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ABSTRACT

We consider four problems connected by the common thread of geometry. The first three

arise in applications that apriori do not involve geometry but this turns out to be the right

language for visualizing and analyzing them. In the fourth, we generalize some well

known results in geometry to the topological plane. The techniques we use come from

probability and topology.

First, we consider two algorithms that work well in practice but the theoretical mech-

anism behind whose success is not very well understood.

Greedy routing is a routing mechanism that is commonly used in wireless sensor

networks. While routing on the Internet uses standard established protocols, routing in

ad-hoc networks with little structure (like sensor networks) is more difficult. Practitioners

have devised algorithms that work well in practice, however there were no known theo-

retical guarantees. We provide the first such result in this area by showing that greedy

routing can be made to work on Planar triangulations.

Linear Programming is a technique for optimizing a linear function subject to linear

constraints. Simplex Algorithms are a family of algorithms that have proven quite suc-

cessful in solving Linear Programs in practice. However, examples of Linear Programs

on which these algorithms are very inefficient have been obtained by researchers. In or-
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der to explain this discrepancy between theory and practice, many authors have shown

that Simplex Algorithms are efficient in expectation on randomized Linear Programs.

We strengthen these results by proving a partial concentration bound for the SHADOW

VERTEX Simplex Algorithm.

Next, we point out a limitation in an algorithm that is commonly used by practitioners

and suggest a way of overcoming this.

Recommendation Systems are algorithms that are used to recommend goods (books,

movies etc.) to users based on the similarities between their past preferences and those of

other users. Low Rank Approximation is a common method used for this. We point out

a common limitation of this method in the presence of ill-conditioning: the presence of

multiple local minima. We also suggest a simple averaging based technique to overcome

this limitation and show that this improves the performance of the system.

Finally, we consider some basic results in convexity like Radon’s, Helly’s and

Carathéodory’s theorems and generalize them to the topological plane, i.e., a plane which

has the concept of a linear path that is analogous to a straight line but no notion of a metric.
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Chapter 1

INTRODUCTION

1.1 Geometry as the lingua franca

In this thesis we consider four problems which can be expressed in the common language

of Geometry. Three of these, namely, routing in Sensor Networks, solving Linear Pro-

grams using the Simplex Algorithm and building Recommendation Systems using Low

Rank Approximations, prima facie have no connection to Geometry but as it turns out

they can be modeled, visualized and analyzed in Geometrical terms. We describe all four

problems briefly below.

Routing in Sensor Networks

Greedy Routing is a routing mechanism that is commonly used in wireless sensor net-

works. While routing on the Internet uses standard established protocols that rely on the

structure in the addresses of nodes, routing in ad-hoc networks with little structure (such

as sensor networks) is more difficult.

If every sensor has a GPS unit and knows its exact location, then a simple greedy

algorithm, where a node forwards a packet to some other node that is “closer” to the
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destination, can be used. In other words, a node u forwards a packet with destination v to

another node u′ which is such that: (a) Node u can directly communicate with u′ and (b)

the distance between u′ and v is less than the distance between u and v. Notice that the

distance to the destination decreases at every step. This is called greedy routing.

The first problem with this technique is of course, that it might not always be possible

find a sensor “closer” to destination to forward the packet to. Another problem is that

GPS units are expensive and the exact location of the sensor does not play a direct role

in routing and so it would be helpful to find a way of making the routing work without

this. A simple way around both these problems is to take the Graph of the network, i.e., a

graph G which has a node for every sensor in the network and an edge between two node

if corresponding sensors can directly communicate with other, and draw it in the plane.

We can now route in the same greedy fashion as before, using the coordinates of each

node as the “location” of the sensor in the network. For this routing to work the drawing

has to satisfy the following condition:

For every pair of nodes u, v ∈ G, there exists a neighbor u′ of u which is

such that ‖u′ − v‖ < ‖u − v‖ where ‖ . . . ‖ denotes the Euclidean distance.

Such a drawing is called a Greedy Drawing.

So the natural question now is if such a drawing exists for any given class of graphs.

We show that it does exist for Planar Triangulations.

We use a technique called Schnyder’s Realizers to partition the edges of a planar trian-

gulation into three directed trees. By assigning weights to the faces of the triangulation, a

whole family of planar drawings can be obtained. We use a fixed point theorem to show

that there exists a member in this family that is a greedy drawing of the triangulation.
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Simplex Algorithms for Solving Linear Programs

Simplex Algorithms have proven to be quite efficient in solving real world Linear Pro-

grams [Sha87, Bix02]. However, it has been known for a while that these algorithms

can be very inefficient in the worst case [KM72, AZ99, Gol94]. Efforts to explain this

apparent contradiction have focused on analyzing the efficiency of Simplex Algorithms

on random and perturbed Linear Programs and many results showing that these algo-

rithms are efficient in expectation have been obtained [Tod91, ST04, Bor80, Ver06]. It

was observed by Shamir [Sha87], that experience with the Simplex Algorithm in prac-

tice suggests that it is not only efficient in expectation but also that the running time is

concentrated around the mean. We take the first step towards placing this notion on a for-

mal footing by proving a partial concentration bound for the SHADOW-VERTEX Simplex

Algorithm.

Recommendation Systems using Low Rank Approximations

The Internet has given a big boost to modern commerce and has inundated the consumer

with choice. In an attempt to help him navigate this multitude of options many online

retailers are developing Recommendation Systems. These are algorithms that suggest

goods to users based on their past preferences and those of other users. One popular

algorithm for building these systems is called Collaborative Filtering.

We consider one popular approach to Collaborative Filtering called Low Rank Approx-

imation. This approach boils down to finding the minimum of an error function. While

many approaches exist to find this minimum, we explore the characteristics of the error

function itself and argue that looking for the (global) minimum may not be worthwhile.

We show that the error function has multiple different local minima that are “as good

as” the global minimum. In other words, the function value at each of these local minima
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is almost the same as its value at the global minimum. This being the case, it is not clear

that the global minimum is significant in anyway.

We suggest a simple averaging-based approach for dealing with this multiplicity. This

approach has the advantage of being simpler to implement, faster to run and more robust

in the presence of noise. Our approach leads to a significant increase in the accuracy of

the recommendations made by the system.

Generalizing the idea of Convexity

The idea of Convexity is intrinsically tied to that of a Straight line. Indeed the standard

theorems that deal with Convexity, for e.g., the separation theorem, Radon’s theorem,

Helly’s theorem etc. depend on the geometric idea of straightness. But is this notion

really needed?

We show that many of these theorems can very well be extended to the topological

plane. This is a plane which has no concept of a metric at all. A “straight” line in this

plane, also called a pseudoline, is any simple curve that satisfies certain conditions on its

intersections with other “straight” lines.

One can think of this plane as an arbitrarily “stretched” version of the more common

Euclidean plane. We show that many of the standard theorems of convexity, like Radon’s,

Helly’s and Carathéodory’s theorems, hold in this plane as well. Hence it follows that the

notion of a metric is not needed for these theorems.

The basic result we establish in this chapter, Lemma 67, is a generalization of the

following.

Lemma 1. Given any two disjoint convex sets X and Y in the Euclidean plane, there

exists a line separating them.
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Proof: Consider two points x0 ∈ X and y0 ∈ Y which are such that the Euclidean

distance ‖x0 − y0‖ is minimized among all such points. In other words, these points are

the solution to argmin
x∈X,y∈Y

‖x − y‖.

Let l be the perpendicular bisector of the line segment determined by x0 and y0.

Consider the case where X ∩ l 6= ∅ and let x1 ∈ X ∩ l. Then it is easy to see that

some point on the segment determined by x0 and x1 is closer to y0 than x0. Since this

segment is contained in X (due to convexity), this is a contradiction. Hence it follows

that X ∩ l = ∅.

Similarly, Y ∩ l = ∅. Since l bisects the segment determined by x0 and y0, it follows

that X and Y lie on opposite sides of l.

Hence l separates X and Y .

Notice that the above proof depends crucially on the idea of a metric (in particular the

Euclidean metric) while the result itself has only to do with separating sets and does not

depend on any metric at all.

The natural question then is if one can do away with a metric in the proof as well. Our

result shows that this is indeed possible.

1.2 Thesis Outline

In Chapter 2 we show that all Planar Triangulations have Greedy Drawings in the plane.

The results in this chapter are based on [Dha08].

In Chapter 3 we prove partial concentration bounds for the SHADOW VERTEX sim-

plex algorithm.

In Chapter 4 we show the limitations of the commonly used approach to Low Rank

Approximations and describe how this can be overcome.
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In Chapter 5 we describe how many standard results of Convexity can be extended to

the Topological Affine Plane. The results in this chapter are based on [DGH+06].
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Chapter 2

GREEDY DRAWINGS OF PLANAR

TRIANGULATIONS

2.1 Introduction

With the increasing use of large wireless communication systems comes an increasing

need for reliable and scalable routing algorithms. Internet routing is accomplished using

Internet Protocol addresses which are hierarchical and encode topological and geographic

information about the nodes in the network. Such a protocol is not possible in an ad-hoc

network, such as sensor nets, where little information about geographic proximity or

network topology can be gleaned from node identifiers.

One important family of routing algorithms used for such networks is Geographic (or

Geometric) routing. This is a family of algorithms that use the geographic location of the

nodes as their addresses. See, for instance [KWZZ03, KK00, BMSU99, GGH+01]. One

such algorithm is the Euclidean Greedy Routing algorithm which is conceptually quite

simple: Each node forwards the packet to the neighbor, i.e., a node it can communicate

directly with, that has the smallest Euclidean distance to the destination. This algorithm
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has the disadvantage of not being able to deal with lakes or voids in the network, i.e.,

nodes which have no neighbor closer to the destination. To deal with this, variants of the

algorithm (such as face routing, which involves routing around faces) have been proposed,

[KWZZ03, KK00].

Geometric routing has the following two drawbacks: (i) It needs the global position

of every node in the network, (ii) it relies entirely on the global position and as such

cannot account for local obstructions or the topology of the network. Since GPS units are

quite expensive in terms of both money and power requirements, it is quite a restrictive

limitation to require every node in the network to have one.

