sum type algorithm over the corresponding factor graph. However there may be

problem instances where we are required to marginalize over the latent variables. As discussed

in section 1.4 of chapter 1 the process of inference (finding the best Y that minimizes the energy)

becomes

Y ∗ = argminy∈Y −
1
β

log
∫

z∈Z
e−βE(z,y,X), (2.37)

which is a conventional energy-based inference in which the energy function has been redefined

to

F = − 1
β

log
∫

z∈Z
e−βE(z,Y,X). (2.38)

This is the free energy of the ensemble {E(z, Y,X), z ∈ Z}.

For a number of interesting architectures of the energy function E, it is difficult to compute

the free energy F because the integral on the left hand side is intractable to compute. Hence

one must resort to computing an approximation of it. Variational Free Energy Minimization is a

method that tries to compute an approximation of the above free energy. The idea is to define a

class of “easy” surrogate distribution Q(Z; θ) over the latent variables Z, parameterized with pa-

rameters θ, and optimize the parameters θ to search for the instance of the distribution Q(Z, θ∗)

which helps compute an upper bound of the free energy function. The class of distributions is

“easy” in the sense that operations such as marginalization and expectation over them can be

performed easily.

The details of the method are as follows. The free energy equation can be written as

F = − 1
β

log
∫

z∈Z
Q(Z; θ)

e−βE(z,Y,X)

Q(Z; θ)
. (2.39)

63

From Jensen’s inequality we know that for a concave function G, the following holds

G

[∫
X

Q(X)F (X)
]
≥
∫

X
Q(X)G(F (X)), (2.40)

when

0 ≤ Q(X) ≤ 1 ∀X and

∫
X

Q(X) = 1. (2.41)

Thus we have

− log
[∫

X
Q(X)F (X)

]
≤ −

∫
X

Q(X) log F (X). (2.42)

Combining equations 2.39 and 2.42, we get

F = − 1
β

log
∫

z∈Z
Q(z; θ)

e−βE(z,Y,X)

Q(z; θ)
(2.43)

≤ − 1
β

∫
z∈Z

Q(z; θ) log
e−βE(z,Y,X)

Q(z; θ)
(2.44)

=
∫

z∈Z
Q(z; θ)E(z, Y,X) +

1
β

∫
z∈Z

Q(z; θ) log Q(z; θ). (2.45)

The first term
∫
z∈Z Q(z; θ)E(z, Y,X) in equation 2.45 denoted by < E(Z, Y, X) >Q(Z;θ) is

also called average energy. The second term
∫
z∈Z Q(z; θ) log Q(z; θ) denoted by−TS(Q(Z; θ))

is the entropy of the distribution and is also called the inverse temperature.

Thus the upper bound on the free energy is given by

F ≤
∫

z∈Z
Q(z; θ)E(z, Y,X) +

1
β

∫
z∈Z

Q(z; θ) log Q(z; θ). (2.46)

Finding an approximate value of the free energy then boils down to minimizing the upper bound

with respect to the parametric distribution Q(Z; θ).

2.4 Learning in Factor Graphs

Learning in energy based factor graphs follows the same underlying learning methodology as in

a standard energy based model discussed in chapter 1. The first step is to choose the architecture

64

of the energy function E. In this case it could be as complex as any of the factor graphs discussed

above that capture the dependencies among different variables. In fact, as we show in the next

chapter, the architecture could be complex enough to even capture the dependencies among vari-

ables associated with multiple samples. Once chosen, the process of learning involves choosing

an appropriate loss function whose minimization will lead to adjusting the parameters of energy

function in such a way that inference over it gives the correct answer. Any of the loss functions

discussed in chapter 1 and (LeCun et al., 2006) could be used. The decision of choosing a loss

function is independent of the choice of architecture of the factor graph (energy function). How-

ever there are some guidelines which specify which combinations of loss and energy functions

do not work. These are discussed in chapter 6. Choosing a negative log likelihood loss function,

for example, will require computing the normalization constant (the partition function), imply-

ing some restriction on the choice of the architecture of the energy function. However using

contrastive loss functions other than NLL loss does not require computing the normalization

constant. Hence one is free to design any complex architecture of the energy function capable of

capturing all the dependencies among variables.

In contrast probabilistic models, particularly the undirected models such as Markov Net-

works, always require the computation of a global normalization constant. Even though the like-

lihood function in these models can be expressed as a product of factors, the global normalization

constraint couples the parameter estimation among factors, ruling out the closed-form solution.

For this reason one has to settle for simple functional forms for the potentials, such as, log-linear

in parameter space. With log-linear potential functions, the likelihood function becomes concave

and can be maximized using gradient ascent based procedures. However a key step in computing

the gradient of the likelihood require running the entire inference procedure making the learning

inefficient. This is one of the prices one has to pay for the flexibility of global normalization

in Markov networks. It is not the case with directed models such as Bayesian networks, where

65

the factors (the conditional distributions) are locally normalized. However the flip side of these

networks is that they only capture causal dependencies among variables.

66

3
FACTOR GRAPHS FOR RELATIONAL

REGRESSION

In chapter 2 we showed how one can design efficient inference and learning algorithms when

an energy function can be expressed as a sum of local energy functions each taking a subset of

variables. We discussed the framework of factor graphs which is appropriate in expressing these

relationships among subsets of variables and local energy functions. In this chapter we extend

the factor graph framework to deal with problems in statistical relational learning. In particular

we propose a factor graph model for the problem of relational regression.

We are given a set of N training samples, each of which is described by a sample-specific

feature vector Xi and an answer Y i to be predicted. We will use the collective notation X =

{Xi, i = 1 . . . N}, Y = {Y i, i = 1 . . . N} to denote the entire collection of input and answer

variables. Since we are dealing with regression, each Y i is a single continuous variable, and each

Xi could be a high dimensional vector of continuous variables. A model for relational learning

will take as a single input all the training samples along with the relationship structure among

them and try to learn the uncertainties present in the data by adjusting the parameters of the

model. In energy based framework this translates to having an energy function that takes all the

training samples as its input and tries to adjust the parameters so as to produce correct answers

for new unseen samples whose relationships to the training samples is known. More formally,

when there are no latent variables in the system we have a single global energy function of the

form

E(W,Y,X) = E(W,Y 1, . . . , Y N , X1, . . . , XN). (3.1)

W is the set of parameters to be estimated by learning. As before, this energy function can be

67

used to derive a conditional distribution over the answer variables using a Gibbs distribution

P (Y|X,W) =
e−βE(W,Y,X)∫

Y′∈Y e−βE(W,Y′,X)
, (3.2)

where β is a suitably chosen positive constant, and the set Y is the set of all possible combina-

tions of answer variables Y. Note that this is a huge space of dimension N .

Most applications in the domain of relational learning require the use of hidden (latent)

variables. Let us denote by Z the collection of latent variables associated with the problem.

Then the energy associated with the system is given by

E(W,Z,Y,X) = E(W,Z, Y 1, . . . , Y N , X1, . . . , XN). (3.3)

Again, Z could possibly be a very high dimensional continuous vector. The conditional distri-

bution in the presence of latent variables can be obtained by marginalizing over them to give

P (Y|X,W) =
∫
Z′∈Z

P (Y,Z′|X,W) =
∫
Z′∈Z

e−βE(W,Z′,Y,X)∫
Y′∈Y,Z′′∈Z e−βE(W,Z′′,Y′,X)

. (3.4)

Where Z is the set of all possible values the latent variables Z can take. This marginalization re-

duces down to using equation 3.2 with a new free energy function of the following form (LeCun

et al., 2006):

E(W,Y,X) = − 1
β

log
∫
Z′∈Z

e−βE(W,Z′,Y,X). (3.5)

It is easy to show that for large values of β, the above equation can be approximated by

E(W,Y,X) = min
Z′∈Z

E(W,Z′,Y,X). (3.6)

In other words, the marginalization over Z can be replaced by a simple minimization. This is a

practically incontrovertible assumption that energy based models make. This is because when Z

is continuous and very high-dimensional, a marginalizing over it will be impractical. However,

even such an assumption might not be sufficient to perform tractable inference because when Z

68

is high dimensional and continuous, searching for the minimum is not a trivial task. We show

later how this problem can be potentially avoided by exploiting the structure associated with the

global energy function, if there is any.

Training of this model can be achieved by maximizing the likelihood of the data or by min-

imizing the negative log conditional probability of the answer variables with respect to the pa-

rameters W . This is accomplished by minimizing the negative log likelihood loss L:

L(W,Y,X) = E(W,Y,X) +
1
β

log
∫
Y′∈Y

e−βE(W,Y′,X), (3.7)

where the energy E(W,Y,X) is given by equation 3.5. The second term is the log partition

function. Minmizing this loss with respect to W can be done with a gradient-based method:

W ←W−η∇WL(W,Y,X), where η is a suitably chosen positive-definite matrix. The gradient

of the loss is given by

∇WL(W,Y,X) = ∇W E(W,Y,X)−
∫
Y′∈Y

P (Y′|X,W)∇W E(W,Y′,X) (3.8)

Computing the integral in the contrastive term is intractable in practically all interesting prob-

lems. A lot of effort is spent in trying to approximate it. Sampling based methods discussed in

earlier chapters is one such way. However, energy based models allows the use of more general

loss functions, such as the ones discussed in chapter 1 and in (LeCun et al., 2006), which have a

variety of contrastive terms. The contrastive terms need not just be the integral over all possible

values of answer varaibles.

Given a test sample feature vector X0, the process of inference involves predicting the value

of the corresponding answer variable Y 0 using the learned model. One way of doing this is

to find the maximum-likelihood value of the answer Y 0∗ and return it. This is performed by

minimizing the energy function augmented with the test sample (X0, Y 0). When the latent

69

variables are marginalized inference involves minimizing

Y 0∗ = argminY 0

(
− 1

β
log
∫
Z

e−βE(W,Z,Y 0,...,Y N ,X0,...,XN)

)
. (3.9)

For large values of β the integral over Z reduces to a minimization operation. Thus the inference

reduces to

Y 0∗ = argminY 0

(
min
Z
{E(W,Z, Y 0, . . . , Y N , X0, . . . , XN)}

)
. (3.10)

However there are a number of problems with this system in its present form. First, simply

approximating the marginal over Z with a minimization procedure in equation 3.6 is not suffi-

cient. This is because Z could be a very high dimensional continuous vector, and hence even

minimizing the global energy function with respect to it could be difficult. If the global energy

function has some structure associated with it, for instance if it could be expressed as a sum of

local energy functions, this problem can be circumvented by taking advantage of this structure,

and reducing the potential search space of Z.

Second, when the global energy function is augmented with an additional input X0, equa-

tion 3.10 requires that we search for the value of the latent variables Z that minimize the aug-

mented energy. Clearly repeating this process for every new test sample is not feasible, since

Z could be a very high dimensional and continuous vector. To avoid this problem the energy

function must be carefully constructed in such a way that the addition of a test sample in the

arguments will not require retraining the entire system, or re-estimating the high-dimensional

hidden variable each time a new test sample comes in.

Third, the parameterization of the energy function must be designed in such a way that its

estimation on the training sample will actually result in a good prediction on test samples.

In this chapter we present the framework of Factor Graphs for Relational Regression that

addresses all of the above problems while solving a relational regression problem. We propose

70

efficient inference and learning algorithm for the model. In addition, by allowing log-likelihood

functions that are non-linear in parameter space our framework is flexible enough to capture

complex dependencies among sample points.

3.1 Relational Factor Graphs for Regression

From the previous discussion it is clear that the fundamental problem behind both inference

and learning is the minimization of the energy function with respect to the hidden variables and

other variables. However since the global energy function takes as input the entire set of training

samples as its input and the variable Z could be very high dimensional directly minimizing the

energy function might not be practical. However if we can express the energy function as a sum

of a number of local energy functions, we can hope to do better. In particular, let us denote by I

the index set I = {1, . . . , N}, which indexes the training samples X and Y. If S is a non-empty

subset of I , we denote by XS , the set of input vectors of all the training samples whose index is

in S, and by YS the corresponding outputs of the same training samples. Let Q be a collection

of subsets of I (i.e., a subset of the power set of I) and not including the empty set. Suppose that

the global energy function can be written as a sum of Q local energy functions, such that

E(W,Z,Y,X) =
∑
S∈Q

ES(WS , ZS , YS , XS), (3.11)

where ZS are the subset of hidden variables (ZS ⊂ Z) that are associated with the local energy

function ES , and WS are the subset of parameters associated with ES . In general each of the

local energy function ES could take the same set of all the parameters W as its arguments: this

is called parameter sharing and is a key to learning a relational system. However, with regards

to other variables computational advantage is achieved only when the local energy functions

take only a subset of these variables as input. With the help of equation 3.11, we can express

the model as an energy-based factor graph. When the graph does not have loops we can make

71

use of min-sum type algorithm to efficiently minimize the energy function with respect to Z.

However when the graph has loops, and dependencies among the variables is complex, one

cannot use the min-sum algorithm for there is no guarantee that it will converge. Instead one can

resort to gradient descent type optimization. Note that the difference between the factor graph

discussed this chapter and in chapter 2 is that here we have a single instance of a huge factor

graph capturing the dependencies among different samples. The cardinality of the set Q could

be as large; as large as the number of training samples or even more. Also, since the variables

corresponding to all the samples are fed into the energy function at once and they could interact

with each other in complex ways, we need to make inference on all of them simultaneously. This

process is called collective inference and is essential to relational learning problems.

We now elaborate on these ideas by working with a concrete example. We discuss the rela-

tional factor graph used to solve the problem of house price prediction and show how one can

make use of the factorization property, and design energy functions in a way that leads to effi-

cient inference and learning algorithms. We emphasize that this framework is general enough

and can be applied to any relational regression problems.

3.2 Relational Factor Graph for House Price Prediction

Consider the factor graph shown in figure 3.1. Each sample i (in this case the i-th house) is

associated with a set of features Xi, and a price Y i. Since these variables are observed (given

to us as part of the training data) they are represented by shaded circles. We also associate

two latent variables, denoted by Di and Zi to the i-th house. Since they are un-observed vari-

ables they are represented by hollow circles. Let the collection of these variables be denoted

by D = {D1, . . . , DN} and Z = {Z1, . . . , ZN}. Furthermore, each house i is associated with

two local energy function (factors) Ei
xyz and Ei

zz , represented by shaded squares. The factor

72

Ei
xyz(Wxyz, X

i, Y i, Di) captures the dependencies among the house-specific variables. Thus it

captures the dependence of the price of a house on its individual characteristics, like number of

bedrooms, number of bathrooms etc. We say that it is a non-relational factor because the energy

function associated with it is not a function of variables associated with other houses. This is

a parametric factor with parameters Wxyz . These parameters are shared across all the instances

of the factors Ej
xyz , thus providing parameter sharing in the model, which is essential to robust

parameter estimation and meaningful statistical inference in relational learning. Furthermore,

when a test sample is added to the model, its non-relational factor E0
xyz simply inherits the

shared parameter.

X1Y 1

Z1

X2Y 2

Z2 Z3

X3Y 3D1 D2 D3

E1
xyz E2

xyz E3
xyz

E3
zzE2

zzE1
zz

Figure 3.1: The factor graph used for the problem of house price prediction, showing the connections

between three samples. The factors Ei
xyz capture the dependencies between the features of individual

samples and their answer variable Y i, as well as the dependence on local latent variables Di. The

factors Ei
zz captures the dependencies between the hidden variables of multiple samples. If the sample i

is related to sample j, then there is a link from the variable Zj to the factor Ei
zz .

73

Let us denote by N i, the set of indexes of the samples to which the sample i is related.

For example, in the case of house price prediction this set will include all the spatio-temporal

neighbors of the house i. We call this the neighborhood set of sample i. The second factor

Ei
zz(Wzz, ZN i , D

i) captures the dependencies between related samples via a set of latent vari-

ables ZN i . These dependencies influence the answer Y i for a sample through the intermediary

of hidden variable Di. In the context of house price prediction, Di can represent a smooth es-

timate of the desirability of the location of house i, where this estimate is obtained from the

desirabilities ZN i of the location of the neighboring houses. Since the desirability of a location

is generally very similar to nearby locations, the relational structure may be used advantageously

to enforce a local smoothness constraint on the Zi’s. Note that there is no direct link between Zi

and the factor Ei
zz . This is because using Zi directly in Ei

zz can result in a system that trivially

sets the value of each Zi to the value of output variable Y i and thus minimize the energy. The

factor Ei
zz could either be non-parametric or it could be parametric, in which case Wzz must be

used in such a way that it does not need to be adjusted when a test sample is added to the model.

Again, one way of achieving this is by parameter sharing across all the factors Ej
zz . The factor

Ei
zz is called a relational factor, since it captures the dependencies among different samples.

There are a total of N samples (houses) and each sample has two factors associated with

it. Thus the total number of factors is 2N and the energy of the system is given by the sum of

energies of all the factors

E(W,Z,Y,X) =
N∑

i=1

Ei
xyz(Wxyz, X

i, Y i, Di) + Ei
zz(Wzz, D

i, ZN i). (3.12)

Although the above model is not capturing the direct dependencies between the answer vari-

ables of the samples (that is the direct dependencies between the prices of neighboring houses),

one can easily extend the model to incorporate such a feature. This would involve associating

a third relational factor Ei
yy with each sample i and creating the necessary links. The energy of

74

the system will now be given by

E(W,Z,Y,X) =
N∑

i=1

Ei
xyz(Wxyz, X

i, Y i, Di) + Ei
zz(Wzz, D

i, ZN i) + Ei
yy(Wyy, Y

i, YN i),

(3.13)

where YN i is the set of answer variables associated with the samples related to the sample i (the

spatio-temporal neighbors of the house i).

3.3 Efficient Inference in Relational Factor Graphs

We now discuss two types of inference procedures in the relational factor graph described above.

The first type of inference involves finding the maximum-likelihood value of the answer variable

Y 0 for a test sample X0. The second type of inference is the process of finding the values of

latent variables D and Z that minimize the global energy function E(W,Z,Y,X).

Let us first discuss the prediction of the answer variable Y 0 for a test sample X0. Given the

learned parameters W , a perfectly correct way of predicting the value of Y 0 involves creating

two new factors E0
xyz and E0

zz , linking the factor E0
zz with the latent variables corresponding to

the neighboring training samples, and minimizing the energy with respect to the variables Y 0,

D, and Z

min
y0,D,Z

E(W,Z,D,Y,X) = min
y0,D,Z

N∑
i=1

Ei
xyz(Wxyz, X

i, Y i, Di) + Ei
zz(Wzz, D

i, ZN i) (3.14)

where yo is the output variable of the test sample, whose value we seek. Even though the

global energy function is expressed as a sum of local energy functions, repeating this process of

minimization over the values of latent variables of all the training samples for every test sample

can be extremely expensive. We propose an efficient inference algorithm that does not require

such a minimization. This involves a slight modification to the architecture. In addition we also

argue that the proposed modification to the architecture makes sense intuitively and is not just

an engineering hack.

75

X1Y 1

Z1

X2Y 2

Z2 Z3

X3Y 3D1 D2 D3

E1
xyz E2

xyz E3
xyz

E3
zzE2

zzE1
zz

X3Y 3 D3

E0
zz

E0
xyz

Figure 3.2: The augmented factor graph with factors corresponding to the test sample X0 used for

inference of Y 0.

Once we add the factors corresponding to the test sample X0 (shaded blue in figure 3.2) and

make the necessary connections, the variable D0 whose value we do not know, influences the

values of Zj’s belonging to the set ZN 0 . This in turn influences the values of the rest of the

Zi’s and Di’s. It is this dependence between variables that leads to the expensive optimization

with respect to D and Z during prediction. To alleviate this problem, we make an approximation

by fixing the values of ZN 0 while making a prediction. The inference process comes down to

minimizing the following expression with respect to Y 0 and D0 to compute Y o∗

min
Y 0,D0

E0
xyz(X

0, Y 0, D0) + E0
zz(D

0, ZN 0). (3.15)

This approximation is not just a simple engineering hack but has an intuitive justification, es-

pecially from the context of the house price prediction problem. In the case of house price

prediction the latent variable Zi is interpreted as the actual “desirability” of the location of the i-

th house and the variable Di is interpreted as a smooth estimate of the desirability of the house i

from its neighbors. Since we are interested in predicting the prices of any house in future, clearly

the D0 of a test house at some point in the future cannot influence the past “desirabilities” of the

76

location of training samples.

The second kind of inference involves minimizing the global energy function E(W,D,Z,Y,X)

with respect to the variables D and Z. Because of the complex dependency structure of the en-

ergy on Z, the factor graph could have loops. Hence algorithms, such as, the min-sum algorithm

does not guarantee convergence. While using this framework for house price prediction, the

problem reduces to solving a linear system. One can show that when the optimization prob-

lem with respect to the hidden variables reduces to solving a linear system, solving the system

is equivalent to applying belief-propagation algorithm over the factor graph (Wang and Guo,

2006). We resort to gradient descent algorithm to minimize the energy function with respect to

both Z and D, and hence solve the system. The total energy associated with the sample i is the

sum of energies of the two factors Ei
xyz and Ei

zz . That is

Ei(Di, ZN i , Y i, X i) = Ei
xyz(Y

i, X i, Di) + Ei
zz(D

i, ZN i). (3.16)

Now consider the minimization of this local energy function with respect to the variables Di and

ZN i . One approximation that we make here is that instead of minimizing with respect to Di

and ZN i simultaneously we first minimize with respect to Di and then with respect to ZN i . It is

equivalent to doing a coordinate descent first in the direction of Di and then in the direction of

ZN i . That is we have

min
Di,ZN i

Ei(Di, ZN i , Y i, X i) = min
Di,ZN i

Ei
xyz(Y

i, X i, Di) + Ei
zz(D

i, ZN i), (3.17)

= min
ZN i

(
min
Di

Ei
xyz(Y

i, X i, Di) + Ei
zz(D

i, ZN i)
)

.(3.18)

We now proceed to show that if Ei
xyz and Ei

zz are both quadratic in Di, then the above process

of minimization of their sum with respect to Di followed by ZN i reduces to simply back propa-

gating the gradient with respect to ZN i , using the above approximation. In particular, we prove

the following lemma

77

Lemma 3.1. Let Ei
xyz(Y

i, X i, Di) = (G(Y i, X i)−Di)2, and Ei
zz(D

i, ZN i) = (D−H(ZN i))2,

where G(Y i, X i) is some function of Y i and Xi, and H(ZN i) is some function of ZN i . Then the

gradient of the sum of energies of the two factors Ei
xyz(Y

i, X i, Di)+Ei
zz(D

i, ZN i), with respect

to ZN i at the mode of Di is given by ∇ZN i E(ZN i) = (G(Y i, X i)−H(ZN i))∇ZN i H(ZN i).

Proof: The mode of Di is computed by taking the gradient of the sum of the energy functions

with respect to Di and equating it to zero. It is given by

Di∗ =
1
2
(G(Y i, X i) + H(ZN i)). (3.19)

The gradient of the sum of energy functions with respect to ZN i at this mode is given by

∇ZN i E(ZN i) = −2(Di∗ −H(ZN i))∇ZN i H(ZN i). (3.20)

Substituting the value of Di∗ in the above equation we get the desired result.

∇ZN i E(ZN i) = (G(Y i, X i)−H(ZN i))∇ZN i H(ZN i). (3.21)

The above lemma essentially means that one can treat the factor Ei
zz like a function and

directly feed it into the second factor Ei
xyz . Thus Figure 3.3(a), now becomes Figure 3.3(b).

Since the lemma is true for any sample i, it holds for all the samples. Thus the inference process

which involves minimizing the global energy function with respect to Z can be accomplished

by first treating the factor Ei
zz as a function of Ei

xyz and then computing the gradient of each

of these factors with respect to appropriate Z variables and finally updating all the variables

Z. Note that each factor influences multiple Zi’s. Furthermore each variable Zi is an input to

factors corresponding to multiple samples, the update will take place only when it has received

gradients from all the factors it is an input of. Thus the latent variables are collectively updated.

This key idea will be used even for doing efficient learning discussed below and is used while

predicting house prices in the next section.

78

DiXiY i

||G(Y i, Xi)−Di||2

Ei
xyz

Ei
zz

ZN i

||Di −H(ZN i)||2

H(ZN i)

XiY i ZN i

||G(Y i, Xi)−H(ZN i)||2

H(ZN i)

(a) (b)

Figure 3.3: (a) Figure showing the connections between the two factors associated with every sample i.

((b) Top), However, when the energy of factors Ei
zz and Ei

xyz is quadratic in Di, the factor Ei
zz can be

collapsed into the the factor Ei
xyz . In such a situation finding the minimum-energy value of ZN i can be

performed without explicitly computing the optimal value of Di. This is done by simply replacing Di by

H(ZN i) in the factor Ei
xyz , and back-propagating the gradients through the function G and H .

3.4 Efficient Training of a Relational Factor Graph

Let S be the training samples. Learning in an energy based framework involves finding the

parameter W such that the model gives low energies to configurations of (X, Y) pairs from

the training set, and higher energies to other (incorrect) values of Y . This is performed by

maximizing the likelihood of the data, or equivalently by minimizing the negative log likelihood

loss with respect to W . That is, we need to minimize

L(W,Y,X) = E(W,Y,X) +
1
β

log
∫
Y′∈Y

e−βE(W,Y′,X), (3.22)

where as discussed before, in the presence of latent variables the energy function E(W,Y,X)

is given by

E(W,Y,X) = − 1
β

log
∫
D′∈D,Z′∈Z

e−βE(W,D′,Z′,Y,X). (3.23)

79

Clearly this task is intractable when Z and D are high dimensional and continuous. However

there are two important points that one can take advantage of

• When the energy is a quadratic function of Y with a fixed Hessian, the contrastive term

in the negative log likelihood loss (the log partition function, which is the integral in

equation 3.22) is a constant. Hence one can simply ignore the second term altogether and

only minimize the first term, which is the average energy term.

• For very large values of β the integral over D and Z (in the equation 3.23) can be approx-

imated by a simple minimization.

The actual loss function that is minimized is the energy loss and is therefore give by

L(W,Y,X) = min
W
− log

(
min

Z′∈Z,D′∈D
e−βE(W,Z′,D′,Y,X)

)
(3.24)

= min
W,Z′∈ZD′∈D

− log
(
e−βE(W,Z′,D′,Y,X)

)
(3.25)

= min
W,Z′∈ZD′∈D

E(W,Z′,D′,Y,X) (3.26)

This loss is minimized using the EM-like procedure given in Algorithm 1.

Algorithm 1 RFG-Learn
repeat

Phase 1

Keeping the parameters W fixed, minimize the loss L(W,Y,X) with respect to Z.

Phase 2

Fix the values of Z and minimize the loss with respect to the parameters W , by updating

W in the direction of the negative of the gradient of L(W,Y,X).

until convergence

Consider phase 1 which involves minimization of the loss with respect to D and Z. Because

of the complex dependency of the energy on D and Z, minimization is done using the gradient

80

descent method. This is exactly the second type of inference procedure discussed in the previous

section on inference hence the same analysis holds here as well. The process boils down to

merging the two factors to form a single factor and simply backpropagating the gradients with

respect to Z.

In phase 2, minimization of the energy function with respect to W is achieved by gradient

descent method. This phase is trivial because the parameters W are shared among all the factors,

hence one can sequentially run through all the training samples and update W based on the

gradients generated.

81

4
SPATIAL MODELS FOR HOUSE PRICE

PREDICTION

In this chapter we make the discussions of the previous chapter concrete by instantiating the

factor graph for the problem of house price prediction. We specify the architecture of both the

relational and non-relational factors in the factor graph, and also give the details of the learning

and inference algorithm. This chapter focusses on the problem of house price prediction. The

problem of constructing the house price indexes (HPI) is the topic of next chapter. Hence the

model discussed here is purely spatial without any temporal component to it. To this end we

only use a subset of the full data set available to us. Before discussing the model, we first discuss

in detail the industry level dataset that we used to learn our models.

4.1 Dataset

Heterogeneity of homes and the neighborhoods they occupy implies that uncovering the spatial

and spatio-temporal patterns in home prices requires a large panel dataset over a large hetero-

geneous housing area. To this end the dataset was provided to us by First America Corelogic

(http://www.facorelogic.com). The dataset has a very heterogeneous set of homes spread over

the entire Los Angeles county spanning around 4000 sq miles. In particular there are three dis-

tinct tapes that were provided to us. These were the Deeds tape, the 2007 Tax-roll tape and

the Arms tape. The Arms tape which contains information on mortgage history and also comes

from the counties’ registry of deeds was not used in any of our experiments. The Deeds tape is

a transaction tape and comes from various counties’ registry of deeds. It contains all recorded

transactions in LA county from Jan 1984 to Apr 2008. The Tax-roll tape consists of the com-

82

piled information obtained from the tax assessor’s office and contains detailed information on

all homes in LA county irrespective of their transaction history. This information is collected on

periodic basis, usually after every few years. All observations in the three tapes have associated

with them a 10 digit APN number which uniquely identifies a house. It is therefore possible

to combine the three tapes and obtain a rich history of mortgage and transaction information,

and home and neighborhood specific attributes for all houses in LA county. We now discuss the

Deeds and Tax-roll tape in some detail. For the spatial model of the present chapter only a subset

of the dataset was used which we will describe later.

4.1.1 The Full Deeds Tape

The deeds tape records all the transactions that took place between the periods of Jan 1984 and

April 2008. Note that there’s a difference between a transaction and a house. A house could

be transacted multiple number of times during a particular period. The deeds tape records the

information relevant to these transactions. Each record (transaction) has a total of 116 fields

associated with it, having information relevant to the identity of the property associated with the

transaction, the address of the property, and the sale information of the transaction, such as, sale

amount, mortgage amount, lender information etc. There are a total of 13, 527, 413 transactions

with valid APNs in the tape. Out of the 116 fields, those that were relevant are

• Sale Price: the price at which the property was sold in the present transaction,

• Recording date: the date on which the transaction was recorded,

• Sale date: the actual sale date of the property,

• Transaction Category Code: variable indicating whether it was a full market transaction

(arms length transaction), or less than full market transaction (non-arms length purchase),

or transfer of ownership rights without the sale (non-arms length non-purchase),

83

• Transaction Type Code: variable indicating whether the transaction was a resale, re-

finance, or nominal,

• Document Type Code: variable recording the type of the deed. It could either be grant

deed (the most common deed type used to transfer property from seller to buyer), deed of

trust (stand alone mortgage) or quite claim (sale of less than full value).

In our experiments (especially in the next chapter) we only consider arms length transactions

that are resales or new constructions with either a grant deed or foreclosure document type.

4.1.2 The Tax-Roll Tape

A Tax-Roll tape gives a detailed description of a house independent of how many times it has

been transacted. This information is collected periodically by the tax assessor’s office. First

American Corelogic provided us with two tax-roll tapes, one from the year 2004 and one for

2007. Among the various property types in LA county, single family residences (SFR), condo-

miniums, duplexes, apartments, and planned unit development (PUD), only single family resi-

dences were considered in both the experiments. The tape provides a detailed description of the

characteristics and the location information of every property using 198 fields.

In addition to the basic home level data, such as, the number of bedrooms, number of bath-

room, land area, living area, and the year built, the tape provides information about a wide range

of other characteristics. Among others, these include effective year built (the last year in which

the property had the same physical characteristics as it has in the year corresponding to the tax-

roll tape), condition (the state of the property: good, poor, fair etc), quality (refers to the luxuries

and amenities available in the home), style (conventional, contemporary, spanish etc), number

of fire places, garage type (carports, detached garage etc), parking spaces, whether there’s a pool

or not, type of heating, type of air conditioning, and number of stories among others.

84

The tax-roll tape also provides extensive locational information associated with every prop-

erty. The mailing addresses provided for all properties were used to extract the GPS coordinates

for every house using the software purchased from www.geolitics.com. The GPS coordinates are

used in identifying the spatial neighbors for every house. Other locational information provided

by the tax-roll tape include census tract (census tract number in which the property lies), school

district (school district number in which the property lies), view (whether the property has a city

view, or lake view etc), location influence (whether the house located at the corner of a street, or

cul-de-sac etc) etc.

4.1.3 Other Neighborhood Fields: Census Tracts and School District

Two fields in the tax-roll tape, namely the census tract number and the school district number

are used to further enhance the locational (neighborhood) information associated with every

property. This process involves taking the census tract number and the school district number

for every house, extracting the local information on demographics, and education from census

databases and school district databases respectively and appending these features to the existing

features associated with that house.

A census database is the single-most exhaustive source of local information on demograph-

ics, income, employment and education all of which affect quality of a neighborhood and hence

house prices. This information is collected every ten years at the census tract level. A “Cen-

sus tract” is a small, relatively permanent statistical subdivisions of a county or statistically

equivalent entity delineated by local participants as part of the U.S. Census Bureau’s Participant

Statistical Areas Program. The primary purpose of census tracts is to provide a stable set of

geographic units for the presentation of decennial census data. When first delineated, census

tracts were designed to be relatively homogeneous with respect to population characteristics,

economic status and living conditions. The spatial size of census tracts varies widely depending

85

on the density of settlement. We used data from the 2000 census at which point LA county had

2054 census tracts with a median population of 4484. In particular we used primarily four sets

of variables from the census data. The first variable captures the average commute time to work

by people living in the neighborhood. The underlying assumption is that if the average travel

time from a neighborhood to work is high, then on average the neighborhood is relatively far

away from work places and hence the demand of houses over there is low. The variable that

captures this information is “average time to commute”. The second variable that we extract is

the “median household income” of the census tract. Clearly there is a strong correlation between

the prices of houses in an area and the average income of people in that area. Third variable is

the “proportion of units occupied by owner”. The assumption is that an area where majority of

homes are occupied by the owner is a family oriented neighborhood and hence is more desir-

able. Finally the census tape also provides detailed information on educational attainment of the

resident population in that census tract.

However the only information relating to eduction that we use comes from the school district

tape. The field that we use is called the “academic performance index” which is a single number

that summarizes the performance of the schools in that area. Unfortunately the effort towards

collecting the information on the performance of school district was only started after the “No

Child Left Behind” program. Hence we do not have this information for early years. As a result

this information is used only in the experiments in this chapter which only uses the transactions

from the year 2004. It is not used while constructing the house price indexes in the next chapter

which uses the transactions from all the years.

4.1.4 Data Subset Used for Spatial Model

This chapter discusses the spatial model to predict the prices of real estate properties. There is

no temporal component to this model. Hence as mentioned before we use only a subset of the

86

data that was provided to us. In particular we only use all the single family transactions in the

deeds tape that took place in the year 2004. The tax-roll tape used is also of the year 2004. Even

this small subset of the data is fairly heterogeneous and spans evenly over the entire LA county

area.

Of the numerous house specific attributes 18 of them were used in the experiments. These

were the living area, year built, number of bedrooms, number of bathrooms, pool or no pool,

prior sale price, parking spaces, parking types, lot acerage, land value, improvement value, per-

centage improvement value, new construction, foundation, roof type, heat type, and site influ-

ence. The address of the property was used to get its GPS coordinates which were also appended

to the house specific attributes. This set of house specific attributes for the i-th house are denoted

by Xi
h in the rest of the chapter. In order to collect the neighborhood specific attributes, we used

the 2000 census tape and school district tape. For each census tract in our database, we used data

on median household income, proportion of units that are owner-occupied, and information on

the average commuting time to work. Finally, we used the school district field for each home to

add an academic performance index (API) to the database. These variables along with the GPS

coordinates of the location of the house are collectively denoted by Xi
nb in the rest of the chapter.

Also let us denote by Xi
gps as just the GPS coordinates of the house i.

Minimal pre-processing and data cleaning was done to this dataset. All the records which had

one or more fields missing were removed. All the fields corresponding to the price/area/income

variables were mapped into log space. All the non-numeric discrete variables, such as pool,

parking type etc, were coded using 1-of-K coding. In addition all the variables were normalized

so as to have a 0 mean and a standard deviation between−1 and 1. After the pre-processing there

were a total of 6 fields in the Xi
h variables and 14 fields in Xi

nb variables. In the end we were

left with a total of 42025 transactions, spanning 1754 census tracts and 28 school districts. Since

we are interested in predicting the prices of houses in the future, the transactions were sorted

87

according to their sale dates. The first 90% of them (37822) were treated as training samples,

out of which the later 10% were used as a validation set. The remaining 10% (4203) were treated

as testing samples.