Both these issues were addressed in [RPSS03], where a variant of greedy routing

which just uses the local connectivity information of the network without needing the

global position of any node, was discussed. The algorithm first computes fictitious or vir-

tual coordinates for each node. In other words, it draws1 the graph of the network (where

each node in the network is represented by a vertex of the graph and two vertices are

adjacent iff the pair of nodes they represent can communicate directly) on the Euclidean

plane and routes greedily using these locations. The authors obtain experimental evidence

showing that this approach makes greedy routing more reliable. However no theoretical

guarantees were obtained.

In a bid to place this approach on a more solid theoretical footing, Papadimitriou and

Ratajczak [PR05] investigated classes of graphs on which greedy routing (without having

to rely on variants like face routing) could be guaranteed to work, i.e., graphs which can

be drawn in the plane without lakes or voids. They came up with the following conjecture:

Definition 2. A distance-decreasing path in a drawing of a graph is a path

s = v1, v1, v2, . . . , vk = t such that ‖vi − t‖ < ‖vi−1 − t‖, 2 ≤ i ≤ k

1 i.e., maps each node to a point and edges to line segments in the plane.

8



where ‖ . . . ‖ denotes the Euclidean distance.

Conjecture 1 ([PR05]). Any 3-connected planar graph can be drawn2 on the Euclidean

plane such that there exists a distance decreasing path between every pair of vertices of

the graph.

Such a drawing is called a Greedy Drawing of the graph. It is easy to see that using

the greedy drawing of a graph (assuming such a drawing exists) as the virtual coordinates

of the vertices guarantees that greedy routing will always work.

Our Results

We settle Conjecture 1 in the affirmative for the case of planar triangulations and thus

obtain the first non-trivial class of graphs for which this class of greedy routing algorithms

can be guaranteed to work.

We show in fact, that a planar greedy drawing of any given triangulation can be

obtained, i.e., one in which no pair of edges cross.

The result is obtained by applying the Knaster-Kuratowski-Mazurkiewicz Theorem,

which is known to be equivalent to the Brouwer Fixed Point Theorem. We believe that the

technique used in obtaining the result might be of independent interest and might prove

helpful in showing the existence of plane drawings with other properties.

Note that greedy drawings can be trivially seen to exist for many simple classes of

graphs, like graphs with Hamiltonian circuits, all 4-connected planar graphs (since they

have a Hamiltonian circuit by a theorem of Tutte [Tut56]) etc. It is not very difficult to

show that the Delaunay triangulation of any set of points in the plane is also greedy. But

thus far no non-trivial class of graphs with this property was known.

2Note that the conjecture in [PR05] uses “embed” instead of “draw”. To be consistent with the Graph
Drawing literature, we use “draw”.
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2.2 Preliminaries and Related Work

Given a n-vertex graph G(V,E), a drawing of G is a mapping of the vertices of G to

points and of the edges of G to curve segments (with the images of the corresponding

vertices as end points) in the plane. We consider only those drawings in which the edges

are mapped to straight-line segments so that the drawing is fully specified by the images

of the vertices.

Recall that a plane graph is an abstract planar graph whose embedding has been fixed,

using, say the Hopcroft-Tarjan algorithm [HT74]. We assume henceforth that G is plane

triangulation. We consider only planar drawings of graphs, i.e., drawings in which no

pair of edges cross. So any reference to a drawing of a graph must be taken to mean a

planar straight-line drawing.

Drawing Planar Graphs in the Plane

An overview of graph drawing algorithms can be obtained from [TBET98, NR04]. We

describe some well-known algorithms for obtaining planar straight-line drawings of pla-

nar graphs:

1. Rubber Band Embedding [Tut60]: This algorithm has an elegant physical interpre-

tation: Fix the positions of the vertices of some face of the graph and replace all

other edges by springs (or “rubber bands”). It can be shown that if the graph is

3-connected and planar then the equilibrium position of the nodes gives a planar

straight-line drawing. Many interesting generalizations of this approach have been

obtained, see for instance [LLW88]. The drawback of this method is that the size

of the grid required for the drawing may be large (exponential in the number of

vertices).
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2. Canonical Ordering [dFPP88]: This result showed for the first time that a planar

straight-line drawing of a planar graph could be obtained on grid of polynomial (in

fact O(n) × O(n)) size. This approach was used in [Kan92] to obtain drawings

satisfying various bounds on the minimum angle, bends, grid size etc.

3. Schnyder’s Realizers [Sch90]: The author describes an elegant algorithm for parti-

tioning the edges of a triangulation into three trees and obtaining a planar drawing

(on a O(n) × O(n) grid) of the graph based on this. Our result uses the techniques

developed here and so this approach is described in detail in Section 2.4. This was

generalized to all 3-connected planar graphs in [Fel01]. Also see [Rot05, FPS05,

BFM07, Fel04].

On a related note, it was shown recently, [Kle06b], that any graph has a greedy draw-

ing in the Hyperbolic plane. But this might require an exponential sized grid, i.e., Ω(n)

bits might be required to store the coordinates of a single vertex, [Kle06a]. This has been

further explored in [May06]. In contrast, examples of graphs with no greedy drawing in

the Euclidean plane were obtained in [PR05].

2.3 Outline

We describe the approach of [Sch90] in Sections 2.4 and 2.5. The details of how the edges

of a triangulation can be partitioned into three trees is described in the former section and

the latter section describes how a drawing of the triangulation can be obtained from this

partitioning along with some interesting geometric properties of these drawings.

In Section 2.6, we investigate greedy paths in drawings and show that any drawing in

which every face is good (see Definition 11), is greedy. In Section 2.7, we prove our main
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result, that there exists a greedy drawing of the triangulation, by showing that there exists

a drawing in which every face is good.

In Section 2.8 we prove a technical result, on the sum of weights of all bad faces of a

drawing, which is needed for the main result.

2.4 Schnyder Realizers of a Triangulation

We designate a (triangular) face f0 of G as the exterior face. All vertices (edges) not

belonging to f0 are called the interior vertices (edges). Let the vertices of f0 be P0, P1

and P2. We define the order (P0, P1, P2) to be the “counter-clockwise” (CCW) order.

Theorem 3 ([Sch90]). Given a plane triangulation G(V,E), there exist three directed

edge-disjoint trees, T0, T1 and T2, called the realizer of G, Figure 2.1, such that:

1. Ti is rooted at Pi, i ∈ {0, 1, 2} and contains all vertices of G except Pi+1 and Pi−1

(the indices are mod 3).

2. All edges of Ti are directed towards the root and every edge of G except those

belonging to the exterior face are contained in exactly one Ti.

3. Each interior vertex, v, has exactly 3 outgoing edges, one for each Ti. The edge

belonging to T0 is followed by the one belonging to T1 which is followed by the one

in T2 in CCW order around v, Figure 2.2a.

Note that there might be any number (including zero) of incoming edges of each Ti

at any vertex.

Let v ∈ G be an interior vertex. Then, it follows from the above that there exist

(directed) paths Pi(v) from v to Pi in Ti, i = 0, 1, 2 called the canonical paths of v. From

the fact the Ti are edge-disjoint and the order of the edges around v, it is clear that Pi(v)

12
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Figure 2.1: A triangulation and its realizers. The top left figure contains all three trees
together and the three edges of the exterior face, which do not belong to any tree. The
remaining figures show each of the three trees separately.

and Pj(v) must be vertex disjoint (except for v itself which appears on all three paths) if

i 6= j. Hence the Pi(v), i = 0, 1, 2 divide the graph G into three “regions”, R0(v), R1(v)

and R2(v), see Figure 2.2b.

Schnyder Realizers from Canonical Ordering

Let f0 = (P0, P1, P2) be the external face of G. An ordering of the vertices v1 = P0, v2 =

P1, . . . , vi, . . . , vn = P2 is called a Canonical Ordering [dFPP88], if:

• The graph Gk induced by vertices v1, v2, . . . , vk is biconnected and the boundary of
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Figure 2.2: (a) The order of the edges belonging to different trees around an internal
vertex v. There are exactly three outgoing edges, one belonging to each tree. There can
be any number (including 0) of incoming edges. (b) The paths in Ti from v to Pi are
vertex disjoint and divide the graph into three regions. (c) Obtaining Realizers from the
Canonical Order. Note that m ≥ 2 since Gk+1 must be biconnected. If m = 2 then the
edges shown directed towards vk+1 will not exist.

its exterior face is a cycle Ck containing edge P0P1.

• Vertex vk+1 lies in the exterior face of Gk and its neighbors form a subinterval (of

length at least 2) of the path Ck − P0P1.

A simple way of using the canonical ordering to find the realizers of G was obtained

in [dFPP88] and [Bre00]. We describe this below:

We process the vertices in the decreasing order of their rank in the canonical ordering.

First, we add all internal edges incident to vn(= P2) to tree T2 and orient them towards

vn. Let the neighbors of vk+1 in Ck be v′
1, v

′
2, . . . , v

′
m. We add the edge vk+1v

′
1 to tree T0

and orient it towards v′
1. The edge vk+1v

′
m is added to tree T1 and oriented towards v′

m.

All other edges (if any) are added to tree T2 and oriented towards vk+1, see Figure 2.2c.

2.5 Schnyder Drawings and Their Properties

Let each internal face fi be assigned a non-negative weight wi such that
∑2n−5

i=1 wi = 1.

Let wRi(v) be the sum of weights of all faces in region Ri(v), Figure 2.2b. For the external
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vertex P0 we define wR0(P0) = 1 and wR1(P0) = wR2(P0) = 0. Weights for the other

external vertices are defined in a similar manner.

We can obtain a drawing of G in the following way:

Place vertex v at the point
(
wR0(v), wR1(v), wR2(v)

)
.

Recall that we only deal with straight-line drawings and so the drawing is specified by

the positions of the vertices. Since the total weight of all faces is 1, every vertex of G is

placed on the x+y+z = 1 plane and we end up with a two-dimensional drawing. Notice

that the external vertices P0, P1 and P2 are always placed at the points (1, 0, 0), (0, 1, 0)

and (0, 0, 1) irrespective of how the weights of the internal faces are assigned and that

these points determine an equilateral triangle (in the x + y + z = 1 plane). Also notice

that all internal vertices are placed inside this equilateral triangle.

The drawing obtained by the above method is defined to be a Schnyder Drawing of

G.

The set of solutions to the equation
∑2n−5

i=1 wi = 1 such that the wi are non-negative

can be represented by the unit simplex S in 2n − 6 dimensions, with 2n − 5 vertices.

Hence, for each point p ∈ S, a Schnyder drawing of G can be obtained.

The following theorem, while a generalization of the result proved in [Sch90], follows

directly from the proofs given there.