4.2 Factor Graphs for House Price Prediction

We now give details of the factor graph that was used for the problem of house price prediction,

by first giving the architecture of the relational and non-relational factors and giving the details

of the learning and inference algorithms.

We model the price of a house as a product of two components. The first component, which

we call its “intrinsic price”, is a function of only house specific variables Xi
h. The second

component of the price is the estimate of the “desirability” of the neighborhood in which the

house lies. This estimate of the “desirability” depends on the features of the neighborhood.

Some of these neighborhood features are measurable and are given by Xi
nb. However most of the

features, that make one particular neighborhood “desirable” to live in as compared to the others,

are very difficult to measure directly and are merely reflected in the prices and the “desirability”

of the houses that constitute the neighborhood. Since this “desirability” of a location is not

directly measurable it is modeled as a latent variable. In the factor graph, each house (sample)

i is associated with one latent variable Zi, the value of which is interpreted as the “desirability”

of the location of the house. The variable Di can be interpreted as a smooth estimate of the

desirability of that house, which depends on the Zj’s associated with its spatial neighbors. In

order to avoid a bias towards expensive houses, rather than predicting the actual price, the model

predicts the log of the price. This allows us to additively combine the log of the “intrinsic” price

and the log of the “desirability” to get the log price.

Each house is assigned two factors, one of which is non-relational Ei
xyz and the other one is

88

relational Ei
zz . The non-relational factor Ei

xyz captures first of the two dependencies, which is

between the log price of the house and its individual characteristics (including an estimate of its

desirability). This is done by first estimating the log of “intrinsic” price from the house specific

features Xi
h, using a parametric model G(Wxyz, X

i
h), and then measuring the discrepancy of the

the total estimated log price – log “intrinsic” price + the log of estimated “desirability” Di –

from the log of actual price Y i. Thus the factor Ei
xyz corresponding to house i takes the form

Ei
xyz(Y

i, X i, di) = (Y i − (G(Wxyz, X
i
h) + Di))2. There is no restriction on the architecture

of the parametric function G(Wxyz, X
i
h). It could either be a linear function or a non-linear

function. In the present experiments it was a two hidden layer fully connected neural network

with 250 units in the first hidden layer, 80 units in the second hidden layer and 1 unit in the

output layer.

The second factor associated with every house is the relational factor Ei
zz which captures the

influence of other “related” houses on the price of the i-th house. Here the relationship between

two houses is governed by their spatial proximity. The related houses influence the price of a

house through the latent variables Zj’s (which are the “desirabilities”of their location) associated

with them. Thus this factor is able to capture the hidden dependencies among variables. This

is modeled in the following way. Let N i be the set of houses that we think are related to the

i-th house and will influence its price. These are the K houses that have the smallest euclidean

distance in the GPS space. The value of K is chosen via the process of validation. The factor

Ei
zz takes as input the latent variables Zj’s associated with these neighboring houses, denoted

by ZN i . In addition it also takes as input the variable Di associated with the house i which is

interpreted as a smooth estimate of the desirability of the i-th house from the desirabilities of

the neighboring houses ZN i . Note that in line with the discussion of the previous chapter, the

factor Ei
zz does not take as input the variable Zi. Rather the desirability of the i-th house is

estimated from the set ZN i = {Zj : j ∈ N i} using a non-parametric function H(Xi
nb, ZN i).

89

This estimation could be done using a number of ways. However the bottom line is that one must

ensure that the smoothness property is maintained since desirability in general has a smoothness

property associated with it: one sees a gradual change in desirability when moving from one

consecutive neighborhood to the other.

Kernel Based Interpolation

One way of estimating the desirability is by simply taking the weighted average of the Zj’s of

the neighbors, where the weights are given by some smooth kernel. In this case the function H

takes the form

H(Xi
nb, ZN i) =

∑
j∈N i

Ker(Xi
nb, X

j
nb)Z

j . (4.1)

The kernel function could be any smooth kernel, such as, a cubic kernel or an exponential kernel.

In the present experiments it is the exponential kernel

Ker(Xi, Xj) =
e−q||Xi−Xj ||2∑

k∈N i e−q||Xi−Xk||2 . (4.2)

Here q is a constant that dictates the smoothness of the kernel. The larger its value the smoother

is the kernel.

Weighted Local Linear Regression

Another way of estimating the desirability involves fitting a weighted local linear model on the

set of samples N i, with the weights given by a kernel similar to the one discussed above, and

using the learned parameters to get the value of H(Xi
nb, ZN i). Let α be the parameter vector

and β be the bias of the local linear model. Then fitting a weighted local linear model on the

set of neighbouring training samples N i, amounts to finding the parameters α∗ and the bias β∗,

such that

(β∗, α∗) = arg min
β,α

∑
j∈N i

(Zj − (β + αXj
nb))

2Ker(Xi
gps, X

j
gps). (4.3)

90

The function Ker(X, Xj) could be any appropriate smooth kernel, e.g. the one given in equa-

tion 4.2. The solution to the system (or the output of the function H(Xi
nb, ZN i)) is given by

H(Xi
nb, ZN i) = β∗ + α∗Xi

nb. (4.4)

Remark 4.1. Even in the case of weighted local linear regression the output of the function

H(Xi
nb, ZN i) for a sample Xi can be expressed as a linear combination of the desirabilities Zj

of the training samples Xj ∈ N i, such that the linear coefficients do not depend on the Zj’s.

That is

H(Xi
nb, ZN i) =

∑
j∈N i

ajZj , (4.5)

where coefficients aj’s are independent of the values of Zj’s.

The relational factor Ei
zz takes the form Ei

zz(D
i,H(Xi

nb, ZN i)) = (Di −H(Xi
nb, ZN i))2.

Thus the energy corresponding to sample i, which is the sum of energies of the two factors, is

given by

Ei(W,Zi, Y i, X i) = Ei
xyz(Y

i, X i, Di) + Ei
zz(D

i,H(Xi
nb, ZN i) (4.6)

= (Y i − (G(Wxyz, X
i
h) + Di))2 + (Di −H(Xi

nb, ZN i))2. (4.7)

Since both the energy terms on the right hand side are quadratic functions of the variable Di,

following the discussions of the previous section and the lemma 3.1, the second factor can be

treated as a function of the first and can be included in the first factor directly. Thus in effect we

have a single factor Ei associated with each house i.

The exact architecture of each local energy function (the factor Ei) is given in Figure 4.1.

The factor consists of two trainable components. The first component is the parametric function

G(Wxyz, X
i
h), that estimates the “intrinsic price” of the house. Again we emphasize that other

than differentiability with respect to Wxyz , no restriction is imposed on the form/architecture

of this function. The second component H(Xi
nb, ZN i) takes the non-parametric form discussed

91

dm

p

F(Y, p)

+

YXh Xnb ZN

H(Xnb, ZN)

E(W,ZN , Y,X)

G(Wxyz, Xh)

Figure 4.1: The architecture of the factor associated with each sample. It consists of two trainable

components: the parametric function GW and the non-parametric function H .

above. This function can be viewed as modeling the smooth “desirability” manifold over the

geographic region spanned by the samples. As mentioned above, the output of this function can

be interpreted as an estimate of the “desirability” of the location of the i-th house. The higher

the value, the more desirable is the location. The outputs of the two components are added to

get the final price of the house in log domain. Finally, the function F measures the discrepancy

between log of the actual price Y i and the combined outputs G(Wxyz, X
i
h)+H(Xi

nb, ZN i). The

function F , which is the local energy associated with each factor, is given by

Ei(W,Zi, Y i, X i) = F = (Y i − (G(Wxyz, X
i
h) + H(Xi

nb, ZN i)))2. (4.8)

92

The global energy function of the system is given by

E(W,Z,Y,X) =
N∑

i=1

Ei(W,Zi, Y i, X i) (4.9)

=
N∑

i=1

(Y i − (G(Wxyz, X
i
h) + H(Xi

nb, ZN i)))2. (4.10)

4.2.1 Learning

The system can be trained by maximizing the likelihood of the training data. This is achieved by

marginalizing the negative log likelihood function over the hidden variables Z, and then mini-

mizing it with respect to the parameters W associated with the system. However, in line with the

discussion of chapter 2, the process of marginalization over the hidden variables can be approx-

imated with a minimization operation. Further more, when the energy is a quadratic function

of Y, the contrastive integral term of the loss function over Y is a constant. Hence the entire

process reduces to minimizing the energy loss simultaneously with respect to the parameters W

and the hidden variables Z, where the energy of the system is given by equation 4.10. Thus the

loss function is

L(W,Z)=
n∑

i=1

1
2
(Y i − (G(Wxyz, X

i
h) + H(ZN i , X i

nb)))
2 + R(Z), (4.11)

where R(Z) is a regularizer on Z. In the experiments it was an L2 regularizer. This regularization

term plays a crucial role to ensure the smoothness of the hidden manifold. Without it, the system

would over-fit the training data and learn a highly-varying surface, leading to poor generalization.

When thinking in terms of probabilities, the regularizer can be viewed as a prior over the hidden

variables. Then minimization of the above loss function is equivalent to seeking a maximum

aposteriori estimate (MAP) of Z.

Minimization of the loss simultaneously with respect to W and Z can be achieved by ap-

plying a type of deterministic generalized EM algorithm. It consists of iterating through the

93

following two phases until convergence.

Phase 1

In Phase 1, the parameters W are kept fixed and the loss is minimized with respect to the hidden

variables Z. It turns out that the above loss is quadratic in Z and its minimization reduces to

solving a large scale sparse quadratic system. In particular, associate a vector U i of size N (equal

to the number of training samples), with each training sample Xi. This vector is very sparse and

has only K non-zero elements, at the indices given by the elements of the neighbourhood setN i.

The value of the j-th non-zero element is equal to the linear coefficient that is multiplied with

Zj , while computing the value of function H . For example, when the kernel based interpolation

is used, the coefficients is the value of the kernel (equation 4.2), and when local linear regression

model is used, the coefficients are aj’s in equation 4.5. Thus the function H(ZN i , X i) can now

be written as

H(ZN i , X i
nb) = Z · U i. (4.12)

The loss now becomes the following sparse quadratic program

L(Z) =
1
2

N∑
i=1

(Y i − (G(Wxyz, X
i
h) + Z · U i))2 +

r

2
||Z||2. (4.13)

Note that the value of the function G(Wxyz, X
i
h) is fixed in this phase. Clearly this loss is

quadratic in Z.

Another possible modification to the loss is to includes an explicit self-consistency term.

The idea is to have an explicit constraint that will drive the estimate Z · U i of the desirability

of training sample Xi to the learnt desirability Zi. Note that the estimate Z · U i for the house i

does not involve the term Zi. Rather it is estimated from Zj’s of its neighbors. Hence the loss

94

function now becomes

L(Z) =

1
2

N∑
i=1

(Y i − (G(Wxyz, X
i
h) + Z · U i))2 +

r1

2
||Z||2 +

r2

2

N∑
i=1

(Zi − Z · U i)2. (4.14)

Here r1 and r2 are some constants governing how much weight needs to be given to each term.

This loss function is still a sparse quadratic program.

This system can be solved using any sparse system solvers. However, instead of using a

direct method we resorted to iterative methods. The motivation was that at each iteration of

the algorithm, we were only interested in the approximate solution of the system. We used the

conjugate gradient method with early stopping (also called partial least squares). The conju-

gate gradient was started with a pre-determined tolerance which was gradually lowered until

convergence.

Phase 2

This phase involves keeping the hidden variable Z fixed and updating the parameters W of the

system, which boils down to updating Wxyz of the function G(Wxyz, X). This is achieved

by running a standard stochastic gradient decent algorithm for all the samples (Xi, Y i) in the

training set. For a sample Xi the forward propagation was composed of the following steps.

Run the house specific attributes Xi
h through the function G to produce the log of the intrin-

sic price M i = G(Wxyz, X
i
h). Estimate the log of the desirability of the location of sam-

ple i by interpolating from its neighbors in the training set, using the function H(ZN i , X i
nb).

Add the estimated log desirability to the log of the intrinsic price to get the prediction Pri =

G(Wxyz, X
i
h)+H(ZN i , X i

nb). Compare the predicted value Pri with the actual value Y i to get

95

the energy

Ei(W,ZN i , Y i, X i) =
1
2
(Y i − Pri)2 (4.15)

=
1
2
(Y i − (G(Wxyz, X

i
h) + H(ZN i , X i

nb)))
2 (4.16)

Finally, the gradient of the energy with respect to Wxyz is computed using the back propagation

step and the parameters Wxyz are updated. Here again, we do not train the system to completion,

but rather stop the training after a few epochs. Note that even though the factor graph is relational

we can still use stochastic gradient to learn the weights Wxyz because they are all shared among

the factors of all the samples.

4.2.2 Inference

The process of inference on a new house X0 is trivial. It involves first computing its neighboring

houses in the training set, and using the learnt values of their hidden variables ZN 0 to get an

estimate of its “desirability” through the non-parametric function H passing the house specific

features X0
h through the learnt function G(Wxyz, Xh) to get its “intrinsic” price, and adding the

two to get its predicted price in log domain.

4.3 Experiments

An extensive experimental study was performed, using the subset of the dataset described above,

in which we compared the relational factor graph model with a number of other models. Un-

fortunately all these models are non-relational in nature. Since we are not aware of any work

on relational regression till date, we did not have any benchmark statistical relational model

to compare with. Nevertheless the models that we compare against are those that have been

traditionally used in literature for the problem of house price prediction.

96

4.3.1 Non-Relational Models

The non-relational models that we compared with were regularized linear regression, a fully

connected neural network, k-nearest neighbors, and weighted local linear regression.

Regularized Linear Regression

We first tried two models that completely ignores any neighborhood information associated with

the problem and only look at the features associated with every sample. The first of those was

the regularized linear regression, in which one tries to fit a single linear model on the entire data

set without considering the inherent local structure that is associated with it. This is done by

minimizing the following objective function

R(W) =
r

2
||W ||2 +

1
2N

N∑
i=1

(Y i −W T Xi)2. (4.17)

In this equation W are the parameters to be learned and r is the regularization coefficient.

Fully Connected Neural Network

The second non-relational technique tried was a fully connected neural network. The motivation

behind this was that using such an architecture one might be able to capture some non linearities

that are hidden in the regression function which could not be captured by the linear regression

model. A number of architectures were tried, and the one that achieved the best performance

was a 2-hidden layer network with 250 units in the first layer, 80 units in the second, and 1 unit

in the output layer.

K - Nearest Neighbour

In this technique, the process of predicting the price of the sample Xo involves finding the K

nearest training samples (using some similarity measure) and computing the average price of

these neighbours. Three different similarity measures were tried. First was a euclidean distance

97

in the entire input space [Xh, Xnb], the second was the euclidean distance in the neighborhood

space Xnb plus the GPS coordinates, and the third was the euclidean distance only in the GPS

space Xgps. Best performance was observed when the first measure was used. Experiments

were done with different values of K and the one for which it worked best was 90. The results

reported use this value.

Weighted Local Linear Regression

Like the nearest neighbour method another method that somewhat takes into account the neigh-

bors of a house while making a prediction in the weighted local linear regression method. The

motivation behind using this model is to exploit the local structure and improve upon prediction.

In weighted local linear regression models, in order to make a prediction for a sample X0, a

separate weighted linear regression model is fitted using only those training samples that are

neighbors to the sample X0. The neighbors were computed using the euclidean distance in the

space of the variables Xnb and GPS coordinates. The weights are obtained from an appropriately

chosen kernel function. For a sample X0, if N 0 gives the indices of the neighbouring training

samples, then the loss function that is minimized is

min
β(X0)

∑
i∈N 0

Kλ(X0
nb, X

i
nb)[Y

i − β(X0)f(Xi)]2. (4.18)

In the above loss β(X0) are the regression parameters that needs to be learned, f(Xi) is some

polynomial function of Xi, and Kλ(X0, X i) is an appropriately chosen kernel with parameter

λ. In the experiments it was the exponential kernel given in equation 4.2. Once minimized, the

prediction Pr0 of the sample X0 is given by

Pr0 = β(X0) · f(X0). (4.19)

Different number of neighbors were tried in the experiment. Best result obtained was using 70

nearest neighbors.

98

4.3.2 Relational Factor Graph

The relational factor graph model can be seen as a hybrid version of the above two classes of

models (those that only take into account the individual features, and those that only take into

account the neighborhood data). One difference between relational factor graph model and those

discussed above which take the neighborhood information into account (k-nearest neighbors and

local linear regression), is that these models do not perform any form of collective learning.

While make a prediction of a sample they assume that features of neighbors are fixed. Whereas

in relational factor graph model, the “desirabilities” of houses, which influence each other, are

learnt collectively.

The model is a combination of two components one parametric G(W,Xi
h) and the other

non-parametric H(Xi
nb, Z

i
N i). The parametric model only takes into account the individual fea-

tures of the house. While the non-parametric takes into account the neighborhood information,

including the features of the neighboring houses. This component can be seen as learning a

latent manifold of “desirabilities” Zj’s over the geographic area. The value of the manifold at

any point is obtained by interpolation on the coefficients Zj’s associated with the neighboring

training samples that are local to that point according to some distance measure. Thus clearly the

relational factor graph model combines the benefits of both the classes of models and comes up

with a prediction accuracy which is better than either of the individual models. This is evident

from the results table 4.1.

The parametric model G(W,Xh) was a fully connected 2 hidden layer neural network with

250 units in the first hidden layer, 80 units in the second hidden layer and 1 unit in the output

layer. The input to this network were the set of variables Xh. For the non-parametric function

H(Xnb, ZN), both the modeling options - kernel smoothing and weighted local linear regression

- were tried. The size of the neighborhood set N used was 13 and 70 for the kernel smoothing

99

and weighted local linear regression respectively. The best values of the number of neighbors,

regularization coefficients and other hyper-parameters were obtained via the process of valida-

tion. The results are reported for the best combination of the values.