Theorem 4 ([Sch90]). In any Schnyder Drawing of a triangulation G, the edges are

non-intersecting, i.e., the drawing is planar.

Definition 5. A non-degenerate Schnyder Drawing is defined to be one obtained by as-

signing strictly positive weights to the faces.

In what follows, we use the same notation for a vertex v of G and the corresponding

point in the plane. The ray
−−→
P0P1 is defined to have a slope of 0◦ and all angles are
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measured counter-clockwise from this ray. So, the ray
−−→
P0P2 has slope 60◦,

−−→
P2P1 has

slope 300◦ and so on. Recall that all drawings we consider (and the points P0, P1 and P2)

lie on the x + y + z = 1 plane.

The following is a key property of Schnyder drawings.

Lemma 6 (The Three Wedges Property [Sch90, Rot05]). In every Schnyder drawing

the three outgoing edges at an internal vertex v have slopes that fall in the intervals

[60◦, 120◦] (T2), [180◦, 240◦] (T0) and [300◦, 360◦] (T1), with exactly one edge in each

interval. See Figure 2.3a.

Further, if the drawing is non-degenerate, no edge has slope which is a multiple of

60◦ and every edge has positive length.

Lemma 7. The incoming edges (if present) have slopes in the following ranges T0 :

[0◦, 60◦], T1 : [120◦, 180◦] and T2 : [240◦, 300◦], Figure 2.3b.

Proof: Let v′v be an edge directed from v′ towards v. Applying Lemma 6 at v′, the

result follows.

Recall that any number of incoming edges might be present at any vertex.

In the rest of the chapter, we prove many propositions specifically for non-degenerate

Schnyder Drawings. Extending them to degenerate Schnyder Drawings would make the

proof quite messy as degenerate drawings might have zero length edges. Also, non-

degenerate drawings are sufficient for our purpose. So we disregard degenerate drawings.

Let v be a vertex and (v, w) an outgoing (at v) edge. Let the coordinates of v be

(vR0 , vR1 , vR2) and the coordinates of w be (wR0 , wR1 , wR2). If (v, w) ∈ T0, it follows

from Lemma 6 that wR0 > vR0 , wR1 < vR1 and wR2 < vR2 . Similar conclusions follow if

(v, w) ∈ T1 or if (v, w) ∈ T2.

Let max0(v, w) = Max (vR0 , wR0) with max1 and max2 being defined in a similar
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manner. The set of all points (x0, x1, x2) in the drawing such that xi = c is said to be the

line determined by xi = c, 0 ≤ i ≤ 2.

v
T
0

T

2T

1

v

T
2

1T
T
0

w

v

w
u

v

(a) (b) (c) (d)

Figure 2.3: (a) The shaded 60◦ wedges contain exactly one outgoing edge each. The
trees containing the edges are marked. (b) All incoming edges (if present) fall in the
shaded wedges. (c) The equilateral triangle determined by lines through v and w with
slopes 0◦, 60◦ and 120◦ is free of other vertices. A similar result holds if edge uw were to
belong to T1 or T2 (with the equilateral triangle changing appropriately) (d) The enclosing
triangle of a face.

Lemma 8 (The Enclosing Triangle Property [Sch90, Rot05]). 1. Let (v, w) be an edge

of the graph. Consider the equilateral triangle determined by the lines x0 =

max0(v, w), x1 = max1(v, w) and x2 = max2(v, w), superscribing the edge

(v, w), see Figure 2.3c. This triangle is free of other vertices.

2. For any face f = (u, v, w) the equilateral triangle determined by the lines xi =

maxi(u, v, w), 0 ≤ i ≤ 2 is free of other vertices, see Figure 2.3d. This triangle is

called the enclosing triangle of f .

Proof: (1) follows from Lemma 6. (2) follows from (1) and the fact that the drawing

is planar.

2.6 Greedy Paths in Schnyder Drawings

A face of the triangulation is said to be cyclic if its edges form a directed cycle and is

said to be acyclic otherwise. Any cyclic face of a graph can be stacked by adding a vertex
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adjacent to the three vertices of the face and adding the new edges to each of the trees as

shown in Figure 2.4a. This breaks the face into three acyclic faces. After a greedy drawing

has been found, the new vertex can be deleted without affecting the greedy paths between

the other vertices. Hence, we assume henceforth that every face in the triangulation is

acyclic.

Notice that any acyclic face must have a vertex (such as vertex t in face (u, t, v) in

Figure 2.4a) with two outgoing face edges which must belong to different trees. The face

is said to belong to tree Ti if these two outgoing edges belong to trees Ti−1 and Ti+1.

u
v

t

w

u
v

x’

x
z

(a) (b)

Figure 2.4: (a) The cyclic face (u, v, w) is stacked by adding vertex t and its incident
edges. The edge tu is added to the same tree as wu, edge tv the same tree as uv and
tw the same tree as vw. (b) The triangle (u, x, x′) is equilateral. ‖v − z‖ < ‖u − z‖
irrespective of where z lies in the shaded region and where v lies on xx′.

The following lemma will prove useful:

Lemma 9. Let u be some vertex and (u, v) an edge incident to it. Let (u, x, x′) be any

equilateral triangle superscribing (u, v) with a vertex at u. Let z be any point in the wedge

determined by (x, u, x′) not on the same side of the line (x, x′) as u, see Figure 2.4b.

Then, ‖v − z‖ < ‖u − z‖.

Proof: Let l be the perpendicular bisector of uv. It is easy to see that z 6∈ l and it lies

on the same side of l as v. Hence, it follows that ‖v − z‖ < ‖u − z‖.

To show that a drawing of G is greedy, it clearly suffices to prove:
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For every (ordered) pair of distinct vertices u, v ∈ V , there exists some neigh-

bor of u, say u′ such that ‖u − v‖ > ‖u′ − v‖.

We will show that a non-degenerate Schnyder drawing of G exists which satisfies the

above property.

l

x

xw

v

u

2

3

x1

0 P

2
P

1
P v

u’
v’

u0 u u1

(a) (b)

P
0 P

2
P

1

u u

v

v’
0 u1

P
2

P
0 1

P

v w

u

21
z z

(c) (d)

Figure 2.5: (a) An acyclic face with the active region of ∠uvw shaded. The thin lines
have slopes that are multiples of 60◦. The active region at u is bounded by rays with
slope 180◦ and 300◦. (b) Note that v and v′ need not be adjacent. (c) Vertices u0, u and
u1 form a face. Edge u0u1 could be directed either way. (d) The greedy region of face
f = (u, v, w) is shown shaded.

Let f = (u, v, w) be an acyclic face and let u be the vertex with two incoming

edges. Without loss of generality (wlog), we assume that both edges belong3 to T0. See

3Note that both edges must belong to the same tree, see Theorem 3.
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Figure 2.5a. Let the coordinates of u be (u0, u1, u2). It follows that (see Lemma 7)

u0 = max0(u, v, w) and u2 = min2(u, v, w).

Let the active region of ∠uvw, denoted by A∠uvw, be the set of points (x0, x1, x2)

with x0 ≥ u0 and x2 ≤ u2. It is easy to see that this region is the wedge with sides of

slopes 180◦ and 300◦ at vertex u, Figure 2.5a.

Lemma 10. Let f = (u, v, w) be an acyclic face of G and in some non-degenerate

Schnyder Drawing of G, let z be a vertex in the active region of ∠uvw. Then, ‖v − z‖ >

min(‖u − z‖, ‖w − z‖).

Proof: From Lemma 6, it follows that u lies below the horizontal line (denoted by l

in Figure 2.5a) through w.

Since z lies in the active region of vertex u, only two possibilities can arise:

• z lies in the wedge bounded by rays of slope 180◦ and 240◦ at vertex v (the wedge

x1vx2 in Figure 2.5a): From Lemma 9, it follows that ‖v − z‖ > ‖u − z‖.

• z lies in the wedge bounded by rays of slope 240◦ and 300◦ at vertex v (the wedge

x2vx3 in Figure 2.5a): It follows that z must lie below the horizontal line through

w since u and so the whole active region lies below this line.

Now applying Lemma 9 again it follows that ‖v − z‖ > ‖w − z‖.

Hence, in every case ‖v − z‖ > min(‖u − z‖, ‖w − z‖).

Let u and v be a pair of non-adjacent vertices. It follows that v lies in one of three

regions R0(u), R1(u) or R2(u) (or their boundaries), Figure 2.2b. Assume, wlog, that v

lies in region R2(u), i.e., the region bounded by the edge P0P1 of the external face and

the paths Pi(u), i = 0, 1 from u to P0 and P1, Figure 2.5b. The path P2(v) from v to

P2 must intersect either P0(u) or P1(u). Assume wlog, that it intersects P0(u) and let

v′ = P2(v) ∩ P0(u). Let u0 (u1) be the neighbor of u on P0(u) (P1(u)).
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The following possibilities arise:

Case I v′ = u: Let P2(v) = (v = v0, v1, v2, . . . , vk−1, vk = v′ = u, vk+1, . . . , P2). It

follows from Lemmas 9 and 7 that ‖u − v‖ > ‖vk−1 − v‖ in every non-degenerate

Schnyder Drawing of G.

Case II u has one or more edges directed inwards lying between the edges uu0 and uu1 in

the embedding: Let the edge following uu0 (in CCW direction) be uu′, Figure 2.5b.

It follows from Lemma 6 that v lies in the active region of ∠u0uu′.

Hence from Lemma 10 it follows that either ‖u0 − v‖ < ‖u − v‖ or ‖u′ − v‖ <

‖u − v‖ in every non-degenerate Schnyder drawing.

Case III The vertices u, u0 and u1 form an acyclic face of G, see Figure 2.5c: In this

case there might exist some Schnyder drawings in which for every neighbor ui of

u, ‖ui − v‖ > ‖u − v‖. But we will show below that there must exist some non-

degenerate Schnyder drawing in which ‖u0 − v‖ < ‖u − v‖.

The greedy region of a face f = (u, v, w) is the region bounded by the edge vw and

the paths P0(v) and P1(w) as shown in Figure 2.5d. Note that even though the greedy

region depends on the drawing, the set of vertices falling in this region is fixed by the

realizer of G.