4.4 Results and Discussion

The performance of the systems was measured in terms of the Absolute Relative Forecasting

error (fe) (Do and Grudnitski, 1992). Let Ai be the actual price of the house i, and let Pri be

its predicted price. Then the Absolute Relative Forecasting error (fei) is defined as

fei =
|Ai − Pri|

Ai
. (4.20)

Three performance quantities on the test set are reported; percentage of houses with a forecasting

error of less than 5%, houses with a forecasting error of less than 10%, and percentage of houses

with a forecasting error of less than 15%. The greater these numbers the better the system.

Simply using the root mean square error in this setting is not very informative, because it is

overly influenced by outliers. Furthermore, minimizing the square difference between the actual

price and the predicted price in log space is equivalent to minimizing the Absolute Relative

Forecasting error in original space.

4.4.1 The Desirability Maps

The discussion in this section provides insights into the working of the algorithm and argue that

it is representative of the real world scenario. This claim is supported by providing a number of

energy maps of the test samples which we shall discuss.

Figure 4.2, shows the color coded desirability map learned by the model. The map shows

the desirability estimates of the location of all the houses in the test set. For each test sample,

this estimate is computed from the learned desirabilities Zi of the training samples and the

100

Table 4.1: Prediction accuracies of various algorithms on the test set.

MODEL CLASS MODEL < 5% < 10% < 15%

NON-PARAMETRIC NEAREST NEIGHBOR 25.41 47.44 64.72

NON-PARAMETRIC LOCALLY WEIGHTED REGRESSION 32.98 58.46 75.21

PARAMETRIC LINEAR REGRESSION 26.58 48.11 65.12

PARAMETRIC FULLY CONNECTED NEURAL NETWORK 33.79 60.55 76.47

HYBRID RELATIONAL FACTOR GRAPH 39.47 65.76 81.04

function H(ZN , X), as described earlier. The points are colored according to the value of their

desirability estimates. Blue color implies less desirable and red color implies more desirable.

One can conclude that the value of the desirabilities estimated by the algorithm does encode

some meaningful information which is a reflection of the real world situation. This is evident

from the fact that the areas around the coastline are generally labeled more desirable. Likewise,

the areas of Pasadena and near Beverly Hills are also classified as highly desirable. Areas around

the downtown area of the county, particularly in the south eastern and immediate east direction,

are marked with low desirability.

101

Figure 4.2: The learnt hidden “desirability” manifold over the Los Angeles county area. Each point

in the map correspond to a unique test sample and is color coded according to the “desirability” of its

location. The red color correspond to high desirability and the blue color correspond to low desirability.

102

5
SPATIO-TEMPORAL MODELS FOR HOUSE

PRICE INDEX CONSTRUCTION

Studying the way by which house prices move over time is imperative towards understanding the

dynamics of the real estate market. One needs a precise and dependable measure that can capture

these movements. Because of various factors, such as, heterogeneity of houses, infrequency of

sale, and certain unexplained circumstances influencing individual buyers and sellers, one cannot

expect to capture the trend on individual properties. Rather one resorts to capturing an aggregate

trend of a group of “similar” houses. A House Price Index (HPI) is one such way of encoding

this trend. This aggregation could be at multiple levels. For instance, we could have a city wide

index, or a zip-code level index or even an Metropolitan Statistical Areas (MSA) level index.

There are two primary ways in which people have tried to compute an HPI in economics.

When one uses only the features associated with the individual houses, the result is the so called

Hedonic Price Index. The hedonic price index, though popular among academics, is not widely

used in industry because of various reasons. One reason is the lack of theoretical justification

behind any functional form used. Another involves lack of standardization of the housing char-

acteristic data across municipalities. Another related issue is the difficulty in gathering data on

all the relevant characteristics of a home and its neighborhood. This data may either not be

recorded/available or just too costly to obtain. Finally, depending on how the index is computed,

hedonic models either assume constant marginal prices over time or run pair-wise regression

for consecutive time periods to compute an index. The later approach selectively ignores large

chunks of information.

Another type of indices which are by far the most widely used are the Repeat Sales Index

103

and are based on the repeat (previous) sale prices of houses. A repeat sales index obviates the

need to deal with many issues associated with the hetrogeneous nature of houses by assuming

that the underlying unit has not gone through any physical changes. In particular the most

widely used repeat sales index is the S&P Case-Shiller index, due to Case and Shiller (Case

and Shiller, 1989). However there are two major problems with this way of index construction.

First, it completely ignores the rich spatio-tempral structure that is associated with the problem.

In particular these methods treat each transaction independently of others and do not consider

the influence of neighboring transactions in space and time on the current transaction. The

importance of the use of such spatio-temporal information while computing the index is further

emphasized by the various striking and superfluous error patterns that show up with this method,

particularly the Case-Shiller repeat sales method. For instance, prediction errors are very high

on homes that have very low or very high initial prices. Highly segmented nature of housing

markets and the fact that homes with high and low prices are typically clustered in certain areas,

suggests that while constructing the index if, in addition to taking into account the repeat sales

of a particular house, one also considers the sale prices of the neighboring transactions both in

the dimensions of space and time, one can expect to generate a better index that is free from

such artificial patterns. Second, most methods proposed so far focus towards estimating the

parameters efficiently and precisely. Little effort is spent on building models that simultaneously

generates a price index and also accurately predicts the prices of new unseen houses using this

index. This is important because for almost any non-trivial use of a housing index, the underlying

hope is that the index can be used to give a reasonable first approximation to the current house

values, and therefore be relevant to predict prices of homes that have not yet been sold but may

be so in a short period of time.

In this chapter we extend the relational factor graph framework discussed in chapter 3 and 4

to construct house price indices that captures the spatio-temporal structure associated with the

104

problem. The result is a model with superior prediction accuracy. In addition to the repeat sales

of houses, the model also takes into account the single sales, and the hedonics associated with

every house. Rather than treating each transaction independently of others, it tries to capture the

influence of the neighboring transactions in space and time on the prices of every transaction.

This is achieved by learning a latent “normalized price” manifold over space and time, akin to the

“desirability” manifold of the previous chapter. The underlying characteristic of this manifold

is its spatio-temporal smoothness. The model is applied to a highly diverse industry standard

dataset, where it simultaneously constructs the house price indices and learns the “normalized

price” manifold.

To the best of our knowledge, this is the first attempt to simultaneously construct the house

price index and build a prediction model by making use of the associated spatio-temporal struc-

ture. The results show that the price index estimated is very similar to the Case-Shiller’s index.

Though the indices are the same, the proposed model has a far superior prediction accuracy. Fur-

thermore, unlike with Case-Shiller’s model, there are no artificial patterns in the error structure.

Rather these patterns are absorbed by the spatio-temporal latent surface. Since the two indices

behave in nearly the same manner, the stark difference between the performances of the two

models points towards the importance of understanding and using the strong relational structure

which is inherent in the problem.

5.1 Dataset

Heterogeneity of houses and the neighborhood in which they lie necessitates the need for a highly

diverse dataset spanning a large heterogeneous area, while constructing a good house price index

which also makes use of the spatio-temporal dependencies among transactions. To this end we

used all the valid transactions that were available to us in the deeds tape (see chapter 4) starting

105

from January 1984 to April 2008. There were a total of 14, 713, 346 recorded transactions in the

LA county over this period, out of which 13, 527, 413 transactions had a valid APN (a 10 digit

number identifying the underlying property). Note that a transaction is different from an actual

physical property. Each transaction is associated with some physical property, and is a record of

the sale/re-sale/transfer of that property at some period of time. Thus multiple transactions could

correspond to the same underlying property.

Among the various variables in the deeds tape, for every transaction we extracted information

about its Sale Price, Recording Date, Sale Date, Transaction Category Code, Transaction Type

Code, and Document Type Code. See Chapter 4 for a complete description of these variables.

From the tax-roll tape the house specific variables selected were the APN number, the Land

square footage, Living square feet, and the mailing address. The mailing address was used to

extract the GPS coordinates for every house. The list of variables chosen is deliberately small

for two reasons. As informed by our data source, other parts of the US do not have as rich a

tax-roll tape as LA. Thus any model that has to be generalized for other parts of the country

should not depend too much on the detailed house characteristics. Secondly, the purpose of this

exercise was to show that explicitly modeling the relational structure inherent in the problem

can lead to better understanding of the house prices, Hence one must be able to show significant

performance gain without overly depending on other house specific variables.

Since our model is compared to the Case-Shiller repeat sales index, the data cleaning process

was designed to be as close as possible to the cleaning process used by S&P Case Shiller index.

Following are the steps that were taken in this direction.

• Using the fields selected from the deeds tape, only those transactions were kept for which

Transaction Category Code was equal to arms length transactions, Transaction Type Code

was either re-sales or new constructions, and Document Type Code was either grant deed

or foreclosure document type.

106

• All the transactions which had one or more attributes missing were removed. This rule was

also applied to the tax-roll fields. In particular, if a house had a missing GPS coordinate

or Land square footage, or Living square feet, it was removed from the dataset.

• Transactions on the same house with same sale date and different sale price were removed.

Transactions on the same house with same sale date and same sale price were all but one

removed.

• Repeat transactions for houses that happen too quickly (within less than 7 months of each

other) are removed. The underlying assumption is that these houses undergo a structural

change and hence is not a valid repeat sales transactions. We call them the dirty repeat

sales transaction. Furthermore, transactions on a home before and after this dirty transac-

tion are de-coupled. One easy way to visualize the entire dataset is as a collection of sale

prices (transactions). Each transaction is either a stand-alone transaction (single sales) or it

is a repeat sales transaction in which case it is explicitly tied to some previous transaction

(sales price).

• If for a repeat sales transaction pairs, the value of effective year built of the underlying

property is between the two sale dates, the pair is removed. Repeat sales transaction pairs

for which either of the sale prices is less than $5000 and more than $100, 000, 000 are

removed. Repeat sales transaction pairs that have annualized returns less than −50% or

greater than 100% are removed. The repeat sales transaction pairs that our perform or

under perform the median house price index by more or less than 25% respectively on an

annualized basis are also removed.

• Finally among all the single sales transactions, those transactions for which sale price is

greater than the maximum transaction price in any repeat sales is removed. All the single

107

sale transactions whose sale price is less than the minimum transaction price in any repeat

sales are also removed.

After the above cleaning process we were left with 591, 239 repeat sales transactions and 367, 973

single sales transactions, making a total of 1, 550, 451 transactions. Again, this dataset is highly

diverse consisting of transactions from around 24 years spanning the entire Los Angeles County

with 2054 census tracts and 28 school districts.

5.2 Spatio-Temporal Latent Manifold Index Model

A House Price Index can be viewed as an aggregate measure over a collection of houses, that can

capture the movements of real estate properties. For instance, one could have a city wide price

index which encodes the common trend exhibited by all the houses in that city at that particular

time. The primary input to any model designed to compute the index, is the information about

the transactions associated with various houses over a period of time. Each transaction has an

associated time, a price, and an underlying real estate property with it. A property could be

transacted multiple number of times over a particular period, during which it might or might

not have undergone any structural change. In the rest of the chapter we shall talk in terms of

transactions (which are identified by the underlying property and time of sale), as opposed to

talking just in terms of properties, which was the case in previous chapter.

We model the price associated with a transaction as a combination of two quantities. The

first is a city wide index and the second is a “normalized price” associated with the underlying

property at the time of the transaction. The index is modeled as a scalar coefficient and can be

viewed as a parameter shared among all the transactions that took place at that particular time.

The time resolution we work with is one month. Thus there is one city wide index for every

month.

108

The “normalized price” of the underlying property of a transaction at a particular time can

also be viewed as a house specific deviation from the global index at that time. There are pri-

marily three aspects to it. First, it will depend on the features that are specific to the underlying

property. Second, the “normalized price” is also depends on whether the neighborhood in which

the house lies is desirable to live in or not. Some of the features that define the desirability of

a neighborhood, such as the median household income, or the performance of the schools in

that area can be directly measured. However there are a number of features which cannot be

measured directly and are only reflected in the prices of neighboring houses. The sale price of a

house will also depend on the time of sale. A house sold during a boom time will have a premium

on it as opposed to during slump time. The influence of time on the “normalized price” also can-

not be directly measured and is merely reflected in the prices of nearby houses sold around that

period. Thus the “normalized prices” of houses which are spatially and temporally close are

related and influence each other. Since these “normalized prices” themselves are not given to us

as part of the data they are modeled as latent variables. We have one latent variable associated

with every transaction whose value can be interpreted as the “normalized price”. These latent

variables have a strong underlying structure associated with them, namely the spatio-temporal

smoothness. Discounting the features specific to a house, the “normalized price” will have a

gradual change when moving from one location to a nearby location. Furthermore, this change

is also gradual when going from one time period to the next. Thus one can view the “normalized

prices” of various houses over time as a 4-dimensional latent manifold over space and time. The

smoothness constraint over these prices is exploited to learn the shape of this latent manifold.

Lastly, the “normalized price” of a house at a particular time is also influenced by the previous

“normalized price” of that house, if that house had a previous transaction. This is in line with

the repeat sales methodology.

We extend the relational factor graph framework of the previous chapter to capture the re-

109

lationships among the “normalized prices” of transactions that are spatio-temporal neighbors

of each other. In addition the factor graph also captures the dependence of the price of every

transaction on the global city wide monthly index. Since the dependencies among variables is

highly complex, leading to loops in the factor graph we resort to gradient based algorithms for

learning. The learning algorithm proposed efficiently learns both the global index and the 4-

dimensional latent “normalized price” surface simultaneously, while improving the prediction

accuracy. Inference for a new transaction sometime in the future consists of two steps. In the

first step we estimate the global index for that time period using an Autoregressive model. We

use an AR(1) process. The second step involves finding the transactions in the training set that

are spatio-temporal neighbors to it and interpolating them to get an estimate of the “normalized

price” of the new transaction. Finally the two estimates are combined to get the price of the new

transaction. All these ideas are made formal in the next and the following sections.

5.2.1 The Spatio-Temporal Factor Graph

Let there be a set of M transactions spanning a total of P time periods. Let the collection of

these transactions be denoted byQ = {Q1, . . . , QM}, and T = [T i, . . . , TP]′ denote the vector

consisting of time periods. Since the unit of time in the present case is one month, each T i

corresponds to a month. At the same time let there be a set of N underlying properties, with

Xi denoting the features associated with property i. Let the collection of these properties in

vector form be denoted by X = [X1, . . . , XN]′. Each transaction Qi[j, k] is indexed by two

numbers [j, k], associating property Xj and time period T k to transaction Qi. Let the collection

of all such indexes be denoted by the set I. Furthermore, each transaction Qi is also associated

with an indicator variable R(j,k) which equals 0 if there is no past transaction of the underlying

property Xj , and 1 if there is a past transaction of Xj . Let Z(j,k) denote the “normalized” price

of the property Xj at time period T k associated with the transaction Qi[j, k]. For the purpose

110

of notational simplicity we will denote the transaction Qi[j, k] by Q(j,k) where ever required in

the rest of the chapter. The feature vector Xi associated with the i-th house is decomposed into

three components Xi = [Xi
h, X i

nb, X
i
gps]. Xi

h denotes the house specific features, such as, living

area, number of bedrooms etc, Xi
nb denotes the observed neighborhood features, such as, median

household income etc, and Xi
gps denotes the GPS coordinates of the house. In the experiments

discussed below we only used the living area of the property as the house specific feature Xi
h and

no neighborhood features was used. Finally, with each time period T k we associate a learnable

coefficient Ck which is interpreted as the global house price index. The collection of these

indices in vector form is denoted by C = [C1, . . . , CP]′.

The price p(i,j) of the transaction Q(i,j) is modeled as a product of two terms. The first term

is the global city wide index Cj , and the second term is the “normalized” price Z(i,j) of the

underlying property at that time. However, as before, we work in the log domain and thus the

log of the price is the sum of the log of the global index and the log of the “normalized price” of

the house. With a slight abuse of notation however, we shall denote by Cj the log of the index,

and Z(i,j) the log of the “normalized price”, and p(i,j) as the log of the price. In fact in the rest of

the chapter we implicitly assume that everything is in log domain, unless otherwise stated. Thus

we have

p(i,j) = Cj + Z(i,j). (5.1)

One can interpret the “normalized price” as the house specific deviation from the global trend

exhibited by all the houses in the geographic area (which in the experiments below is the entire

city). This “normalized price” is dependent on three quantities. First, it depends on the house

specific features, second it depends on prices and hence the “normalized prices” of the transac-

tions that are spatially and temporally close to it, and third it depends on the price of the previous

transaction of the underlying property, if there exists one. When the underlying property Xj of

transaction Q(j,k) has previously been sold, we say that the transaction Q(j,k) is a repeat sales

111

transaction.

The Non-Relational Factor

We extend the factor graph framework of chapters 3 and 4 to capture these relationships among

samples. Let us denote by Y = [Y 1, . . . , Y M]′ the vector of actual prices associated with the

transactions. Thus for a transaction Q(i,j) the corresponding price is denoted by Y (i,j). The

structure of the factor graph is shown in figure 5.1. We assign two factors E
(i,j)
xyz , and E

(i,j)
zz

to every transaction Q(i,j). Note that the assignments of factors is according to the transaction

and not to the individual houses. The first factor E
(i,j)
xyz captures the dependencies between the

individual price of a transaction, the estimated “normalized price” of the underlying property at

that time D(i,j), and the global index at that time period. As before D(i,j) is the intermediary

hidden variable via which the “normalized prices” of the spatio-temporal neighbors influence

the price of the current transaction. It represents a smoothed estimate of the “normalized price”

of the current transaction, where the estimate is computed from the “normalized prices” of these

neighbors. Thus the factor E
(i,j)
xyz takes the form

E(i,j)
xyz = [Y (i,j) − (Cj + D(i,j))]2. (5.2)

The Relational Factor

The second factor E
(i,j)
zz is relational in nature and captures the influence of the “related” trans-

actions on the price of the current transactions. In the proposed model relationships among

transactions are defined in a specific way. The transaction Q(k,l) belongs to the relationship set

of Q(i,j) if their underlying houses Xk and Xi are geographically close to each other, and the

time T l of the transaction Q(k,l) is close to the time T j of the transaction Q(i,j), and T l ≤ T j .