Definition 11. Let f = (u, v, w) be a triangular face with edges uv and uw directed

away from u, see Figure 2.5d, and let ɛ > 0 be some constant depending only on the

number of vertices of G, whose value will be fixed later. Then, in a Schnyder Drawing of

G, f is said to be good if

I The length of every edge of f is at least
√

ɛ.
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II For every vertex z in the greedy region

‖u − z‖2 − ‖v − z‖2 ≥ ɛ if P2(z) ∩ P0(u) 6= ∅, and

‖u − z‖2 − ‖w − z‖2 ≥ ɛ if P2(z) ∩ P1(u) 6= ∅,

and is said to be bad otherwise.

Note that for every vertex z in the greedy region exactly one of P2(z) ∩ P0(u) and

P2(z) ∩ P1(u) is non-empty. Clearly, a non-degenerate drawing in which every face is

good, is greedy.

The following Lemma is not used directly in our proofs but is helpful because it

provides some intuition as to why the Schnyder drawing framework can lead to greedy

drawings of graphs.

Lemma 12. Given any two vertices u, v ∈ G, then in any non-degenerate Schnyder

drawing of G, there exists a neighbor of u, say u′ and a neighbor of v, say v′ such that

‖u − v‖ > min(‖u′ − v‖, ‖u − v′‖).

Proof: Follows4 from Lemmas 6 and 9.

2.7 The Main Result

The following theorem will prove useful:

Theorem 13 (Knaster-Kuratowski-Mazurkiewicz [KKM29]). Let a d-simplex with ver-

tices {v0, . . . , vd}, be covered by closed sets Ci, i ∈ {0, . . . , d} such that the following

covering condition holds:

4This lemma holds more generally for all 3-connected planar graphs and not just triangulations. We
will not prove this generalization here as we deal only with triangulations.

22



For any Q ⊆ {0, . . . , d} the face spanned by the vertices {vi | i ∈ Q} is

covered by
⋃

i∈Q Ci.

Then,
⋂

i∈{0,...,d} Ci 6= ∅.

This theorem is known to be equivalent to the Brouwer Fixed Point Theorem.

The main result is the following:

Theorem 14. Given an n-vertex plane triangulation G, there exists a non-degenerate

Schnyder drawing of G which is greedy.

Proof: Recall that for each point p ∈ S, the unit simplex with 2n − 5 vertices (in

2n − 6 dimensions), a Schnyder Drawing of G can be obtained.

We define good sets Gf1 , . . . , Gf2n−5 ⊆ S, in the following way:

Let w = (w1, w2, . . . , w2n−5) ∈ S. Then w ∈ Gfi
iff in the Schnyder drawing of

G corresponding to w, the face fi is good. Note that the definition of these good sets

depends on the value of ɛ (Definition 11).

In Section 2.8, it is shown that in any Schnyder drawing of G the sum of the weights

of all the bad faces is always strictly less than 1, if ɛ is small enough (Theorem 17). Let

p = (p0, . . . , p2n−5) ∈ S lie in the interior of some k-face of S. Wlog, we can assume

that p0, p1, . . . , pk > 0 and pk+1 = . . . = p2n−5 = 0. Since the sum of weights of bad

faces is always less than 1, it follows that some face fi where i ∈ [0, k] must be good in

the drawing corresponding to point p. Hence p ∈ Gfi
and so the KKM covering condition

is satisfied.

It is easy to see that the sets Gfi
are closed. The condition that the length of the

edges of fi are at least
√

ɛ can be expressed in the form P ≥ ɛ where P is a quadratic

polynomial, equation 2.1. It is not very difficult to see that Condition II in Definition 11

can also be expressed as a polynomial (in fact quadratic) inequality. Hence, the set Gfi
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can be expressed as the set of all points satisfying some weak polynomial inequalities.

Hence Gfi
is closed.

From this it follows that the Gfi
satisfy the conditions of Theorem 13.

Hence,
⋂

i∈{1,...,2n−5} Gfi
6= ∅. Let g ∈

⋂
i∈{1,...,2n−5} Gfi

. It follows that every face

is good in the Schnyder drawing corresponding to g, which implies that this drawing is

greedy.

It is possible that the drawing corresponding to g is degenerate. But since ɛ > 0 and

the drawing varies continuously with the set of face weights, we can always pick another

point g′ close enough to g such that the drawing corresponding to g′ is non-degenerate

and greedy.

2.8 Schnyder Drawings and the Weights of Faces

a

b

c

de

u

v
x

y

f w
w’

0
P P

1

P
2

Figure 2.6: The sum of weights of faces in different regions are denoted by a, b, c, d, e
and f . Note that w and w′ could possibly be the same vertex, depending on how the edge
wv is directed. The analysis below remains the same in either case.

In this section we show that sum of weights of the bad faces in a drawing of the

triangulation is always strictly less than 1 for ɛ small enough where ɛ depends just on n
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(the total number of vertices of G).

Consider the face F = (u, v, w) in Figure 2.6. The sum of weights of faces in various

regions are marked. All paths shown in the figure are canonical paths (Pi(·)) starting from

some vertex. Note that b is the weight of the region demarcated by uvw′w where w and

w′ could possibly be the same vertex.

The coordinates of the points the vertices are mapped to are given below. Recall that

the graph is being drawn on the x + y + z = 1 plane, so the points lie on this plane. The

vectors corresponding to various edges are also given below. Note that u0 represents the

first coordinate of vertex u, x1 represents the second coordinate of vertex x and y2 the

third coordinate of y.

u = (u0, x1 + a + f, y2 + b + c + d + e),

v = (u0 + a + b, x1 + f, y2 + c + d + e),

y = (u0 + a + b + c + d + f, x1 + e, y2),

−−−→
u − y = (−a − b − c − d − f, a + f − e, b + c + d + e),

−−−→
v − y = (−c − d − f, f − e, c + d + e),

−−−→
u − v = (−a − b, a, b).

It follows that the length of the edge uv is given by

‖u − v‖2 = 2(a2 + b2 + ab). (2.1)

Lemma 15. Let Wuvw be the weight of face (u, v, w). If Wuvw ≥
√

ɛ
2
, every edge of face

F has length at least
√

ɛ.

Proof:

‖u − v‖2 = 2(a2 + b2 + ab) ≥ 2W2
uvw ≥ ɛ. (2.2)
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An identical argument applies to edge uw. For edge vw, notice that from Lemma 6,

∠vuw ≥ 60◦. Hence the edge vw is longer than at least one of the other two edges.

Note that b ≥ Wuvw since b is the weight of all faces in region uvw′w.

Theorem 16. Assuming that b ≥
√

ɛ
2
, the following conditions are necessary (but not

sufficient) for the inequality ‖u − y‖2 − ‖v − y‖2 < ɛ to hold.

a > b, (2.3)

e > b, (2.4)

a <
√

a − b and b <
√

a − b. (2.5)

Proof:

‖u − y‖2 − ‖v − y‖2 < ɛ,

=⇒ a(a + b + c + d + 2f − e) + b(b + 2c + 2d + f + e) <
ɛ

2
. (2.6)

Since b ≥
√

ɛ
2

and all variables are non-negative, we must have:

a + b + c + d + 2f − e < 0,

=⇒ b < e.

Rearranging the terms of equation 2.6, we obtain:

a(a + b + c + d + 2f) + b(b + 2c + 2d + f) + e(b − a) <
ɛ

2
,

=⇒ b − a < 0 =⇒ a > b.

for the same reason as before.

Rearranging the terms of equation 2.6 again we obtain:
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a(a + b + c + d + 2f) + b(b + 2c + 2d + f) + e(b − a) <
ɛ

2
,

=⇒ a2 + e(b − a) < 0,

=⇒ a2 < e(a − b),

=⇒ a <
√

a − b (since e < 1).

The Maximum Weight of Bad Faces

Let point w = (w1, . . . , w2n−5) ∈ S be such that in the Schnyder drawing, every face fi

with weight wi > 0 is bad. Then, the faces can be divided into three types:

Type A : The face has weight 0 and can be either good or bad.

Type B : The face has weight strictly less than
√

ɛ
2

and is bad because either one of its

edges is shorter than ɛ (and so violating Condition I in Definition 11) or because it

violates Condition II in Definition 11.

Type C : The face has weight at least
√

ɛ
2

and is bad because it violates Condition II in

Definition 11.

If ɛ is small enough, then “most” of the weight must be present in faces of Type C.

Theorem 17. There exists a positive function ɛ′(n) such that in any Schnyder drawing of

G, the sum of weights of all faces of type B and C is at most 1 − ɛ′(n) where n is the

number of vertices of G.

We first give a brief description of the main idea behind the proof.
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We try to find a point in S such that, in the Schnyder drawing corresponding to it,

every face with positive weight is bad. But we run into a contradiction, thus showing that

such a point cannot exist.

Let v1, v2, v3, . . . vn be the canonical order of G where v1 and v2 are the vertices of the

bottom edge of the external face and vn is the topmost node. We start with the edge v1v2

and construct the triangulation by adding vertices one by one according to the canonical

order. This also gives us an ordering on the faces. As faces are added, we try to assign

weights to them in such a way that no face with positive weight is good. This condition

places an upper bound on the weight each face can be assigned. Once we are done with

all faces, we show that the sum of weight of all faces (good or bad) is forced to be less

than 1, which is a contradiction.

Proof: Let v1, v2, v3, . . . vn be the canonical order of G where v1 and v2 are the edges

of the bottom edge of the external face and vn is the topmost node.

We start with the edge v1v2 and build the graph by adding vertices one by one ac-

cording to the canonical order. The vertex v3 and the face, f1, it forms with v1 and v2 are

shown in Figure 2.7a. Since the greedy region of v3 contains no vertices, it is clear that

f1 cannot be a type C face. Hence wf1 <
√

ɛ
2
.

Let Gk be the graph induced by the vertices v1, v2, . . . , vk and let the sum of weight

of all faces of Gk be Wk. We will show that to ensure that no face with positive weight

is good, we must have Wk → 0 as ɛ → 0 where 3 ≤ k ≤ n. This is clearly satisfied by

W3 = wf1 <
√

ɛ
2
. We show next that Wk+1 also satisfies this property if Wk does. Let

W = max
(
Wk,

√
ɛ
2

)
.

We now add vk+1 to Gk and try to assign weights to the newly formed faces. Let Wnew

be the maximum weight that can be assigned to the new faces while ensuring that every

face with positive weight is bad. We have the two following possibilities:
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Figure 2.7: (a) The first face added. Note that the vertex P2 and the edges P2P0 and P2P1

have not yet been added to the graph and are shown only for clarity. (b) and (c) Faces
obtained when the vertex vk+1 is added to Gk. Note that the path from vk+1 to P2 is not
present in Gk and is shown only for clarity. (d) Note that only face fl = (vk+1, tl, tl−1) is
shown to avoid clutter. (e) Only face f ′

l = (vk+1, tl′ , tl′−1) is shown for the same reason.
Note that fl′ lies to the right of fl.

Case I : vk+1 has only two neighbors in Gk. Let them be vertices u and w as shown in

Figure 2.7b. In this case, the only new face is (u, vk+1, w) which belongs to tree 2.

Then it follows from equation 2.4 that Wnew < W , as otherwise the face is good.

Case II : vk+1 has more than two neighbors, say u, t1, . . . , tm and w as shown in Fig-

ure 2.7c. The new faces are f1 = (u, t1, vk+1) which belongs to tree 1, fm =

(vk+1, tm, w) which belongs to tree 0 and m−1 faces of the form fi = (ti, vk+1, ti+1)

each of which may belong to either tree 0 or 1. Let wfi
be the weight of face fi.

Case i: None of the new faces have weight more than W . Hence, Wnew < nW as

m + 1 < n.
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Case ii: At least one face, say belonging to tree 1, has weight more than W , Fig-

ure 2.7d.

Let l ∈ [1..m] be the maximum value such that: (a) wfl
> W and (b) fl

belongs to tree 1. Let l′ ∈ [l + 1..m] be the minimum value such that: (a)

wfl′ > W and (b) fl′ belongs to tree 0.

Of course such an l′ need not exist. If it does not, then, in Figure 2.7d every

face in the region h has weight at most W . By equation 2.3 applied5 to face

fl, g < h if fl is to be bad. Every new face must fall in one of the regions g or

h. Since h < nW , we have Wnew < g + h < 2nW (since m + 1 < n).

If l′ does exist, then by equation 2.3, applied to face fl′ , g′ > h′ in Figure 2.7e.

Note that is possible to have l = 1 and/or l′ = m.

Let S(g), S(g′), S(h) and S(h′) denote the set of faces in the regions so

marked in Figure 2.7d and 2.7e. Since fl′ lies to the right of fl, it is clear

that S(g) ⊂ S(g′) and S(h′) ⊂ S(h) and by equation 2.3 applied to faces fl

and fl′ , h > g and g′ > h′.

Let Dgg′ = S(g′)\S(g) and Dhh′ = S(h)\S(h′) and Wgg′ (Whh′) be the

weight of the faces in Dgg′ (Dhh′). We have:

g + Wgg′ = g′ and h′ + Whh′ = h

=⇒ Wgg′ + Whh′ > g′ − h′ since h > g

and Wgg′ + Whh′ > h − g since g′ > h′

The only new faces in the sets Dgg′ and Dhh′ are fi, i ∈ [l + 1, l′ − 1]. Each of

these faces have weight at most W (by definition of l and l′). Since the sum
5 Note that the face shown in Figure 2.6 in the derivation of equation 2.3 belongs to tree 2 while face

fl and f ′
l belong to trees 0 and 1. Of course this does not really change anything as the same argument

applies. To see how equation 2.3 (or equation 2.5) applies to face fl, compare Figures 2.6 and 2.7d where
vertices vk+1, tl, tl−1 map to v, u, w in that order.
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of all the old faces is at most W , we have: Wgg′ + Whh′ < 2(W + nW ) =

2(n + 1)W .

From equation 2.5 applied to faces fl and fl′ , it follows that g, g′, h, h′ <√
2(n + 1)W .

Hence Wnew < max(2nW, c
√

nW ) where c is some small (absolute) constant.

Since W → 0 as ɛ → 0, we can assume that ɛ is small enough that 2nW < c
√

nW

and so Wnew < c
√

nW . Recall that W = max
(
Wk,

√
ɛ
2

)
. It follows that Wk+1 =

Wk + Wnew < W + c
√

nW < c′
√

nW . Hence Wk+1 < c′
√

n max(Wk,
√

ɛ
2
).

Notice that Wk+1 → 0 as ɛ → 0.

Hence it easy to see that by picking ɛ small enough, we can make Wn < 1 (in fact,

we can make Wn → 0). But the total weight of all faces must be exactly 1 and so

this gives us a contradiction and the result follows.

2.9 Conclusions

We have been able to show that every triangulation has a planar greedy drawing in the

Euclidean plane. As for algorithmic questions, the following iterative approach works

quite well in practice:

• Let W i = (w0, w1, . . . , w2n−5) ∈ S be the weights of the faces in iteration i.

• Let W i+1 = 1
W

(
w′

0, w
′
1, . . . , w

′
2n−5

)
where w′

j = wj if fj is good in the drawing

corresponding to W i and w′
j = 2wj otherwise and W is the normalizing factor such

that W i+1 ∈ S.
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• For i = 0, let w0 = w1 = . . . = w2n−5 = 1
2n−5

.

This algorithm converges quite fast, but so far no theoretical bounds are known.

2.10 Recent Developments

Several results about Greedy Drawings have appeared in the literature after [Dha08]. We

mention the most important ones below.

Conjecture 1 was settled in the affirmative by [ML08]. Their approach is combina-

torial and they show that all 3-connected planar graphs have a subgraph with a specific

structure. They then show that this subgraph has a greedy drawing in the plane. Inde-

pendently, a proof based on a similar approach (but just for triangulations) was obtained

in [AFG09]. However, it is not known if a succinct greedy drawing, i.e., a greedy drawing

on a polynomial sized grid, exists in the Euclidean plane.

On a slightly different track, some results about Greedy Drawing in the Hyperbolic

plane were obtained in [EG09]. The authors describe an algorithm to obtain a succinct

greedy drawing in which the location of each node can be described in O(log n) bits

where n is total number of nodes.
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Chapter 3

TOWARDS CONCENTRATION BOUNDS

FOR THE SIMPLEX ALGORITHM

3.1 Introduction

A Linear Programming (LP) problem is a problem of the form:

minimize: cTx

Subject to: Ax ≤ b

where x, c ∈ Rd, A is a n× d matrix and b ∈ Rn. The polyhedron P defined by Ax ≤ b

is called the constraint polyhedron. It is easy to see that the solution to any LP, if bounded,

is a vertex of this polyhedron.

LP problems arise frequently in various contexts and numerous algorithms have been

developed to solve them [MG06]. Of these, the Simplex family of Algorithms have

proven particularly successful in practice [Sha87, Bix02]. This family of algorithms start

from a vertex of P and “walk” along the edges towards the vertex minimizing cTx. At

each step a pivot rule determines which adjacent vertex the algorithm moves to and vari-

ants of Simplex Algorithm are characterized by the pivot rule they use.
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Of all the variants of Simplex, the one that has proven most amenable to analysis is

the SHADOW-VERTEX variant. The path followed by this algorithm can be described as

the pre-image of the convex hull of the projection of P onto a 2-plane as described below.

Suppose we know the vertex z′ of P that optimizes the objective function determined

by c′. Let z be the vertex optimizing c. Let P be the polygon obtained by projecting P

onto the 2-plane determined by c′ and c. It is easy to see [ST04], that every vertex and

edge of P is the image of some vertex and edge of P . In particular the images of both z′

and z lie on P and so the edges of P form a path from z′ to z. The SHADOW-VERTEX

algorithm follows this path to find z starting from z′. In practice, this algorithm has two

phases. In the first the optimal vertex z′ for a specially designed objective function c′ is

found. In the second, the optimal vertex for c, the objective function of interest, is found

as described above.

Efficiency of the Simplex Algorithm

While the Simplex Algorithms have been found to work well in practice [Sha87, Bix02],

most variants are known to be inefficient in the worst case [KM72, Gol94, AZ99]. In par-

ticular, the SHADOW-VERTEX algorithm is known to require 2d steps on the d-dimensional

Goldfarb cube.

In an attempt to explain this apparent contradiction, the effect of noise on the equa-

tions determining the constraint polyhedron was investigated in [ST04]. A smoothed

Linear Program is an LP of the form:

minimize: cTx

Subject to: Ax ≤ b (3.1)

where A = A + σG, b = b + σg, and G (g) is a Gaussian matrix (vector) of
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appropriate dimensions and σ is the standard deviation scaled appropriately by the size of

the elements of A and b.

Theorem 18 ([ST04, Ver06]). Given any LP with d > 3 variables and n > d constraints,

the expected number of pivot steps in a two-phase SHADOW-VERTEX simplex method

for the smoothed program is at most a polynomial, Poly(n, d, 1
σ
).

In [ST04], the bound obtained was Poly(n, d, 1
σ
) = O∗(n86d55σ−30). This was im-

proved in [Ver06] to O(max(d5 log2 n, d9 log4 d, d3σ−4)).

These results provide some intuition why the Simplex Algorithm is efficient in prac-

tice. However, they only show that Simplex is efficient in expectation. But experience

suggests that Simplex Algorithms are not just efficient in expectation but in fact are ef-

ficient with very high probability and satisfy strong concentration bounds [Sha87], see

Section 3.1.

Bounds on the Shadow Size

Let P be the polyhedron defined by equation (3.1). The polygon PΠ obtained by pro-

jecting P onto a (fixed) 2-plane Π is called the Shadow of P . The number of vertices

of PΠ, denoted by |PΠ|, plays an important role in determining the complexity of the

SHADOW-VERTEX algorithm. In particular, this gives an upper bound on the number of

steps required in the second phase [Ver06].

In the rest of the chapter, we assume that the constraint polyhedron P is given by

the equations Ax ≤ 1 where A is as defined in equation (3.1). It was shown in [Ver06]

that any constraint polyhedron can be reduced to this form and so this assumption does

not lead to loss of generality. Also, it will be be convenient to deal with the polar, C =

Conv(0, a1, . . . , an), of P where the ai are the rows of A. Note that since we are mainly
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interested in C∩Π (the polar of PΠ) we can restrict our analysis to C ′ = Conv(a1, . . . , an)

since |C ∩ Π| ≤ |C ′ ∩ Π| + 1.

Theorem 19 ([ST04, Ver06]). Let a1, . . . , an be independent Gaussian vectors in Rd with

centers of norm at most 1, and whose components have standard deviation σ ≤ 1
6
√

d log n
.

Let Π be a fixed 2-plane in Rd. Then the random polytope C satisfies

E
a1,...,an

[|C ∩ Π|] ≤ Poly(n, d,
1

σ
).