We say that Q(k,l) is a spatio-temporal neighbor of Q(i,j). However, note that while consid-

ering the transaction Q(k,l) the transaction Q(i,j) will not be considered as its spatio-temporal

112

Xi

Y (i,j)

Z(i,j)

Xk

Y (k,l)

Z(k,l) Z(m,n)

Xm

Y (m,n)

D(i,j) D(k,l) D(m,n)

E(i,j)
xyz E(k,l)

xyz E(m,n)
xyz

E(m,n)
zzE(k,l)

zzE(i,j)
zz

T j T l Tn

R(i,j) R(k,l) R(m,n)

C1 Cj Cl Cn CP

Figure 5.1: The relational factor graph used for constructing house price indices using a spatio-temporal

latent “normalized” price surface.

neighbor because T j ≥ T l. In other words, we only look in the past to get the temporal neigh-

bors of a transaction. The spatial and temporal closeness between two transactions is given by

two hyper-parameters which are learnt through validation. The related transactions influence the

price of the current transaction through their “normalized prices” Z(i,j), which themselves are

latent variables. In particular, let the setN (i,j) be a collection of two quantities. First, it contains

the set of indices corresponding to transactions that are spatio-temporal neighbors of the transac-

tion Q(i,j). Second, it contains the index (i, j′) of the previous transaction of the house Xi (the

repeat sales), if there exists one. A previous transaction is only considered if it has taken place

within some threshold time in the past. The threshold is learnt during the process of validation.

113

Let ZN (i,j) = {Z(k,l) : (k, l) ∈ N (i,j)} denote the collection of the “normalized prices” of the

corresponding transactions (neighbors plus the repeat sales if there is one). The factor E
(i,j)
zz

takes as input the latent variables Z(k,l) (the “normalized prices”) associated with these neigh-

boring transactions. It also takes as input the local latent variable D(i,j), via which the Z(k,l)’s

of the neighboring houses influence the price of the current transaction. This factor also takes as

input the observed variable R(i,j), which helps identify whether the underlying property of the

transaction has a previous sale or not. In line with the discussion of chapter 3 the factor E
(i,j)
zz

does not takes as input the variable Z(i,j), in order to avoid a trivial solution. Instead the normal-

ized price of the transaction Q(i,j) is estimated from the set of neighboring “normalized prices”

ZN (i,j) using the non-parametric function H(Xi, T j , R(i,j), ZN (i,j)). One defining characteris-

tic of the function H is that it ensures spatio-temporal smoothness over the “normalized prices”.

It performs a smooth interpolation over the “normalized prices” of the neighboring transactions

to get an estimate of the “normalized price” of the current transaction. This process can be seen

as constructing a smooth latent manifold in space and time. We now discuss in detail the form

of the function H .

Depending on whether the transaction is a repeat sales or not, the function H can take two

forms. When it is not a repeat sales, the set ZN (i,j) only contains the spatio-temporal neighbors

and R(i,j) = 0. The estimate of the “normalized price” is obtained by fitting a weighted local

linear model on the set of transactions in ZN (i,j) , with the weights given by some appropriate

kernel in space and time. The learnt parameters from the local linear model, along with the house

specific characteristics are used to get the value of H . More formally, let α and β respectively

be the parameters and the bias of the model. We find the value of α∗ and β∗ by fitting a linear

114

model over the neighbors using the house specific characteristics

[β∗, α∗] = argminα,β

∑
(k,l)∈N (i,j)

(Z(k,l)−(β+αXk
h))2

(
µ(Xi

gps, T
j , Xk

gps, T
l)∑

(k,l)∈N (i,j) µ(Xi
gps, T

j , Xk
gps, T

l)

)
.

(5.3)

µ(Xi
gps, T

j , Xk
gps, T

l) is the smoothing kernel over the GPS coordinates of the underlying houses

and the time periods of the transactions. Note that the model is fitted over the house specific char-

acteristic of the neighbors. Once the parameters are computed, the value of the function H is

given by

H(Xi, T j , R(i,j), ZN (i,j)) = β∗ + α∗Xi
h. (5.4)

From remark 4.1, the function H can be expressed as a linear combination of the “normalized

prices” Z(k,l) of the spatio-temporal neighbors

H(Xi, T j , R(i,j), ZN (i,j)) =
∑

(k,l)∈N (i,j)

a(k,l)Z(k,l), (5.5)

where the coefficients a(k,l) are independent of the values of Z(k,l)

When the current transaction is a repeat sale, in addition to containing the spatio-temporal

neighbors the set ZN (i,j) also contains the previous transaction of the underlying property Xi,

which is given by Q(i,j′). T j′ denotes the time period of the previous sale of the property.

Here R(i,j) = 1. In this case the function H is a linear combination of two terms. The first

term is a contribution from the spatio-temporal neighbors of the transaction. The second term

is a contribution from the previous sale of the underlying property. Let λ(T 1, T 2) be a kernel

function defined over time periods. The general property of λ is that its a decreasing function in

|T 1 − T 2|. Then the function H is given by

H(Xi, T j , R(i,j), ZN (i,j)) = (1− λ(T j , T j′))

 ∑
(k,l)∈N (i,j)

a(k,l)Z(k,l)

+ λ(T j , T j′)Zi,j′ .

(5.6)

115

Combining the two cases given by equations 5.5 and 5.6, the function H is given by

H =

∑

(k,l)∈N (i,j) a(k,l)Z(k,l) if R(i,j) = 0

(1− λ(T j , T j′))
(∑

(k,l)∈N (i,j) a(k,l)Z(k,l)
)

+ λ(T j , T j′)Zi,j′ if R(i,j) = 1

The only components of the function H remaining to be specified are the spatio-temporal

kernel µ(Xi
gps, T

j , Xk
gps, T

l), and the temporal kernel λ(T j , T j′). Let d(Xi
gps, X

j
gps) denote the

spatial distances (in miles) between the two properties Xi and Xj , and r(T i, T j) = |T i − T j |

denote the temporal distance between the two time periods T i and T j . Then the spatio-temporal

kernel µ is given by

µ(Xi
gps, T

j , Xk
gps, T

l) = max

[
0, 1−

d(Xi
gps, X

k
gps)

d̄
− r(T j , T l)

r̄

]
. (5.7)

Here d̄ and r̄ are the parameters of the kernel and are fixed exogenously. They are computed

by the process of validation. One can interpret d̄ as the maximum distance in miles one is

willing to go to look for the spatial neighboring houses. Likewise r̄ can be interpreted as the

maximum distance in time we are willing to go back in the search of temporal neighbors. Thus

the kernel gives more weight to the transactions whose underling properties are spatially close

and whose time of sale is temporally close. It is a linear kernel and assumes that the spatio-

temporal contours are straight lines. The simplicity of the kernel is in line with the aim of

this chapter, which is to show the importance of just taking the relationships among samples into

account during learning and inference in relational problems. One is free to chose any non-linear

kernel in the general case.

The temporal kernel λ is given by

λ(T i, T j) = max
[
0, 1− |T

i − T j |
T̄

]
, (5.8)

where T̄ is another fixed parameter whose value is obtained from the process of validation. It

can be interpreted as the maximum possible distance that one is willing to look back in time

116

in search of a previous transaction of the underlying property. The kernel gives more weight

to the previous sale which was closer to the current sale in time as opposed to the sale which

was further back in time. Again, its simplicity (linearity) is motivated by the aim of the chapter.

However one is free to choose any non-linear kernel.

The energy associated with the relational factor E
(i,j)
zz is given by

E(i,j)
zz = (D(i,j) −H(Xi, T j , R(i,j), ZN (i,j)))2. (5.9)

The total energy corresponding to every transaction is

E(i,j) = E(i,j)
xyz + E(i,j)

zz (5.10)

= (Y (i,j) − (Cj + D(i,j)))2 + (D(i,j) −H(Xi, T j , R(i,j), ZN (i,j)))2. (5.11)

Since the local energies of the two factors are quadratic functions of D(i,j), using lemma 3.1 we

can merge the two factors and treat the second factor as a function of the first. Thus the energy

corresponding to the single factor associated with every transaction is given by

E(i,j) = (Y (i,j) − (Cj + H(Xi, T j , R(i,j), ZN (i,j))))2. (5.12)

Figure 5.2 shows the reduced factor graph and figure 5.3 shows the architecture of the factors

in this factor graph. Each factor consists of two trainable components. The first component is a

switch module which, depending on the value of the variable T j , makes a connection between

the variable Cj and the upper layers. The Cj’s encode the global index and one can view them

as learnable parameters. The second component is the non-paramtric function H over space

and time, that estimates the “normalized” price of the current transaction from the “normalized”

prices of its spatio-temporal neighbors. This component models the smooth latent price man-

ifold over the given geographic area and the specified time interval. The outputs of the two

components are added (since they are in the log domain) to get an estimate of the total price of

117

the transaction. Finally, the discrepancy between the actual price Y (i,j) and the predicted price

(Cj + H(Xi, T j , R(i,j), ZN (i,j))) is measured to get the energy associated with the factor.

Xi

Y (i,j)

Xk

Y (k,l)

Xm

Y (m,n)

E(i,j)

E(k,l)

E(m,n)

T j

T l

Tn

C1 Cj Cl Cn CP

Z(i,j) Z(k,l) Z(m,n)

Figure 5.2: The reduced factor graph used for constructing house price indices using a latent “normal-

ized” price manifold over space and time.

The global energy function of the system is the sum of energies of all the local energy

functions and is given by

E(C,Z,Y,X,T) =
∑

(i,j)∈I

E(i,j)(Cj , Z(i,j), Y (i,j), X i, T j), (5.13)

=
∑

(i,j)∈I

(Y (i,j) − (Cj + H(Xi, T j , R(i,j), ZN (i,j))))2. (5.14)

5.2.2 The Learning Algorithm

Since the factors associated with every transaction Q(i,j) are quadratic in Y (i,j), exactly the same

analysis to an efficient learning algorithm of chapter 3 goes through here as well. In particular,

the system is trained by maximizing the likelihood of the training data. This is achieved by

marginalizing the negative log likelihood loss with respect to the hidden variables Z and min-

imizing it with respect to the parameters C. Note that the set of indices C can be viewed as

118

+

Xi ZN (i,j)

H(Xi, T j , R(i,j), ZN (i,j))

C1 Cj CP

||Y (i,j) − (Cj + Ẑ(i,j))||2

E(i,j)

T j R(i,j)T j Y (i,j)

Cj Ẑ(i,j)

Figure 5.3: The architecture of each factor in the factor graph of figure 5.2. It consists of two trainable

components: the set of parameters C and the non-parametric function H .

parameters to the model since the number of these indices are independent of the number of

training samples. As discussed in chapter 3, the marginalization over Z can be approximated

by a minimization operation, and when the energy function is a quadratic function of Y, the

contrastive term in the negative log-likelihood loss function vanishes. Hence the entire process

reduces to minimizing the energy loss simultaneously with respect to C and Z. That is

L(C,Z) = min
C,Z

∑
(i,j)∈I

(Y (i,j) − (Cj + H(Xi, T j , R(i,j), ZN (i,j))))2. (5.15)

Since maximizing the likelihood of the data in general can lead to over fitting, simply mini-

mizing the energy is not sufficient. In order to avoid over fitting and achieve the spatio-temporal

smoothness of the price surface we add two additional regularization terms to the loss function.

119

Regularization

The first is the L2 regularizer over the latent variables Z, and is given by

Φ1 =
∑

(i,j)∈I

(Z(i,j))2. (5.16)

In order to interpret this regularization term we can re-write the sum of squares as

Φ1 = (MZ̄2 +
∑

(i,j)∈I

(Z(i,j) − Z̄)2, (5.17)

where Z̄ is the mean of Z(i,j), and M is the total number of transactions. Minimizing Φ1

results in driving the mean Z̄ to zero and minimizing the variance of Z(i,j)’s around the mean

Z̄. This process ensures that any common component of house price appreciation is absorbed

by the index and not by the “normalized price” surface. This gives some “stiffness” to the price

surface.

The second regularization term added to the loss function is what we call the self consistency

term, similar to the one discussed in chapter 4. Note that while estimating the “normalized price”

of the current transaction the function H does not take the Z(i,j) of the current transaction as

its argument. Rather it only looks at the “normalized prices” of the neighboring transaction.

Hence there is no way to ensure that the estimate (output of the function H) will asymptotically

converge to the learnt Z(i,j) of the current sample. This can be made sure by explicitly adding

the self consistence term in the loss function

Φ2 =
∑

(i,j)∈I

(Z(i,j) −H(Xi, T j , R(i,j), ZN (i,j)))2. (5.18)

This also helps ensure smoothness in the price surface. In words what it means is that when there

is no past sale, the “normalized price” of any transaction must be close to the weighted sum of

the normalized prices of its spatio-temporal neighbors. When there is a past sale then the weights

120

are distributed between the past “normalized price” and the weighted sum of “normalized prices”

of spatio-temporal neighbors, depending on the time between the current and past sale.

Thus the complete loss function is given by

L(C,Z) =
∑

(i,j)∈I

(Y (i,j) − (Cj + H(Xi, T j , R(i,j), ZN (i,j))))2 (5.19)

+ δ1

∑
(i,j)∈I

(Z(i,j))2 (5.20)

+ δ2

∑
(i,j)∈I

(Z(i,j) −H(Xi, T j , R(i,j), ZN (i,j)))2, (5.21)

where δ1 and δ2 are coefficients that govern the importance of the two regularization terms. Their

values were determined via the process of validation.

The Optimization Problem

Since the above loss function is quadratic in both sets of parameters C and Z, one can express

the optimization problem as a solution to the linear system of the form Ax = b. We know that the

output of the function H can be written as a linear combination of the latent variables associated

with the spatio-temporal neighbors (and the previous sales if present). Thus we can express the

function H as

H i = Z′ · U i, (5.22)

where H i denotes the value of the function H for the transaction Qi, Z′ denotes the transpose

of the vector Z, and U i is a sparse vector of size M (equal to the number of transactions in the

training set). The number of non-zero elements in U i is either equal to the number of spatio-

temporal neighbors of the i-th transaction if the transaction is not a repeat sales, or is equal to one

plus the number of spatio-temporal neighbors when the transaction is a repeat sales. The j-the

non-zero element is equal to the coefficient corresponding to the j-th spatio-temporal neighbor.

Let U be an NxN matrix whose i-th row is the vector U i′. Then the L2 regularization term can

121

be written as

Φ1 = Z′ · Z′, (5.23)

and the explicit self consistency term can be written as

Φ2 = (Z−U · Z)′(Z−U · Z). (5.24)

Let V be a MxT matrix (where T is the total number of time periods), such that Vij = 1 if the

i-th transaction Qi is transacted in time period T j and 0 otherwise. Then the loss function in the

matrix form can be written as

L(C,Z) = [Y −V ·C−U · Z]′[Y −V ·C−U · Z] (5.25)

+ δ1Z′ · Z + δ2(Z−U · Z)′(Z−U · Z). (5.26)

The configuration of variables Z and C that minimizes this loss function is the same as the

solution to the following linear system. V′ ·V V′ ·U

U′ ·V (1 + δ2)U′ ·U + (δ1 + δ2)I − δ2(U + U′)

 C

Z

 =

 V′ ·Y

U′ ·Y

 , (5.27)

I is a M ×M identity matrix. The above system of equations is of the form Ax = b where

x = [C Z]′, b = [V′ ·Y U′ ·Y]′ and

A =

 V′ ·V V′ ·U

U′ ·V (1 + δ2)U′ ·U + (δ1 + δ2)I − δ2(U + U′)

 . (5.28)

It is computationally infeasible to directly solve this system since the size of the vector x is of

the order of 1.3 million. Thus we resort to iterative methods, in particular conjugate gradient, to

solve for this system and train the model. Note that we have shown here that learning the param-

eters of the model collectively reduces to solving a linear system. Thus our learning algorithm

is effectively doing a belief propagation over the relational factor graph (Wang and Guo, 2006).

122

5.2.3 The Testing Algorithm

If the model is trained using all the transactions that took place within the time periods T 1 to

T k, for some k, then its performance is measured based on the accuracy with which it predicts

the prices of the transactions in time period T k+1. However note that the price is modeled as a

combination of a global index and the “normalized price” of the transaction. Since the prediction

is required for a transaction in some future time period, we also need to estimate the global index

for this time period. Hence the inference procedure for a new future transaction Q0 consists of

two steps. First, it estimates the global price index for that future period. Second, it computes

the “normalized price” of the transaction from the relational factor graph.

An autoregressive model is used to estimate the price index for the test period. Let us denote

by nRt the nominal monthly returns for time period T t. Then nRt is given by

nRt =
Ct

Ct−1
− 1. (5.29)

We assume that nRt follows a simple AR(1) process. That is

nRt+1 = ρ(nRt) + θt+1, (5.30)

where θt+1 is assumed to be a gaussian with zero mean, and ρ is a parameter to be estimated.

Using this equation we estimate the value of ρ and denote it by ρ̂. Once we have computed ρ̂,

the estimated value of the index in the future time period T t+1 is given by

Ct+1 = ρ̂(nRt)Ct. (5.31)

The process of estimating the “normalized price” of a future unseen transaction Q0[k, l] is the

same as estimating the “desirability” of a house discussed in the previous chapter. This involves

creating a new factor corresponding to the new transaction and augmenting it with the trained

factor graph by making the connections from the new factor to the latent variables Z(i,j)’s as-

sociated with the spatio-temporal neighbors of the new transaction. The nonparametric function

123

H is then used to compute the estimate of the “normalized price” Z(k,l) from the “normalized

prices” of its neighbors.

Finally the two estimates, one of the index C l and the other of the “normalized price” Z(k,l)

are added to get the log of the price of the new transaction.

5.3 Experiments

Experiments were performed using the dataset discussed in section 5.1. The reason for choos-

ing so few variables was to show the effect of spatio-temporal relationships among prices of

transactions, without resorting to complex individual architectures for individual transactions.

The model is tested on eighteen different test periods which were constructed on the basis of

the month of transaction. The test periods were March 2000 to August 2000, January 2004 to Jun

2004, and July 2007 to December 20071. The samples are specifically chosen to represent three

very different periods in Los Angeles house price history. The first set of test periods March

to August 2000 saw average growth in house prices, the second set of test periods January to

June 2004 were right in the middle of the housing boom and the last set of test periods July to

December 2007 saw a significant decline in house prices. The training samples corresponding

to each test period included all the transactions from January 1984 to one month before the

test period. For example, when the test set contained transactions from the period March 2004,

the training data included all transactions from the period January 1984 to February 2004. The

period of February 2000 was used for validation.

The model was compared with the S&P Case-Shiller model for index construction. It is

a repeat sales model and has been an industry standard for quite sometime. The goodness of

an index is measured by its accuracy in predicting the prices of unseen transactions that took

1It was not possible to test on the entire period 2000 − 08 because the hard disk space required to store all the

relevant neighborhood matrices exceeds 250 GBs for just these 18 months

124

place in the future. As evident from the results discussed below, accounting for spatio-temporal

relationships among samples significantly boosts the performance of the model.

5.3.1 Repeat Sales indices

Extreme heterogeneity in the attributes of houses makes the construction of house price indices

very difficult. The constructed index must therefore control for these heterogeneities. One way to

solve this problem is to only look at the repeat sales of houses. If one assumes that the attributes

of houses do not change over time, and there is no selection bias in selecting only households

that have been sold at least twice, then this approach can construct a house price index with the

desired property.

In particular the price equation of a basic repeat sales model is given by

Pr(i,t)

Pr(i,t′)
=

Ct′

Ct
ε(i,t,t

′), (5.32)

where Pr(i,t) is the price of the house i at time period t, Ct is the price index at time period t,

and ε(i,t,t
′) is the error term associated with the house i sold at time periods t and t′ and it is I.I.D

and distributed according to N(0, σ2). In the log domain the above price equation is

Pr(i,t) − Pr(i,t′) = Ct′ − Ct + ε(i,t,t
′). (5.33)

If for every house i we associate P variables Bj : j ∈ [1, . . . , P], such that Bt = 1 if the house

was resold in time period t, and Bt = −1 if the house was first sold in period t, then the above

price equation can be written as

D(i,t,t′) =
P∑

j=1

CjBj + ε(i,t,t
′), (5.34)

where D(i,t,t′) = Pr(i,t) − Pr(i,t′). In matrix form this equation becomes

D = B · C + ε, (5.35)

125

which can be solved for the log of the indices C.

One major limitation of the above model is that the error term is homoskedastic: the error

terms are independently and identically distributed with the same variance. What this means

is that if a particular house is sold more than twice its error terms will be uncorrelated. Fur-

thermore two possibly similar houses sold and resold in exactly the same periods will also have

independent error terms. Case and Shiller argue against such independence of error terms. The

intuition is that changes in attributes of houses are likely to be more, the longer the time between

sales, resulting in a larger unexplained variance in prices for these houses. That is, there is a drift

in house prices over time. In the above model houses resold after a longer time have a greater

impact on the index (because of higher unexplained variance as argued by Case and Shiller).

Hence, Case and Shiller formulate a weighted repeat sales index model that down weights the

repeat sales transactions which have large time difference. The basic methodology is as follows.

The price of a house i is given by

Pr(i,t) = Ct + α(i,t) + β(i,t), (5.36)

where Ct denoted the area wide price index, α(i,t) is the drift term and is a gaussian random

walk (i.e., α(i,t) − α(i,(t−1)) is I.I.D normal), and β(i,t) is the sale specific error term. The price

difference equation can be written as

Pr(i,t) − Pr(i,t′) = Ct − Ct′ + (α(i,t) − α(i,t′)) + (β(i,t) − β(i,t′)), (5.37)

=
T∑

j=1

B(i,j)Cj + ε(i,t,t
′), (5.38)

where B(i,j)’s are time dummy variables with B(i,j) = 1 if j = t, and B(i,j) = −1 if j = t′ and

0 otherwise. ε(i,t,t
′) is the random error term for every repeat sales transaction distributed from a

normal distribution with 0 mean and (σ2
α(t− t′) + 2σ2

β) variance.

The indices are estimated using a 3 stage least squares method. First the log of the prices

126

are regressed on the time dummy variables B using the price difference equation 5.38, using

standard least squares. Then the residuals are regressed on a constant and (t − t′) to get the

estimates of σ2
α, and σ2

β . Finally the estimate of variance of ε are used to weight the transactions

and obtain a weighted least squares estimates of the indices Ct.

The above model works with geometric averages by using the log of the prices instead of

the actual prices. However in practice, in particular in the S&P Case-Shiller model, actual prices

are used and arithmetic averages are computed. This is because the arithmetic averages are

less sensitive to outliers which any housing tape is likely to have. This is the model which we

implemented in the present chapter.

5.3.2 Spatio-Temporal Model

The relational factor graph model proposed in this chapter tries to address all the issues which

a general repeat sales index methodology, such as Case-Shiller lacks. It not only makes use

of the transactions that are repeat sales, but it also uses the single sales transactions for index

construction. In addition it also captures the influence of the spatio-temporal neighbors on the

price of any transaction. This is achieved with the help of the non-parametric function H . While

estimating the “normalized” price of the current transaction this function uses the “normalized

prices” of the neighboring transactions. However since the “normalized prices” are not given to

us as part of the data, they are modeled as latent variables. Furthermore, since the “normalized

prices” of every transaction influences the “normalized prices” of others, the model tries to learn

them collectively. Thus one can view the model as trying to learn a latent normalized price

manifold over space and time, in addition to constructing the index simultaneously. The final

price of any transaction is given by the combination of the index of the time period in which the

transaction took place, and the value of this manifold at the point of the transaction (in space and

time).

127

The set of learnable indices C were modeled as scalar coefficients, and the function H was

a non-parametric function which involved fitting a weighted local linear regression model on

the spatio-temporal neighbors of the transaction. The spatio-temporal kernel µ, and the repeat

sales kernel λ used were the ones discussed in section 5.2.1. All the hyper-parameters of the

model, namely d̄, r̄, T̄ , δ1, and δ2 were chosen using the process of validation. In particular

the model was trained using all the transactions from the period January 1984, to January 2000,

and validated on the set of transactions in the period February 2000. The hyper-parameters were

adjusted to get the best performance on this validation set. Once found, their values were kept

fixed for testing the model in other test periods. The validated values of the hyper-parameters

were, d̄ = 0.5 (miles), r̄ = 36 (months), T̄ = 120 (months), δ1 = 0.01, and δ2 = 1. The results

were not very sensitive to small variations of any of the hyper-parameters around these values.

5.4 Results and Discussion

The performance of the model, and hence the goodness of the index is measured by looking at

how well it predicts the price of new transactions in the test periods. As before, we measure the

Absolute Relative Forecasting Error for every transaction, which is given by

fe(i,j) =
|Y (i,j) − Pr(i,j)|

Y (i,j)
. (5.39)

Computing the root mean square error is not useful because of its sensitivity of outliers. Here

Y (i,j) is the actual price of the transaction Q(i,j), and Pr(i,j) is the predicted price of the trans-

action by the model. Two performance quantities on the test sets are reported. The first is the

percentage of houses with less than 5% forecasting error, and the second is the percentage of

houses with less than 15% forecasting error. The larger these numbers the better the model.

128

Overall Index Performance

As mentioned earlier, we compare our index model with the S&P Case-Shiller index model

which has been an industry standard. The figure 5.4 shows the pattern of the two indices. The

indices are normalized so that the index value in the period January 2000 is 100. Barring the

first 5 years, from 1984 - 1989, there is very little difference between the two indices. However

the difference between the two models lie in trying to predict the prices of new transactions and

also in the error patterns of the two models.

Comparing House Price Indices

0

75

150

225

300

Jan-84 Oct-88 Jul-93 May-98 Feb-03 Dec-07

Case Shiller Spatio-temporal

Figure 5.4: Plot showing the pattern of the Case-Shiller index and our Spatio-Temporal index. Other

than in the first 5 years, there is very little difference between the two indices.

Table 5.1 gives the overall prediction performance of the two indices for all the repeat sales

129

Table 5.1: The overall prediction errors for the Relational Factor graph and Case-Shiller model. The

errors are segmented according to the time periods. ARF Err: Absolute Relative Forecasting percentage

error, Med Err (Ab): Absolute Median percentage error, and Med Err(Ac): Actual Median percentage

error.

RELATIONAL FG CASE SHILLER

ARF ERR % MED ERR % ARF ERR % MED ERR %

TIME PERIOD ≤ 5% ≤ 15% AB AC ≤ 5% ≤ 15% AB AC

MAR. – AUG. 2000 29.04 69.30 9.43 -2.47 24.79 60.91 11.29 -3.50

JAN. – JUN. 2004 32.95 76.42 8.00 -3.17 25.95 65.56 10.31 3.61

JUL. – DEC. 2007 29.03 71.05 9.24 0.50 17.73 50.24 14.90 -8.06

transactions that took place in the given periods in Los Angeles county. Clearly the relational

factor graph model comprehensively outperforms the Case-Shiller index model in all the testing

periods. The difference is particularly stark in the period July – December 2007, which saw a

sharp decline in the house prices. The Case-Shiller index was found to be over-predicting the

prices in this period by an average of about 8% median error.

After accounting for hetroscedasticity, the errors in the Case-Shiller model should be I.I.D

normal. However the experiments show a lot of structure associated with the error patterns.

In particular we find patterns with respect to initial prices, with respect to time between trans-

actions, and with respect to geography. These patterns are present because the Case-Shiller’s

model treats all houses as similar and differentiates them only on the basis of the turnover time.

However homes are heterogeneous in quality and in terms of the location they inhabit. Though

controlling for quality is generally hard because of lack of data, the present set of results show

that accounting for relationships among transactions both in space and time can eliminate some

of these systematic patterns in the error structure. We now discuss in detail the various patterns

that were observed in the Case-Shiller’s error structure and discuss how they were taken care of

130

Table 5.2: Error patterns for Case-Shiller and Relational Factor Graph model segmented with respect

to time between sales. ARF Err: Absolute Relative Forecasting percentage error, Med Err (Ab): Absolute

Median percentage error, and Med Err(Ac): Actual Median percentage error.

RELATIONAL FG CASE SHILLER

ARF ERR % MED ERR % ARF ERR % MED ERR %

TIME PERIOD ≤ 5% ≤ 15% AB AC ≤ 5% ≤ 15% AB AC

< 1 YEAR 32.47 75.39 7.79 -1.48 41.78 90.18 6.36 2.61

1-2 YEARS 29.71 72.17 9.21 -1.98 31.04 72.12 8.65 0.60

2-3 YEARS 30.71 73.48 8.71 -3.15 28.68 71.08 9.22 2.41

3-5 YEARS 30.21 71.93 8.80 -2.81 23.23 62.65 11.18 1.13

5-7 YEARS 29.12 72.90 8.78 -1.94 21.53 57.70 12.67 -1.20

7-10 YEARS 31.43 72.77 8.53 -2.65 23.98 61.26 11.50 -2.54

10-12 YEARS 30.89 73.44 8.51 -2.57 21.16 55.96 12.87 -5.51

12-15 YEARS 31.20 71.63 8.78 -1.82 19.66 50.49 14.74 -5.46

15-20 YEARS 32.51 72.20 8.4 -1.76 16.04 43.24 18.04 -5.31

> 20 YEARS 28.37 71.81 9.53 0.72 9.78 30.52 24.13 -10.51

by the relational factor graph model.

Index Performance Segmented by Time Between Sales

Table 5.2 shows the errors for both the Case-Shiller model and the factor graph model segmented

according to the time between successive sales of the houses – also called the turnover time.

From the table one can see that the Case-Shiller model does a good job of predicting prices on

quick trades, particularly those that are within one year of time, where it beats the factor graph

model. This makes intuitive sense, since in the short run any change in prices is unlikely to be

because of the changes in neighborhood, or the structure of the house. It is likely driven by the

citywide supply and demand, interest rates and similar factors.

131

The performance of the Case-Shiller model however falls dramatically and monotonically

with increasing turnover time. Furthermore the median error is found to be increasingly negative

as the turnover time increases, implying that the homes that transact after a long time are over-

predicted. In contrast, the relational factor graph model does not show any such pattern. The

prediction accuracy of the model roughly stays constant throughout the time period, with around

and above 70% of houses being predicted with less than 15% error. One possible explanation

behind this scenario could be that in the long run, the houses as well as the neighborhood undergo

dramatic changes. Hence, if the previous sale of a house took place long time back, the price of

a transaction will not be influenced as much by its previous sale, as by the current status of the

neighborhood in which the house lies, and by its present characteristics. Though it is difficult to

capture the house specific changes, one can certainly capture the changes in the neighborhoods

and use the findings to influence the price of the transaction. This is exactly what the proposed

factor graph model does. It tries to learn the changes in neighborhoods over time by learning

the latent “normalized price” manifold over space and time, and uses it to predict the price of a

transaction at any point in time.

Index Performance Segmented by Initial Price

Table 5.3 show the errors made by the two models, segmented according to the initial price of

the transactions. The Case-Shiller model does a very poor job in predicting the prices of houses

that either have very low initial price, or have a very high initial price. In particular for houses

with price less than 50, 000, the Case-Shiller model predicts only 3.88% of houses with less than

15% error. The accuracy steadily increases until it peaks at 71.11% for homes with the prices in

the range of 200, 000 − 250, 000. It again gradually decreases as the initial prices increase and

drops down to 54.53% for houses with a price of more than a million. In addition to performing

badly on the cheap and expensive houses, the error structure of the Case-Shiller’s model exhibits

132

Table 5.3: Error patterns segmented according to the initial price of houses. ARF Err: Absolute Relative

Forecasting percentage error, Med Err (Ab): Absolute Median percentage error, and Med Err(Ac): Actual

Median percentage error.

RELATIONAL FG CASE SHILLER

ARF ERR % MED ERR % ARF ERR % MED ERR %

INITIAL PRICE ($) ≤ 5% ≤ 15% AB AC ≤ 5% ≤ 15% AB AC

≤ 50,000 27.40 62.59 10.46 0.91 0.92 3.88 69.25 67.51

50-75,000 25.49 62.10 10.71 1.22 12.28 30.64 26.17 15.72

75-100,000 30.37 69.47 9.28 0.07 15.88 44.47 17.26 -0.77

100-125,000 30.18 73.31 8.83 -0.43 18.12 50.95 14.70 -0.20

125-150,000 32.28 75.84 8.11 -0.95 21.24 57.48 12.64 -1.32

150-200,000 34.22 77.97 7.74 -2.39 25.24 65.58 10.35 0.83

200-250,000 33.22 75.84 8.00 -3.37 28.91 71.11 9.26 1.45

250-300,000 30.73 73.62 8.51 -3.24 29.73 69.81 9.26 0.48

300-350,000 29.18 72.16 9.13 -3.38 27.38 67.02 9.71 -1.20

350-400,000 29.79 70.39 9.15 -2.56 28.65 65.89 9.85 -2.84

400-450,000 28.20 68.41 9.70 -2.64 25.78 64.00 10.96 -3.83

450-500,000 27.38 68.99 9.63 -1.59 23.61 59.83 11.70 -6.30

500-600,000 27.41 66.34 10.32 -1.09 22.83 57.52 12.54 -8.50

600-750,000 25.19 65.64 10.51 -2.46 19.36 54.57 13.45 -8.87

750,000-1 MILLION 23.23 57.07 12.75 -5.00 21.31 53.23 13.66 -7.66

> 1 MILLION 17.03 44.73 16.59 -13.94 21.44 54.53 13.41 -6.53

another interesting pattern. It systematically under predicts the prices of homes which have very

low initial price, and over predicts the prices of homes with very high initial price. This is

evident from the fact that for houses with less than $50, 000 initial price the actual median error

is positive and is as high as 67.51%, and for houses with more than 1 million initial price the

133

median error is negative and is −6.53%.

The table also shows that such patterns are not so much apparent with the relational factor

graph model. There is no under-prediction of homes with low initial prices (≤ 50, 000), since

the actual median error for these homes is around 1%. There is also a dramatic improvement in

prediction accuracy in the factor graph model over the Case-Shiller model at low initial prices.

Since the indices are the same, this implies that location or geography has a huge impact. Indeed

the homes are clustered according to prices, and the relational factor graph framework is able to

capture this relationship among nearby homes to get better prediction and remove the superfluous

patterns in the error.

Note that the factor graph model does poorly on homes with very high initial prices by sys-

tematically over predicting them (actual median error is−13.94%). Also the prediction accuracy

for these homes is very poor. The factor graph model smooths the “normalized price” surface

by ensuring that the “normalized price” of nearby homes (in the spatio-temporal sense) isn’t

too different. The model therefore faces obvious limitations in neighborhoods that are sparsely

transacting and/or not homogeneous. However, though the higher magnitude of errors could be

explained by the sparseness of transactions and/or by a lack of homogeneity of homes in high

price neighborhoods, this would not explain over-prediction.

Index Performance Segmented by Geography

Finally, table 5.4 gives the breakdown of the errors for the two models according to smaller

geographic areas. The relational factor graph framework clearly out performs the Case-Shiller

model even for individual neighborhood, other than Pasadena.

134

Table 5.4: Error patterns segmented with respect to geography. ARF Err: Absolute Relative Forecasting

percentage error, Med Err (Ab): Absolute Median percentage error, and Med Err(Ac): Actual Median

percentage error.