The bound obtained in [ST04] was Poly(n, d, 1
σ
) = Cnd3σ−6. This was improved

in [Ver06] to Cd3σ−4.

Improving Bounds on the Shadow Size

Our goal is to improve the result in Theorem 19 by proving concentration bounds on

the shadow size. This, together with results derived in [Ver06], will lead to a similar

concentration bound on the complexity of the SHADOW-VERTEX Simplex Algorithm.

A lower bound for the concentration is provided by the d-dimensional Goldfarb cube

[AZ99] which has a shadow of size 2d. It was observed in [ST04] that this cube “sur-

vives” an exponentially small perturbation, i.e., the facets of the cube can be perturbed

by roughly 2−d without effecting the size of the shadow. This leads to a lower bound of

the form1 Pr
a1,...,an

[|C ∩ Π| ≥ Poly(n, d)] ≥ 2−d3 where Poly(n, d) is any polynomial in n

and d. So one cannot hope for better bound.

Experiments indicate that the shadow size is highly concentrated, see Figure 3.1. We

believe that a result of the form: Pr
a1,...,an

[|C ∩ Π| ≥ Poly(n, d)] ≤ 2−d log n should be true.

1Note that this is only a rough estimate. Also note that this is a “bad” example only if n = o(2d) as
otherwise the size of the shadow would be polynomial in n.
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Figure 3.1: The number of vertices of the convex polygon obtained by intersecting a fixed
2-plane Π with a 20-vertex random polytope in 10 dimensions. The vertices were gener-
ated independently from the origin centered Gaussian. A total of 1.28 × 106 polytopes
were generated of which 230, 000 did not intersect Π at all. These were discarded and the
size of the intersection was computed for the rest 1.05× 106 samples and the frequencies
were normalized. The mean is 21.3 and the maximum is 47.

A word on the notation

In the rest of the chapter, we will use the same notation for both a point and the vector it

represents. The meaning should be clear from context. The coordinates of a point a will

be represented by superscripts, i.e., (a(1), a(2), . . .). The size of a convex polygon, P , is

defined to be the number of its vertices and is denoted by |P |.

3.2 Our Results

We will assume, without loss of generality (wlog), that the fixed 2-plane Π is the one

spanned by the last two coordinate axes. Let ai = (a
(1)
i , . . . , a

(d)
i ), 1 ≤ i ≤ n. We
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define a′
i = (a

(1)
i , . . . , a

(d−2)
i ) and li = (a

(d−1)
i , a

(d)
i ) ∀i. Using this notation, the result in

Theorem 19 can be written in the form:

E
l1,...,ln,a′

1,...,a′
n

[|C ∩ Π|] ≤ Cd3σ−4.

We improve this to:

Pr
l1,...,ln

[
E

a′
1,...,a′

n

[|C ∩ Π|] ≥ Cd29n66
√

log n

σ16

]
≤ 2n−d+2 (3.2)

where each ai is a Gaussian with mean ai and standard deviation σ.

3.3 Barycentric Coordinates

Let A = {a1, . . . , an}, A′ = {a′
1, . . . , a

′
n} and Affine(ai1 , . . . aik) (Conv(ai1 , . . . aik))

denote the Affine hull (Convex Hull) of the points ai1 , . . . aik . We assume that all points

are in general position, i.e., the affine hull of any set of at most d points does not contain

any of the other points in A or A′.

Any subset of d−1 elements of A is called a ridge. Consider a ridge R = {a1, . . . , ad−1}

of A. Let p = Affine(R) ∩ Π. Since the points are in general position it follows

that p 6= ∅. Let α = (α(1), . . . , α(d−1)) be such that α(1) + . . . + α(d−1) = 1 and

α(1)a1 + . . . α(d−1)ad−1 = p. It is easy to see that α exists and is unique. In addition,

Conv(R)∩Π 6= ∅ if and only if α(i) ≥ 0, ∀i. Of course, in this case, Conv(R)∩Π = p.

The vector α is defined to be the Barycentric Coordinate of the point p and is denoted by

αR. Let R be the set of ridges of A, R≥0 = {R | R ∈ R and Conv(R) ∩ Π 6= ∅} and

αR≥0
= {αR | R ∈ R≥0}.

Let B = {b1, . . . ,bd} be a set of points in n dimensions such that2 bi = (a
(i)
1 , . . . , a

(i)
n )

where 1 ≤ i ≤ d and let B′ = {b1, . . . ,bd−2}. Let B′ = Affine(0,b1, . . . ,bd−2) and

2In terms of matrices, B is the transpose of A.
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B′
⊥ be the n − d + 2 space perpendicular to B′ and containing 0. Let S be the (n − 1)-

dimensional unit simplex defined by {x | x(1) + . . . + x(n) = 1 and x(i) ≥ 0 ∀i ∈ [1, n]}

where x = (x(1), . . . , x(n)). Let PB′ = B′
⊥ ∩ S. The following properties are easy to

establish:

• Every α ∈ αR≥0
is a vertex of PB′ and vice-versa.

• The polygon Conv(a1, . . . , an) ∩ Π is the same as the one obtained by projecting

P ′
B onto the 2-plane spanned by bd−1 and bd. In particular, a simple one-to-one

correspondence exists between the vertices of these two polygons.

In the rest of the chapter, we denote the 2-plane spanned by bd−1 and bd by Γ.

3.4 Projecting Polyhedra

For a (d− 2)-dimensional face, Fd−2, of the unit simplex S, let u = B′
⊥ ∩Fd−2. If u 6= ∅,

then it follows that u is a vertex of PB′ . Similarly, if the intersection of B′
⊥ with any

(d − 1) dimensional face is non-empty, then it is an edge of PB′ .

Let Fd−1 denote the set of (d − 1)-dimensional faces of S. For any f ∈ Fd−1 we

let ef = B′
⊥ ∩ f . We denote by E(ef ) the event that ef 6= ∅. Let the image of ef after

projection to Γ be denoted by eΓ
f . We denote by S(ef ) the event (eΓ

f ∈ P )|E(ef ) where

P = ShadowΓ(PB′). In other words E(ef ) ∧ S(ef ) is the event that edge ef exists and

and its image on Γ lies on the boundary of the shadow of PB′ .

Let Γ be such that the following two conditions hold:

1. The perimeter of P is at most C1,

2. For any f ∈ Fd−1, E
b1,...,bd−2

[
‖eΓ

f‖ | E(ef ) ∧ S(ef )
]
≥ C2,
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where C1 and C2 are functions of n, d and σ and ‖ . . . ‖ denotes length, then we show that

|P | cannot be too high.

Theorem 20 ([KS06]). Let C1 and C2 be as defined above. Then, E
b1,...,bd−2

[|P |] ≤ C1

C2
.

Proof: Let random variables X1, . . . , X|Fd−1| be defined as follows:

Xi = ‖eΓ
fi
‖ if E(efi

) ∧ S(efi
), 1 ≤ i ≤ |Fd−1|,

= 0 otherwise.

Let Y1, . . . , Y|Fd−1| be such that Yi = dXie.

It follows that Perimeter(P ) =
∑|Fd−1|

i=1 Xi and |P | =
∑|Fd−1|

i=1 Yi.

E
b1,...,bd−2

[Yi] = Pr
b1,...,bd−2

[Xi > 0] ≤ 1

C2

E
b1,...,bd−2

[Xi] ,

E
b1,...,bd−2

[Perimeter(P )] =

|Fd−1|∑
i=1

E
b1,...,bd−2

[Xi] ,

=⇒ 1

C2

E
b1,...,bd−2

[Perimeter(P )] ≥
|Fd−1|∑

i=1

E
b1,...,bd−2

[Yi] ,

=⇒ C1

C2

≥ E
b1,...,bd−2

[|P |] .

Hence, it suffices to show that with high probability, C1 is not too high and C2 is not

too low. We show the first in Section 3.5 and the second in Section 3.6.

3.5 A Bound on the Perimeter of P

As before, let the li denote the last two coordinates of ai. Since ‖ai‖ ≤ 1, it follows that

‖li‖ ≤ 1.
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Theorem 21.

Pr
l1,...,ln

[
Perimeter(P ) > 2πc

√
d log nσ + 2π

]
≤ n− c2

2
d+1

2

where c is a positive constant.

Proof: From Lemma 50 it follows that

Pr
l1,...,ln

[
‖l1‖ ≤ 1 + c

√
d log nσ ∧ . . . ∧ ‖ln‖ ≤ 1 + c

√
d log nσ

]
≥ 1 − n− c2

2
d+1

2

where c is a constant. Since P ⊆ Conv(l1, . . . , ln), the result follows.

3.6 A Bound on Edge Lengths

Let ed−1 and ed be the vector formed by the first d − 1 components of bd−1 and bd

respectively and let the (d − 1)-dimensional space formed by the first (d − 1) coordinate

axes be denoted by Q. Recall that bi are vectors in n-dimensions. Hence ei, i = d− 1, d

is the projection of bi, i = d − 1, d onto Q and so ei, i = d − 1, d are Gaussian vectors

with standard deviation σ centered at ei, i = d − 1, d.

Since ‖ai‖ ≤ 1, it follows that ‖ei‖ ≤ d − 1, i = d − 1, d. Let L be the (d − 2)-

dimensional plane through the origin perpendicular to ed−1 and let eL
d be the projection

of ed onto L.

Since ‖ai‖ ≤ 1, it follows that ‖ei‖ ≤ d− 1, i = d− 1, d. From Lemma 52 it follows

that Pr
ei

[
‖ei‖ ≥ d + c

√
d log nσ

]
≤ n−c′d where c and c′ are constants.

Lemma 22.

Pr
ed−1

[‖ed−1‖ ≤ ɛ] ≤
( ɛ

σ

)d−1

, and

Pr
ed−1,ed

[
‖eL

d ‖ ≤ ɛ
]

≤
( ɛ

σ

)d−2
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Proof: The result follows from Lemma 49 since the vectors are all Gaussian.

Lemma 23. For every (d − 2)-dimensional plane N ∈ Q, there exists a vector q =

ed−1 cos(θ) + ed sin(θ) such that projection of q onto N has magnitude at least ɛ with a

probability at least 1 −
(

ɛ
σ

)d−1 −
(

ɛ
σ

)d−2.

In particular, the magnitude is at least σ
nc with probability at least 1 − 2n−c(d−2) for

any constant c.