RELATIONAL FG CASE SHILLER

ARF ERR % MED ERR % ARF ERR % MED ERR %

NEIGHBORHOOD ≤ 5% ≤ 15% AB AC ≤ 5% ≤ 15% AB AC

PALMDALE 31.20 75.31 8.40 -0.46 19.78 52.6 13.96 -5.35

PASADENA 21.85 57.63 12.43 -6.03 24.42 61.29 11.12 2.87

TORRANCE ETC. 30.92 74.84 8.48 -1.44 24.78 64.01 10.16 -1.79

VAN NUYS 26.44 72.65 9.38 -5.03 18.61 54.3 13.72 2.19

LONG BEACH 29.21 74.25 9.19 -4.30 25.14 64.82 10.95 2.26

INDUSTRY ETC. 38.18 81.90 6.91 0.27 25.79 63.55 10.53 -4.35

135

6
MORE RESULTS ON ENERGY BASED MODELS

This chapter elaborates on a set of results discussed informally in chapter 1. In particular we

discussed earlier that not all combinations of loss functions and architectures of energy func-

tions are compatible, and learning in them can lead to “flat” energy surfaces leading to trivial

solutions. For example, in (LeCun et al., 2006) LeCun et al., give examples of combination of

energy function and loss function which work and which don’t. They show that when a straight

forward regression type architecture is trained with simple energy loss, it leads to successful

training. However when this loss is used with a more complicated architecture, akin to the one

discussed in implicit regression in chapter 1, it leads to a flat energy surface. Furthermore is the

implicit regression architecture is trained with a loss function with an explicit contrastive term,

such as square-square loss of NLL loss, the machine is successfully trained and we get the right

shape of the energy function. Here we make these statements formal by giving a set of sufficient

conditions that any loss function must satisfy so that its minimization leads to a successful train-

ing in an energy based setting: an energy surface whose minimum corresponds to the correct

answer.

6.1 Sufficient Conditions for Good Loss Functions

We first state a set of sufficient conditions that that the energy function and the loss function

must satisfy in order to be guaranteed to work in an energy-based setting. We then explain what

these conditions mean by discussing them in the light of few example loss function.

136

6.1.1 Conditions on the Energy

Inference method in energy-based learning involves choosing the answer with minimum energy.

Thus the condition for the correct inference on a sample (Xi, Y i) is:

Condition 6.1. For sample (Xi, Y i), the machine will give the correct answer for Xi if

E(W,Y i, X i) < E(X, Y,Xi), ∀Y ∈ Y and Y 6= Y i. (6.1)

In words this means that the inference algorithm will give the correct answer if the energy of

the desired answer Y i is less than the energies of all the other answers Y .

To ensure that the correct answer is robustly stable, we may choose to impose that its energy

be lower than energies of incorrect answers by a positive margin m. If Ȳ i denotes the most

offending incorrect answer, then the condition for the answer to be correct by a margin m is:

Condition 6.2. For a variable Y and sample (Xi, Y i) and positive margin m, the inference

algorithm will give the correct answer for Xi if

E(W,Y i, X i) < E(W, Ȳ i, X i)−m. (6.2)

6.1.2 Sufficient Conditions on the Loss Functional

If the system is to produce the correct answers, the loss functional should be designed in such a

way that minimizing it will cause E(W,Y i, X i) to be lower than E(W, Ȳ i, X i) by some margin

m. Since only the relative values of those two energies matter, we only need to consider the

shape of a slice of the loss functional in the 2D space of those two energies. For example, in the

137

case where Y is the set of integers from 1 to k, the loss functional can be written as:

L(W,Y i, X i) = L(Y i, E(W, 1, X i), . . . , E(W,k, Xi)). (6.3)

The projection of this loss in the space of E(W,Y i, X i) and E(W, Ȳ i, X i) can be viewed as a

function Q parameterized by the other k − 2 energies:

L(W,Y i, X i) = Q[Ey](E(W,Y i, X i), E(W, Ȳ i, X i)), (6.4)

where the parameter [Ey] contains the vector of energies for all values of Y except Y i and Ȳ i.

0 0.2 0.4 0.6 0.8 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Energy: E
C

E
n

e
rg

y
:

E
I

HP
1

HP
2

E
C
 + m = E

I

E
C
 = E

I

m

R

Figure 6.1: Figure showing the various regions in the plane of the two energies EC and EI . EC are the

(correct answer) energies associated with (Xi, Y i), and EI are the (incorrect answer) energies associ-

ated with (Xi, Ȳ i).

We assume the existence of at least one set of parameters W for which condition 6.2 is

satisfied for a single training sample (Xi, Y i). Clearly, if such a W does not exist, there cannot

138

exist any loss function whose minimization would lead to condition 6.2. For the purpose of

notational simplicity let us denote the energy E(W,Y i, X i) associated with the training sample

(Xi, Y i) by EC (as in “correct energy”) and E(W, Ȳ i, X i) by EI (as in “incorrect energy”).

Consider the plane formed by EC and EI . As an illustration, Figure 6.4 shows a 3-dimensional

plot of the square-square loss function in which the abscissa is EC and the ordinate is EI . The

third axis gives the value of the loss for the corresponding values of EC and EI . In general, the

loss function is a family of 2D surfaces in this 3D space, where each surface corresponds to one

particular configuration of all the energies except EC and EI . The solid red line in the figure

corresponds to the points in the 2D plane for which EC = EI . The dashed blue line correspond

to the margin line EC + m = EI . Let the two half planes EC + m < EI and EC + m ≥ EI be

denoted by HP1 and HP2 respectively.

Let R be the feasible region, defined as the set of values (EC , EI) corresponding to all possi-

ble values of W ∈ W . This region may be non-convex, discontinuous, open, or one-dimensional

and could lie anywhere in the plane. It is shown shaded in Figure 6.1. As a consequence of our

assumption that a solution exists which satisfies conditions 6.2, R must intersect the half plane

HP1.

Let two points (e1, e2) and (e′1, e
′
2) belong to the feasible region R, such that (e1, e2) ∈ HP1

(that is, e1 + m < e2) and (e′1, e
′
2) ∈ HP2 (that is, e′1 + m ≥ e′2). We are now ready to present

the sufficient conditions on the loss function.

Condition 6.3. Let (Xi, Y i) be the ith training example and m be a positive margin. Minimizing

the loss function L will satisfy conditions 6.1 or 6.2 if there exists at least one point (e1, e2) with

e1 + m < e2 such that for all points (e′1, e
′
2) with e′1 + m ≥ e′2, we have

Q[Ey](e1, e2) < Q[Ey](e
′
1, e

′
2), (6.5)

139

Table 6.1: A list of loss functions, together with the margin which allows them to satisfy condition 6.3.

A margin > 0 indicates that the loss satisfies the condition for any strictly positive margin, and “none”

indicates that the loss does not satisfy the condition.

Loss (equation #) Formula Margin

energy loss (1.7) E(W,Y i, X i) none

perceptron (1.8) E(W,Y i, X i)−minY ∈Y E(W,Y, Xi) 0

hinge (1.12) max
(
0,m + E(W,Y i, X i)− E(W, Ȳ i, X i)

)
m

square-square (1.13) E(W,Y i, X i)2 −
(
max(0,m− E(W, Ȳ i, X i))

)2
m

NLL (3.22) E(W,Y i, X i) + 1
β log

∫
y∈Y e−βE(W,y,Xi) > 0

where Q[Ey] is given by

L(W,Y i, X i) = Q[Ey](E(W,Y i, X i), E(W, Ȳ i, X i)). (6.6)

In other words, the surface of the loss function in the space of EC and EI should be such

that there exists at least one point in the part of the feasible region R intersecting the half plane

HP1 such that the value of the loss function at this point is less than its value at all other points

in the part of R intersecting the half plane HP2.

Note that this is only a sufficient condition and not a necessary condition. There may be loss

functions that do not satisfy this condition but whose minimization still satisfies condition 6.2.

6.1.3 Which Loss Functions are “Good” or “Bad”

We say a loss function is “good” if it satisfies condition 6.3, and hence whose minimization will

lead to a successfully training of the energy based models. Likewise, a loss function is “bad” if

140

it does not satisfy condition 6.3. Table 6.1 lists discussed in chapter 1, together with the value of

the margin with which they satisfy the sufficiency condition. The energy loss is marked “none”

because it does not satisfy condition 6.3 for a general architecture. The perceptron loss satisfies

it with a margin of zero. The hinge loss, the square-square loss and the NLL loss satisfies

the condition with a positive margin. A more complete list of loss functions along with their

margins is given in (LeCun et al., 2006). We now discuss in detail the loss functions discussed

in chapter 1.

Energy Loss

The energy loss is classified as a “bad” loss function in general, but there are certain forms of

energies for which it is a good loss function. For example consider an energy function of the

form

E(W,Y i, X i) =
K∑

k=1

δ(Y i − k)||Uk −GW (Xi)||2. (6.7)

This energy passes the output of the function GW through K radial basis functions (one corre-

sponding to each class) whose centers are the vectors Uk. If the centers Uk are fixed and distinct

then the energy loss satisfies condition 6.3 and hence is a good loss function.

To see this, consider the two-class classification case (the reasoning for K > 2 follows along

the same lines). The architecture of the system is shown in Figure 6.2. Let d = ||U1 − U2||2,

d1 = ||U1 −GW (Xi)||2, and d2 = ||U2 −GW (Xi)||2. Since U1 and U2 are fixed and distinct,

there is a strictly positive lower bound on d1 + d2 for all GW . Being only a two-class problem,

EC and EI correspond directly to the energies of the two classes. In the (EC , EI) plane no part

of the loss function exists in where EC + EI ≤ d. The region where the loss function is defined

is shaded in Figure 6.3(a). The exact shape of the loss function is shown in Figure 6.3(b). One

can see from the figure that as long as d ≥ m, the loss function satisfies condition 6.3. We

conclude that this is a good loss function.

141

X Y

GW (X)
GW (X)

di = ||U i −GW (X)||2

d1 d2

GW

E(W,Y, X) =
2∑

k=1

δ(Y − k) · ||Uk −GW (X)||2

RBF Units

Figure 6.2: The architecture of a system where two RBF units with centers U1 and U2 are placed on top

of the machine GW , to produce distances d1 and d2.

However, when the RBF centers U1 and U2 are not fixed and are allowed to be learned, then

there is no guarantee that d1 +d2 ≥ d. Then the RBF centers could become equal and the energy

could become zero for all inputs, resulting in a collapsed energy surface. Such a situation can be

avoided by having a contrastive term in the loss function.

Generalized Perceptron Loss

The generalized perceptron loss has a margin of zero. Therefore, it could lead to a collapsed

energy surface and is not generally suitable for training energy-based models. However, the

absence of a margin is not always fatal (LeCun et al., 1998a; Collins, 2002). First, the set of

collapsed solutions is a small piece of the parameter space. Second, although nothing prevents

142

(a) (b)

Figure 6.3: (a): When using the RBF architecture with fixed and distinct RBF centers, only the shaded

region of the (EC , EI) plane is allowed. The non-shaded region is unattainable because the energies of

the two outputs cannot be small at the same time. The minimum of the energy loss is at the intersection of

the shaded region and vertical axis. (b): The 3-dimensional plot of the energy loss when using the RBF

architecture with fixed and distinct centers. Lighter shades indicate higher loss values and darker shades

indicate lower values.

143

the system from reaching the collapsed solutions, nothing drives the system toward them either.

Thus the probability of hitting a collapsed solution is quite small.

Generalized Margin Loss

0

0.2

0.4

0.6

0.8

1

0
0.2

0.4
0.6

0.8
1
0

0.5

1

1.5

2

2.5

3

3.5

4

Energy: E
CEnergy: E

I

L
o
s
s
:
L

HP
2

E
C
 = E

IE
C
 + m = E

IHP
1

Figure 6.4: The square-square loss in the space of energies EC and EI). The value of the loss monoton-

ically decreases as we move from HP2 into HP1, indicating that it satisfies condition 6.3.

Consider the square-square loss. For the two-class case, the shape of the surface of the loss

function in the space of EC and EI is shown in Figure 6.4. One can clearly see that there exists

at least one point (e1, e2) in HP1 such that

Q[Ey](e1, e2) < Q[Ey](e
′
1, e

′
2), (6.8)

for all points (e′1, e
′
2) in HP2. These loss functions satisfy condition 6.3.

144

0 0.2 0.4 0.6 0.8 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Energy: EC

En
er

gy
: E

I

HP1

HP2

EC + m = EI

EC = EI

m

R

gC

gI g = gC + gI

!g

A = (E*
C, E*

C + m)

B = (E*
C ! !, E*

C + m + !)

!

Figure 6.5: Figure showing the direction of gradient of the negative log-likelihood loss in the feasible

region R in the space defined by the two energies EC and EI .

Negative Log-Likelihood Loss

It is not obvious that the negative log-likelihood loss satisfies condition 6.3, hence we formally

prove that it does. For any fixed parameter W and a sample (Xi, Y i) consider the gradient of

the loss with respect to the energy EC of the correct answer Y i and the energy EI of the most

offending incorrect answer Ȳ i. We have

gC =
∂L(W,Y i, X i)

∂EC
= 1− e−E(W,Y i,Xi)∑

Y ∈Y e−E(W,Y,Xi)
, (6.9)

and

gI =
∂L(W,Y i, X i)

∂EI
= − e−E(W,Ȳ i,Xi)∑

Y ∈Y e−E(W,Y,Xi)
. (6.10)

Clearly, for any value of the energies, gC > 0 and gI < 0. The overall direction of the gradient

at any point in the space of EC and EI is shown in Figure 6.5. One can conclude that when

going from HP2 to HP1, the loss decreases monotonically.

145

Now we need to show that there exists at least one point in HP1 at which the loss is less than

at all the points in HP2. Let A = (E∗
C , E∗

C + m) be a point on the margin line for which the

loss is minimum. E∗
C is the value of the correct energy at this point. That is,

E∗
C = argmin{Q[Ey](EC , EC + m)}. (6.11)

Since from the above discussion, the negative of the gradient of the loss Q[Ey] at all points (and

in particular on the margin line) is in the direction which is inside HP1, by monotonicity of the

loss we can conclude that

Q[Ey](E
∗
C , E∗

C + m) ≤ Q[Ey](EC , EI), (6.12)

where EC + m > EI .

Consider a point B at a distance ε away from the point (E∗
C , E∗

C + m), and inside HP1 (see

Figure 6.5). That is the point

(E∗
C − ε, E∗

C + m + ε). (6.13)

Using the first order Taylor’s expansion on the value of the loss at this point, we get

Q[Ey](E
∗
C − ε, E∗

C + m + ε)

= Q[Ey](E
∗
C , E∗

C + m)− ε
∂Q[Ey]

∂EC
+ ε

∂Q[Ey]

∂EI
+ O(ε2)

= Q[Ey](E
∗
C , E∗

C + m) + ε

[
∂Q[Ey]

∂EC
+

∂Q[Ey]

∂EI

] −1

1

+ O(ε2). (6.14)

From the previous discussion the second term on the right hand side is negative. So for suffi-

ciently small ε we have

Q[Ey](E
∗
C − ε, E∗

C + m + ε) < Q[Ey](E
∗
C , E∗

C + m). (6.15)

Thus we conclude that there exists at least one point in HP1 at which the loss is less than at all

points in HP2.

146

Note that the energy of the most offending incorrect answer EI is bounded above by the

value of the energy of the next most offending incorrect answer. Thus we only need to consider

a finite range of EI ’s and the point B cannot be at infinity.

147

CONCLUSION

We have described a novel factor graph based framework for the problem of relational regres-

sion. In addition to capturing the dependencies among data point specific variables, the model

also captures arbitrary observable and hidden dependencies among variables associated with

different data points. When the dependencies are hidden they are inferred collectively from

the data. The framework was applied to the problem of understanding house prices, where we

tried to answer two major questions. First, we used the model to predict the price of a house,

while at the same time capturing the relationships among houses which are spatially close to

each other. Second, the model is used to construct house price indices by explicitly learning a

normalized price surface over space and time, which captures the spatio-temporal relationships

among transactions. In both cases we conclude that uncovering and exploiting the relational

structure associated with this problem significantly improves performance.

The framework is general enough to be applied to other relational regression problems. Be-

sides addressing the issue of doing regression in relational setting, the advantages of the model

are three fold over previous work. First, it allows for inter-sample dependencies among data

points through potentially continuous hidden variables. Second, it allows for log-likelihood

functions that are non-linear in parameter space. Lastly, it eliminates the intractable partition

function problem and provides efficient inference and learning algorithm through appropriate

design of relational and non-relational factors.

148

BIBLIOGRAPHY

Altun, Y. and Hofmann, T. (2003). Large margin methods for label sequence learning. In Proc.

of 8th European Conference on Speech Communication and Technology (EuroSpeech).

Altun, Y., Johnson, M., and Hofmann, T. (2003). Loss functions and optimization methods for

discriminative learning of label sequences. In Proc. EMNLP.

Anglin, P. M. and Gencay, R. (1996). Semiparametric estimation of a hedonic price function.

Journal of Applied Econometrics, 11:633–648.

Bahl, L., Brown, P., de Souza, P., and Mercer, R. (1986). Maximum mutual information es-

timation of hidden markov model parameters for speech recognition. In Proceedings of

Acoustics, Speech, and Signal Processing Conference, pages 49–52.

Bailey, M. J., Muth, R. F., and Nourse, H. O. (1963). A regression model for real estate price

index construction. Journal of American Statistical Association, 58(304):933 – 942.

Basu, S. and Thibodeau, T. G. (1998). Analysis of spatial autocorrelation in home prices. Journal

of Real Estate Finance and Economics, 16(1):61 – 85.

Bengio, Y. (1996). Neural Networks for Speech and Sequence Recognition. International

Thompson Computer Press, London, UK.

Bengio, Y., Cardin, R., De Mori, R., and Normandin, Y. (1990). A hybrid coder for hidden

markov models using a recurrent network. In Proceeding of ICASSP, pages 537–540.

Bengio, Y., De Mori, R., Flammia, G., and Kompe, R. (1992). Global optimization of a neural

network-hidden Markov model hybrid. IEEE Transaction on Neural Networks, 3(2):252–

259.

149

Bengio, Y., DeMori, R., Flammia, G., and Kompe, R. (1991). Global optimization of a neural

network - hidden markov model hybrid. In Proceedings of EuroSpeech’91.

Bengio, Y., Ducharme, R., Vincent, P., and Jauvin, C. (2003). A neural probabilistic language

model. Journal of Machine Learning Research, 3:1137–1155.

Bengio, Y. and Frasconi, P. (1996a). An input/output HMM architecture. In Tesauro, G., Touret-

zky, D., and Leen, T., editors, Advances in Neural Information Processing Systems, vol-

ume 7, pages 427–434. MIT Press, Cambridge, MA.