Recall that an edge ef1 is the intersection of f1, a (d − 1)-dimensional face of the

unit simplex S and B′⊥. Let the hyperplane perpendicular to ef1 and passing through the

origin be Hef1
. Recall that Γ is the plane spanned by bd−1 and bd. Any vector in Γ can

be written in the form l(θ) = bd−1 cos(θ) + bd sin(θ). Let l(θ1) be the vector along the

intersection of Hf1 and Γ. Let l(θ1 + π
2
) be the vector perpendicular to it. Let êf1 be the

unit vector along ef1 and l̂(θ1 + π
2
) the unit vector along l(θ1 + π

2
).

The following is easy to see.

Observation 24. If ef1 appears on the boundary of P , then its magnitude is given by :

‖eΓ
f1
‖ = ‖ef1‖ |〈êf1|l(θ1 +

π

2
)〉| = ‖ef1‖ |〈êf1 |̂l(θ1 +

π

2
)〉| ‖l(θ1 +

π

2
)‖.

This just puts a dot product 〈a|b〉 in the form ‖a‖ cos(θ)‖b‖.

Now let A = Affine(f1). We know that ef1 ∈ A. Hence, the above observation can

be put in a more convenient form:

Observation 25. If ef1 appears on the boundary of P , then its magnitude is given by :

‖eΓ
f1
‖ = ‖ef1‖ |〈êf1 |l̂A(θ1 +

π

2
)〉| ‖lA(θ1 +

π

2
)‖.

where lA(θ1 + π
2
) is the projection of l(θ1 + π

2
) onto Hf1 ∩ A.
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Theorem 26. For any given (d − 1)-dimensional face f1 ∈ S:

Pr
bd−1,bd

[
‖lA(θ1 +

π

2
)‖ ≤ σ

nc

]
≤ 2n−c(d−2).

The probability that this condition fails for any (d−1)-dimensional face fi ∈ S is at most

2n−(c−1)(d−1)+1.

Proof: The first part follows from Lemma 23 and the second one by union bound.

Recall that E(ef ) is the event that edge ef exists and S(ef ) is the event that the image

of ef ∈ P .

Theorem 27.

E
b1,...,bd−2

[‖ef‖ | E(ef ) ∧ S(ef )] ≥
Cσ16

n64d28
.

Proof: This follows directly from Theorem 47.

Theorem 28.

Pr
bd−1,bd

[
E

b1,...,bd−2

[
‖eΓ

f‖ | E(ef ) ∧ S(ef )
]
≤ Cσ17

n64+cd28

]
≤ 2n−(c−1)(d−1)+1,

where eΓ
f is the projection of edge ef onto plane Γ.

Proof: Follows from Theorems 26 and 27 and observation 25.

3.7 The Bound on the Shadow Size

Theorem 29.

Pr
bd−1,bd

[
E

b1,...,bd−2

[|P |] ≥ Cd29n64+c
√

log n

σ16

]
≤ 2n−(c−1)(d−1)+1,

where c is some constant greater than 1.
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Proof: The result follows from Theorems 20, 21 and 28.

Recall that P = C ∩ Π. Hence, it follows that:

Theorem 30.

Pr
l1,l2,...,ln

[
E

a′
1,...,a′

n

[|C ∩ Π|] ≥ Cd29n66
√

log n

σ16

]
≤ 2n−d+2,

which completes the result.

3.8 Technical Details: Bounds on Edge Lengths and

Angles

As before, we let f ∈ Fd−1 and ef = B′
⊥ ∩ f . In this section we obtain lower bounds

on E
b1,...,bd−2

[
‖eΓ

f‖ | E(ef ) ∧ S(ef )
]

for the case where Γ is not ”too bad”. For now, we

will consider Γ to be fixed. It is intuitively clear that if E
b1,...,bd−2

[
‖eΓ

f‖ | E(ef ) ∧ S(ef )
]

is large then the expected shadow size, E
b1,...,bd−2

[|P |], cannot be too high.

Consider the edge ef = B′
⊥ ∩ f where f is a (d − 1)-dimensional face of S. Let g

be some (d − 2)-dimensional face of f . Let ug = B′
⊥ ∩ g and let E(ug) be the event that

ug 6= ∅. If E(ug) holds then it follows that ef 6= ∅ and that ug is a vertex of ef .

Let the (d − 1)-dimensional faces incident on g be {f1 = f, . . . , fn−d+1} and let

efi
= B′

⊥ ∩ fi. Let êfi
be the unit vector along efi

(directed away from ug). Now let

ug = (u
(1)
g , . . . , u

(d−1)
g , 0, . . . , 0) where the last n − d + 1 coordinates are zero. It follows

that E(ug) ⇐⇒ u
(i)
g ≥ 0, ∀i.

Let the vertices of the unit (n − 1)-dimensional simplex S be h1, . . . , hn where each

hi lies at a unit distance along the ith coordinate axis. Without loss of generality (wlog)

we let the vertices of g be {h1, . . . , hd−1} and fi be g∪{hd−1+i}, 1 ≤ i ≤ n−d+1. In the

rest of the chapter we use hi, 1 ≤ i ≤ n, to denote both a vertex of S and the unit vector
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along the ith coordinate axis. The context will provide the necessary disambiguation. We

let h0 = ( 1√
n
, . . . , 1√

n
) be the vector perpendicular to the hyperplane containing S.

The set of points B′ = {b1, . . . ,bd−2} is called a (d − 2)-figure and it is easy to

see that it can be represented as a point in R(d−2)n. In the rest of this section, we let

p ∈ R(d−2)n be the vector obtained by concatenating the bi.

We now investigate how p ∈ R(d−2)n can be varied without effecting the values of êfi
.

But first, we make the following observation:

Observation 31. Let L ⊆ R(d−2)n be such that for every p ∈ L:

1. E(ug) holds (i.e., the vertex ug exists) and,

2. The directions of the unit vectors êfi
do not change as p varies within L.

Then, the value of S(efi
) is fixed for all p ∈ L. In other words, if S(efi

) holds for some

p1 ∈ L, then it holds for all p ∈ L.

Recall that ef1 = B′
⊥∩ f1 where f1 has vertices {h1, . . . , hd−1, hd}. It follows that the

vectors {b1, . . . ,bd−2, h0, hd+1, hd+2, . . . , hn} are all perpendicular to ef1 .

Let H1 = Span({b1, . . . ,bd−2, h0, hd+1, . . . , hn}). Note that H1 is a (n−1)-plane. It

follows that êf1 is fixed if and only if H1 is fixed. Let Hi, 1 < i ≤ n− d + 1 be similarly

defined. Let Q = ∩
1≤i≤n−d+1

Hi. It follows that Q = Span(b1, . . . ,bd−2, h0) and that if

the vectors b1, . . . ,bd−2 are varied such that Q does not change, then the directions of êfi

do not change3.

Observation 32. Let L ⊆ R(d−2)n be such that for every p ∈ L, Span(b1, . . . ,bd−2, h0)

is fixed. Then, whenever efi
6= ∅, êfi

, 1 ≤ i ≤ n− d+1 lies along some fixed unit vector.

3Notice that in this case the direction of every edge of P ′
B is fixed. However the edge itself may cease

to exist.
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Recall that ug ∈ g. The vectors {b1, . . . ,bd−2, hd, . . . , hn} are all perpendicular to

the vector ug. Reasoning as before, it follows that:

Observation 33. Let L ⊆ R(d−2)n be such that for every p ∈ L Span(b1, . . . ,bd−2, hd)

is fixed, then, the vertex ug and the edges ef2 , ef3 , . . . , efn−d+1
are fixed. In other words

for different values of p ∈ L, where L is as above, the only quantity that varies is the

direction and length of the edge ef1 . The edges ef2 , . . . , efn−d+1
and the vertex ug are all

fixed.

An upper bound on Pr
b1,...,bd−2

[‖ef‖ ≤ ɛ|E(ug) ∧ S(ef)]

Recall that g = Conv(h1, . . . , hd−1) and let G = Affine(h1, . . . , hd−1,0). Since G has

(d − 1) dimensions and contains the origin, it follows that G ∩ B′
⊥ is a line though the

origin. Also ug = (G ∩ B′
⊥) ∩ g.

Let Q be some arbitrary (and fixed) (d− 1)-plane containing the origin and the vector

h0. We now condition on the event bi ∈ Q, 1 ≤ i ≤ d − 2 and derive our bound under

this restriction. Let l = G ∩ B′
⊥ and l̂ be the unit vector along l.

From observation 32 it follows that the edge directions, êf1 , . . . , êfn−d+1
do not change

as bi vary within Q. The edges may cease to exist however and their magnitude may

change. Let h′
0 = ( 1√

d−1
, . . . , 1√

d−1
, 0, 0, . . . , 0) where the first d − 1 coordinates are

non-zero and the rest n − d + 1 are zero. Let Ξ = Span(h′
0, l̂). We now further restrict

b1, . . . ,bd−2 to vary in a such in a manner that Ξ is fixed (and arbitrary).

Since h′
0 ∈ Ξ it follows that Ξ intersects the face g of the simplex S. Let h′′

0 be a unit

vector perpendicular to h′
0 within Ξ. Since l̂ ∈ Ξ, it can be parametrized in terms of h′

0

and h′′
0. Let l̂(θ) = h′

0 cos(θ) + h′′
0 sin(θ). An angle θ ∈ [0, 2π] is said to be active if the

line containing l̂(θ) intersects the face g (i.e., if E(ug) holds).

46



Observation 34. The set of active angles is an interval of the form [0, θ0] ∪ [θ1, 2π]. This

follows from the fact that “moving” l̂ towards h′
0 cannot destroy ug. Also it is easy to see

that: θ0, 2π − θ1 ≥ cos−1(
√

1 − 1
d−1

).

Since ‖ef‖ ≥ mini∈[0,d−1](u
(i)
g ), a lower bound on mini∈[0,d−1](u

(i)
g ) implies a lower

bound on ‖ef‖. Notice that if the vertex ug lies in the “interior” of the face g, i.e., is not

close to any facet of g, then it follows that mini∈[0,d−1](u
(i)
g ) cannot be too small. Recall

that the vertex ug is the point intersection between the line containing the vector l̂ and

the face g. It is easy to see that smaller the angle between l̂ and h′
0, the larger the value

of mini∈[0,d−1](u
(i)
g ). In fact, if the vectors coincide, mini∈[0,d−1](u

(i)
g ) = 1

d−1
and this

is the largest value of mini∈[0,d−1](u
(i)
g ) possible. Hence, it clear that the “bad” points

which must be avoided are the boundary points, θ0 and θ1, of the active interval, see

observation 34. We formalize this notion in the next Lemma.