Bengio, Y. and Frasconi, P. (1996b). Input/Output HMMs for sequence processing. IEEE Trans-

actions on Neural Networks, 7(5):1231–1249.

Besag, J. (1974). Spatial interaction and the statistical analysis of lattice systems. Journal of the

Royal Statistical Society, Series B (Methodological), 36(2):192–236.

Besag, J. (1975). Statistical analysis of non-lattice data. The Statistician, 24(3):179–195.

Besag, J. (1986). On the statistical analysis of dirty pictures. Journal of the Royal Statistical

Society, Series B (Methodological), 48(3):259–302.

Bottou, L. (1991). Une Approche théorique de l’Apprentissage Connexionniste: Applications à

la Reconnaissance de la Parole. PhD thesis, Université de Paris XI, 91405 Orsay cedex,

France.

Bottou, L. (2004). Stochastic learning. In Bousquet, O. and von Luxburg, U., editors, Ad-

vanced Lectures on Machine Learning, number LNAI 3176 in Lecture Notes in Artificial

Intelligence, pages 146–168. Springer Verlag, Berlin.

Bottou, L. and Gallinari, P. (1991). A framework for the cooperation of learning algorithms.

150

In Touretzky, D. and Lippmann, R., editors, Advances in Neural Information Processing

Systems, volume 3, Denver. Morgan Kaufmann.

Bourlard, H. (1990). How connectionist models could improve markov models for speech recog-

nition. In Eckmiller, R., editor, Proccedings of the International Symposium on Neural

Networks for Sensory and Motor Systems.

Bourlard, H. and Morgan, N. (1990). A continuous speech recognition system embedding mlp

into hmm. In Touretzky, D., editor, Advances in Neural Information Processing Systems 2,

pages 186–193. Morgan Kaufmann.

Bourlard, H. and Wellekens, C. (1988). Links between markov models and multi-layer percep-

trons. In Advances in Neural Information Processing Systems (NIPS 1), pages 502–510.

Morgan Kauffman.

Box, G. E. P. and Cox, D. R. (1964). An analysis of transformations. Journal of Royal Statistical

Society, B26:211 – 243.

Bromley, J., Bentz, J. W., Bottou, L., Guyon, I., LeCun, Y., Moore, C., Sackinger, E., and Shah,

R. (1993a). Signature verification using a siamese time delay neural network. International

Journal of Pattern Recognition and Artificial Intelligence, 7(4).

Bromley, J., Guyon, I., LeCun, Y., Sackinger, E., and Shah, R. (1993b). Signature verification

using a siamese time delay neural network. In Cowan, J. and Tesauro, G., editors, Advances

in Neural Information Processing Systems, volume 6. Morgan Kaufmann.

Can, A. (1990). The measurement of neighborhood dynamics in urban house prices. Economic

Geography, 66(3):254 – 272.

151

Can, A. (1992). Specification and estimation of hedonic housing price models. Regional Science

and Urban Economics, 22:453 – 474.

Case, K. E. and Shiller, R. J. (1989). The efficiency of the market for single family homes.

American Economic Review, 32(1):125 – 137.

Chakrabarti, S., Dom, B., and Indyk, P. (1998). Enhanced hypertext categorization using hyper-

links. In. Proc. of ACM SIGMOD98, pages 307 – 318.

Chopra, S., Hadsell, R., and LeCun, Y. (2005). Learning a similarity metric discriminatively,

with application to face verification. In Proc. of Computer Vision and Pattern Recognition

Conference. IEEE Press.

Clapp, J. M. (2004). A semiparametric method for estimating local house price indices. Real

Estate Economics, 32:127 – 160.

Cohn, D. and Chang, H. (2000). Probabilistically identifying authoritative documents. In Proc.

SIGIR 2000.

Cohn, D. and Hofmann, T. (2001). The missing link: A probabilistic model of document content

and hypertext connectivity. In Proc. NIPS 2001.

Collins, M. (2000). Discriminative reranking for natural language parsing. In Proceedings of

ICML 2000.

Collins, M. (2002). Discriminative training methods for hidden markov models: Theory and

experiments with perceptron algorithms. In Proc. EMNLP.

Collobert, R., Weston, J., and Bottou, L. (2006). Trading convexity for scalability. In Pro-

ceedings of the Twenty-third International Conference on Machine Learning (ICML 2006).

IMLS/ICML. ACM Digital Library.

152

Dempster, A., Laird, N., and Rubin, D. (1977). Maximum likelihood estimation from incomplete

data via the em algorithm. Journal of Royal Statistical Society, B39:1 – 38.

Denker, J. S. and Burges, C. J. (1995). Image segmentation and recognition. In The Mathematics

of Induction. Addison Wesley.

Do, A. Q. and Grudnitski, G. (1992). A neural network approach to residential property ap-

praisal. Real Estate Appraiser, 58(3):38 – 45.

Driancourt, X. (1994). Optimisation par descente de gradient stochastique de systèmes mod-

ulaires combinant réseaux de neurones et programmation dynamique. Application à la

reconnaissance de la parole. (optimization through stochastic gradient of modular sys-

tems that combine neural networks and dynamic programming, with applications to speech

recognition). PhD thesis, Université de Paris XI, 91405 Orsay cedex, France.

Driancourt, X., Bottou, L., and Gallinari, P. (1991a). MLP, LVQ and DP: Comparison & cooper-

ation. In Proceedings of the International Joint Conference on Neural Networks, volume 2,

pages 815–819, Seattle.

Driancourt, X., Bottou, L., and P., G. (1991b). Comparison and cooperation of several classifiers.

In Proceedings of the International Conference on Artificial Neural Networks (ICANN).

Driancourt, X. and Gallinari, P. (1992a). Empirical risk optimisation: neural networks and

dynamic programming. In Proceedings of Neural Networks for Signal Processing (NNSP).

Driancourt, X. and Gallinari, P. (1992b). A speech recognizer optimaly combining learning

vector quantization, dynamic programming and multi-layer perceptron. In Proceedings of

ICASSP.

153

Dubin, R. A. (1992). Spatial autocorrelation and neighborhood quality. Regional Science and

Urban Economics, 22:432 – 452.

Egghe, L. and Rousseau, R. (1990). Introduction to Informetrics. Elsevier.

Fisher, D. H. (1989). Noise-tolerant conceptual clustering. In Proceedings of the Eleventh

International Joint Conference on Artificial Intelligence, pages 825–830, San Francisco.

Morgan Kaufmann.

Franzini, M., Lee, K. F., and Waibel, A. (1990). Connectionnist viterbi training: A new hybrid

method for continuous speech recognition. In Proceedings of ICASSP, page 245.

Friedman, N., Getoor, L., Koller, D., and Pfeffer, A. (1999). Learning probabilistic relational

models. In Proc. IJCAI99, pages 1300 – 1309.

Gelfand, A. E., Ecker, M. D., Knight, J. R., and Sirmans, C. F. (2004). The dynamics of location

in home prices. Journal of Real Estate Finance and Economics, 29(2):149 – 166.

Goetzmann, W. N. and Spiegel, M. (1995). Non-temporal components of residential real estate

price appreciation. The Review of Economics and Statistics, 77(1):199 – 206.

Goetzmann, W. N. and Spiegel, M. (1997). A spatial model of housing returns and neighborhood

substitutability. Journal of Real Estate Finance and Economics, 14:11 – 31.

Goodman, A. C. (1978). Hedonic prices, price indices and housing markets. Journal of Urban

Economics, 5:471 – 484.

Hadsell, R., Chopra, S., and LeCun, Y. (2006). Dimensionality reduction by learning an invariant

mapping. In Proc. Computer Vision and Pattern Recognition Conference (CVPR’06). IEEE

Press.

154

Haffner, P. (1993a). Connectionist speech recognition with a global MMI algorithm. Berlin.

Haffner, P. (1993b). Connectionist speech recognition with a global MMI algorithm. In Eu-

rospeech’93, Berlin.

Haffner, P., Franzini, M., and Waibel, A. H. (1991). Integrating time-alignment and neural

networks for high performance continuous speech recognition. In Proceeding of ICASSP,

pages 105–108. IEEE.

Haffner, P. and Waibel, A. H. (1991). Time-delay neural networks embedding time alignment: a

performance analysis. Genova, Italy.

Haffner, P. and Waibel, A. H. (1992). Multi-state time-delay neural networks for continuous

speech recognition. volume 4, pages 579–588. Morgan Kaufmann, San Mateo.

Halvorsen, R. and Pollakowski, H. O. (1981). Choice of functional form for hedonic price

equations. Journal of Urban Economics, 10:37–49.

Heckerman, D., Meet, C., and Koller, D. (2004). Probabilistic models for relational data. Tech-

nical report, MSR-TR-2004-30.

Hinton, G. E. (2002). Training products of experts by minimizing contrastive divergence. Neural

Computation, 14:1771–1800.

Hofmann, T. and Puzicha, J. (1999). Latent class models for collaborative filtering. In Proc.

IJCAI99.

Jaakkola, T., Diekhans, M., and Haussler, D. (2000). A discriminative framework for detecting

remote protein homologies. Journal of Computational Biology, 7((1,2)):95–114.

Juang, B.-H., Chou, W., and Lee, C.-H. (1997). Minimum classification error rate methods for

speech recognition. IEEE Transactions on Speech and Audio Processing, 5(3):257–265.

155

Kauko, T. (2002). Modeling Locational Determinants of House Prices: Neural Network and

Value Tree Approaches. PhD thesis, Utrecht University.

Kersting, K., Raedt, L. D., and Kramer, S. (2000). Interpreting bayesian logic programs. In

Proc. AAAI-2000 Workshop on Learning Statistical Models from Relational Data.

Kleinberg, J. M. (1999). Authoritative sources in a hyperlinked environment. Journal of the

ACM, 46(5):604 – 632.

Kohonen, T. (1995). Self organizing maps. Springer Verlag, Germany.

Koller, D. and Pfeffer, A. (1998). Probabilistic frame-based systems. In Proc. AAAI98, pages

580 – 587.

Konig, Y., Bourlard, H., and Morgan, N. (1996). REMAP: Recursive estimation and maximiza-

tion of A posteriori probabilities — application to transition-based connectionist speech

recognition. In Touretzky, D. S., Mozer, M. C., and Hasselmo, M. E., editors, Advances in

Neural Information Processing Systems, volume 8, pages 388–394. The MIT Press.

Kschischang, F., Frey, B., and Loeliger, H.-A. (2001a). Factor graphs and the sum-product

algorithm. IEEE Trans. Information Theory, 47(2):498–519.

Kschischang, F. R., Frey, B., and Loeliger, H. A. (2001b). Factor graphs and sum product

algorithm. IEEE Transactions on Information Theory, 47:498 – 519.

Kumar, S. and Hebert, M. (2004). Discriminative fields for modeling spatial dependencies in

natural images. In Thrun, S., Saul, L., and Schölkopf, B., editors, Advances in Neural

Information Processing Systems 16. MIT Press, Cambridge, MA.

Lafferty, J., McCallum, A., and Pereira, F. (2001). Conditional random fields: Probabilistic

156

models for segmenting and labeling sequence data. In Proc. International Conference on

Machine Learning (ICML).

LeCun, Y., Bottou, L., Bengio, Y., and Haffner, P. (1998a). Gradient-based learning applied to

document recognition. Proceedings of the IEEE, 86(11):2278–2324.

LeCun, Y., Bottou, L., Haffner, P., and Howard, P. (1998b). Djvu: a compression method for

distributing scanned documents in color over the internet. In Color 6. IST.

LeCun, Y., Bottou, L., Orr, G., and Muller, K. (1998c). Efficient backprop. In Orr, G. and K.,

M., editors, Neural Networks: Tricks of the trade. Springer.

LeCun, Y., Chopra, S., Hadsell, R., J. Huang, F., and Ranzato, M. (2006). A tutorial on energy-

based learning. In et al, B., editor, Predicting Structured Outputs. MIT Press.

LeCun, Y. and Huang, F. (2005). Loss functions for discriminative training of energy-based

models. In Proc. of the 10-th International Workshop on Artificial Intelligence and Statistics

(AIStats’05).

Ljolje, A., Ephraim, Y., and Rabiner, L. R. (1990). Estimation of hidden markov model parame-

ters by minimizing empirical error rate. In Proc. of International Conference on Acoustics,

Speech, and Signal Processing, pages 709–712.

MacKay, D. J. C. (2003). Information Theory, Inference, and Learn-

ing Algorithms. Cambridge University Press. Available from

http://www.inference.phy.cam.ac.uk/mackay/itila/.

McCallum, A., Freitag, D., and Pereira, F. (2000). Maximum entropy markov models for in-

formation extraction and segmetnation. In Proc. International Conference on Machine

Learning (ICML), pages 591–598.

157

McDermott, E. (1997). Discriminative Training for Speech Recognition. PhD thesis, Waseda

University.

McDermott, E. and Katagiri, S. (1992). Prototype-based discriminative training for various

speech units. In Proceedings of ICASSP-92, San Francisco, CA, USA, pages 417–420.

Meese, R. and Wallace, N. (1991). Nonparametric estimation of dynamic hedonic price models

and the construction of residential housing price indices. AREUEA Journal, 19(3):308 –

331.

Mohri, M. (1997). Finite-state transducers in language and speech processing. Computational

Linguistics, 23(2):269–311.

Morgan, N. and Bourlard, H. (1995). Continuous speech recognition: An introduction to the

hybrid hmm/connectionist approach. IEEE Signal Processing Magazine, 12(3):25–42.

Muggleton, S. (2000). Learning stochastic logic programs. In Proc. AAAI-2000 Workshop on

Learning Statistical Models from Relational Data.

Neville, J. and Jensen, D. (2000). Iterative classification in relational data. In Proc. AAAI00

Workshop on Learning Statistical Models From Relational Data, pages 13 – 20.

Neville, J. and Jensen, D. (2007). Relational dependency networks. Journal of Machine Learning

Research, 8:653 – 692.

Ng, R. and Subrahmanian, V. (1992). Probabilistic logic programming. Information and Com-

putation, 101(2):150 – 201.

Ngo, L. and Haddaway, P. (1997). Answering queries from context-sensitive probabilistic knowl-

edge bases. Theoretical Computer Science, 171:147 – 171.

158

Nguyen, N. and Cripps, A. (2001). Predicting housing value: A comparison of multiple regres-

sion analysis and artificial neural networks. The Journal of Real Estate Research, 22(3):313

– 336.

Osadchy, R., Miller, M., and LeCun, Y. (2005). Synergistic face detection and pose estimation

with energy-based model. In Advances in Neural Information Processing Systems (NIPS

2004). MIT Press.

Pace, K. R., Barry, R., Clapp, J. M., and Rodriquez, M. (1998). Spatio-temporal autoregressive

models of neighbourhood effects. Journal of Real Estate Finance and Economics, 17(1):15

– 33.

Pace, K. R. and Gilley, O. (1997). Using the spatial configuration of the data to improve estima-

tion. Journal of Real Estate Finance and Economics, 14(3):333 – 340.

Poole, D. (1993). Probabilistic horn abduction and bayesian networks. Artificial Intelligence,

64(1):81 – 129.

Poole, D. (1997). The independent choice logic for modelling multiple agents under uncertainty.

Artificial Intelligence, 94(1-2):5 – 56.

Richardson, M. and Domingos, P. (2006). Markov logic networks. Machine Learning, 62:107 –

136.

Sakoe, H., Isotani, R., Yoshida, K., Iso, K., and Watanabe, T. (1988). Speaker-independant word

recognition using dynamic programming neural networks. In Proceedings of ICASSP-88,

New York, pages 107–110.

Sato, T. (1995). A statistical learning methods for logic programs with distribution semantics.

In Proc. of the International Conference on Inductive Logic Programming.

159

Slattery, S. and Mitchell, T. (2000). Discovering test set regularities in relational domain. In.

Proc. ICML00, pages 895 – 902.

Solla, S., Levin, E., and Fleisher, M. (1988). Accelerated learning in layered neural networks.

Complex Systems, 2(6):625–639.

Taskar, B., Abbeel, P., and Koller, D. (2002). Discriminative probabilistic models for relational

data. Eighteenth Conference on Uncertainty on Machine Intelligence (UAI02).

Taskar, B., Guestrin, C., and Koller, D. (2003). Max-margin markov networks. In Proc. NIPS.

Taskar, B., Segal, E., and Koller, D. (2001). Probabilistic classification and clustering in rela-

tional data. In Proc. IJCAI01, pages 870 – 876.

Teh, Y. W., Welling, M., Osindero, S., and E., H. G. (2003). Energy-based models for sparse

overcomplete representations. Journal of Machine Learning Research, 4:1235–1260.

Thibodeau, T. G. (2003). Marking single-family property values to market. Real Estate Eco-

nomics, 31(1):1 – 22.

Vapnik, V. (1995). The Nature of Statistical Learning Theory. Springer Verlag.

Vapnik, V. N. and Bottou, L. (1993). Local algorithms for pattern recognition and dependencies

estimation. Neural Computation, 5(6):893 – 909.

Vishwanathan, S. V. N., Schraudolph, N. N., Schmidt, M. W., and Murphy, K. P. (2006). Ac-

celerated training of conditional random fields with stochastic gradient methods. In Pro-

ceedings of the Twenty-third International Conference on Machine Learning (ICML 2006).

IMLS/ICML.

160

Wang, C.-C. and Guo, D. (2006). Belief propagation is asymptotically equivalent to map estima-

tion for sparse linear systems. Forthy-Fourth Annual Allerton Conference, Allerton House,

UIUC, Illinois, USA.

Winston, P. (1975). Learning structural description from examples. The Psychology of Computer

Vision, pages 157 – 209.

Woodland, P. and Povey, D. (2000). Large scale discriminative training for speech recognition.

In Proc. ASR.

Yedidia, J., Freeman, W., and Weiss, Y. (2005). Constructing free-energy approximations and

generalized belief propagation algorithms. IEEE Transactions on Information Theory,

51(7):2282–2312.

Zheng, X. P. (1991). Metropolitan spatial structure and its determinants: A case study of tokyo.

Urban Studies, 28:87 – 104.

161