Lemma 35. Let ug, l̂, h′
0, h

′′
0 and Ξ be as above. Let l̂(t) = h′

0t + h′′
0

√
1 − t2 where

t ∈ [−1, 1] and the active interval be [0, θ0]∪ [θ1, 2π]. Let t0 = cos(θ0) and t1 = cos(θ1).

Then: (i) mini∈[0,d−1](u
(i)
g (t0)) = mini∈[0,d−1](u

(i)
g (t1)) = 0, (ii) mini∈[0,d−1](u

(i)
g (t0 +

ɛ)) ≥ ɛ

(d−1)
3
2

.

Proof: Part(i) follows simply from the fact that l̂(t0) and l̂(t1) intersect g at one of

its facets.

Part(ii): Let the intersection point of the line containing the vector h′
0 and g be c.

Notice that c = ( 1
d−1

, . . . , 1
d−1

, 0, . . . , 0) where the first d − 1 coordinates are non-zero

and the rest n − d + 1 coordinates are zero.

Let l = ‖c − ug(t0)‖. Notice that l ≤ 1 since the face g has a circumsphere of radius

less than 1. Therefore,

ug(t0 + ɛ) = ug(t0)

(
l − ‖ug(t0 + ɛ) − ug(t0)‖

l

)
+ c

(
‖ug(t0 + ɛ) − ug(t0)‖

l

)
,
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since by design, ug(θ) moves towards c along the line containing ug(θ0) and c as θ varies

from θ0 to 0.

Every point in g is at least 1√
d−1

from the origin. Hence, we have ‖ug(t0 + ɛ) −

ug(t0)‖ ≥ 1√
d−1

ɛ.

It follows that u
(i)
g (t0 + ɛ) ≥ ɛ

(d−1)
3
2
, 1 ≤ i ≤ d − 1 since u

(i)
g (t0) ≥ 0 ∀i.

Theorem 36. Let bi, h0, h
′
0, h

′′
0, t0, t1, Ξ and l̂ be as before. Let Q be some (d − 1)-space

containing the origin and h0. Let ĥ′Q
0 and ĥ′′Q

0 be the unit vectors along the projection

of h′
0 and h′′

0 onto Q and let δ = 〈ĥ′Q
0|ĥ′′Q

0〉.

Pr
bi∈Q, 1≤i≤d−2,bl∈Ξ

[
min

i∈[0,d−1]
(ug) ≤ ɛ

]
≤ 4C(d − 1)

3
2

(1 − |δ|)2

ɛ

ɛ0

≤ C ′n2d3.5

(1 − |δ|)2σ2
ɛ

where n > d > 3, σ < 1.0, 0 < ɛ < σ2

6n2d2 = ɛ0 and C,C ′ are constants.

Proof: It follows directly from Theorem 58 that

Pr
bi∈Q, 1≤i≤d−2,bl∈Ξ

[
〈̂l|h′

0〉 ∈ [t0, t0 + ɛ]
]
≤ 4C

(1 − |δ|)2

ɛ

ɛ0

.

Lemma 35 does the rest. We only need to bound the values of 1 − |t0| and 1 − |t1|.

It follows from observation 34 that |t0|, |t1| ≤
√

1 − 1
d−1

. Since
√

1 − x ≤ 1 − x
2
,∀x ∈

[0, 1] it follows that 1 − |t0|, 1 − |t1| ≤ 1
2(d−1)

and the result follows.

Now we only need to bound δ. From Lemma 61 it follows that for a given edge ef ,

Pr
b1,...,bd−2

[
1 − |δef

| ≤ ɛ
]
≤ 4

(
2
√

2nɛ

σ

)d−3

+ n−2.9d+3.9.

Hence it follows that for any edge ef :

Theorem 37.

Pr
b1,...,bd−2

[‖ef‖ ≤ ɛ | E(ug) ∧ S(ef )] ≤ Pr
b1,...,bd−2

[
min

i∈[0,d−1]
(u(i)

g ) ≤ ɛ | E(ug) ∧ S(ef )

]
≤ Cn8d3.5

σ4
ɛ + 2n−2.9d+3.9,

where C is some constant and σ < 1.0 and n > d > 3 and 0 < ɛ < σ2

6n2d2 .
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A Bound on the Angles

In the last section, we obtained an upper bound on Pr
b1,...,bd−2

[‖ef‖ ≤ ɛ | E(ug) ∧ S(ef )]

via an upper bound on Pr
b1,...,bd−2

[
min

i∈[0,d−1]
(u

(i)
g ) ≤ ɛ|E(ug) ∧ S(ef )

]
. Since our goal is to

find an upper bound on Pr
b1,...,bd−2

[
‖eΓ

f‖ ≤ ɛ | E(ug) ∧ S(ef )
]

we now analyze the angle

between ef and the 2-plane Γ.

Let e⊥f1
be the hyperplane perpendicular to the edge ef1 and passing through the origin.

Let j1 be unit vector along e⊥f1
∩Γ. Let ExtAngle(ef1) denote the external angle (formed

by the normals to the facets) at the edge. The following is easy to see:

Observation 38. The edge ef1 appears on the boundary of the polygon P (i.e., S(ef1)

holds) if and only if j1 ∈ ExtAngle(ef1).

Now let j2 ∈ Γ be a unit vector perpendicular to j1. It is easy to see that if the angle

between ef1 and j2 is close to 90◦ then ‖eΓ
f1
‖ is close to 0. Thus we need to bound this

probability.

Let jf1

2 be the projection of j2 onto Affine(f1,0) and let ĵf1
2 be the unit vector in this

direction. As before, let êf1 be the unit vector along ef1 directed away from ug. We seek

an upper bound on: Pr
b1,...,bd−2

[
|〈êf1 |ĵf1

2〉| ≤ ɛ|E(ug) ∧ S(ef )
]
.

Observation 39. Given ug and ef1 , . . . , en−d+1 such that E(ug) and S(ef1) hold, varying

ef1 in the 2-plane spanned by êf1 and ĵf1
2 preserves S(ef1) (and E(ug)).

Now let Q be some (fixed) (d − 1)-dimensional plane through the origin containing

hd. From observation 33 it follows that if the bi are restricted to vary such that B′ ∈ Q

then the only ef1 varies. Fix some 2-plane Ξ′ perpendicular to j1 and containing ĵf1
2.

Now, if B′ is permitted to vary such that (i) B′ ∈ Q and (ii) êf1 ∈ Ξ′, then it follows from

observation 39 that S(ef1) is preserved.
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Let j3 ∈ Affine(f1,0) be a unit vector perpendicular to j1 and ĵf1
2 and let Ξ′ =

Span(j3, ĵf1
2). If E(ug) holds then it follows that the line containing j3 and passing

through ug intersects some facet of f1 (other than g). Without loss of generality we

assume that this face is Conv(h2, . . . , hd). Let this intersection point be w3. Let the line

containing ĵf1
2 and passing through ug intersect Affine(h2, . . . , hd) at point w2. Let the

line containing w3 and w2 be denoted by l. It is easy to see that as êf1 varies in Ξ′ the

intersection point of the line containing this vector with Affine(h2, . . . , hd), w1, varies

along l. Also, as long as w1 is not close to w3, |〈êf1 |ĵf1
2〉| is large.

Let mini∈[0,d−1](u
(i)
g ) = γ0. Notice that γ0 ≤ ‖w3 − ug‖ ≤ 2, γ0 ≤ ‖w2 − ug‖ and

‖w3 − w2‖ ≥ γ0. Since w3 ∈ f1, 1√
d−1

≤ ‖w3‖ ≤ 1 and 1√
d−1

≤ ‖w2‖.

Lemma 40. Let wi, i ∈ {1, 2, 3}, l and ug be as above. Let w ∈ l be such that ‖w−w3‖ ≥

ɛ where ɛ ≤ 1.0. Let j be the unit vector determined by w and ug. Then: |〈ĵf1
2|j〉| ≥ ɛγ0

9
.

Proof: We have: ‖w − ug‖ ≤ 3. Let the angle determined by ug and w2 at w3 be θ.

It is easy to check that sin(θ) ≥ γ0

3
. Let the angle determined by w and w3 at ug be α.

Then, sin(α) ≥ ɛγ0

9
and the result follows.

Let the unit vector determined by w3 (w2) be ŵ3 (ŵ2). Let Ξ be the plane determined

by ŵ2 and ŵ2 and t0 = 〈ŵ2|ŵ3〉.

Lemma 41. 1 − |t0| ≥ γ2
0

18d
.

Proof: Recall that ‖w2 − w3‖ ≥ γ0. Let the angle subtended at the origin by

w3 and w2 be θ and ∠0w3w2 = α. Let w′
2 be some point on l closest to w2 such that

‖w3 − w2‖ = γ0. The perpendicular distance to l from the origin is at least 1√
d−1

and

the foot of the perpendicular lies at a distance of at most 2 from w2. It follows that
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sin(α) ≥ 1
3
√

d−1
. Hence sin(θ) ≥ γ0

3
√

d−1
. Hence | cos(θ)| ≤

√
1 − γ2

0

9d
. The result follows

because
√

1 − x ≤ 1 − x
2
.

Let ŵ⊥
2 be the unit vector in Ξ perpendicular to ŵ2. Let any unit vector in Ξ be

ŵ(t) = ŵ2t +
√

1 − t2ŵ⊥
2. Let w(t) be point at the which the line containing ŵ(t)

intersects the line l.

Observation 42. Since the line l is a perpendicular distance of at least 1√
d−1

from the

origin: ‖w(t0 + ɛ) − w(t0)‖ ≥ ɛ√
d−1

.

Notice that w(t0) = w3.

Notice that ŵ(t) lies along B′ ∩ Affine(h2, . . . , hd,0).

Theorem 43. Let Q, Ξ, bi, ŵ(t), γ0 and l be as above. Then

Pr
bi∈Q, 1≤i≤d−2, B′

⊥∩Affine(h2,...,hd,0)∈Ξ
[t ∈ [t0, t0 + ɛ]] ≤ Cn8d2

σ4γ2
0

ɛ + 2n−2.9d+3.9,

where n > d > 3, σ < 1.0, 0 < ɛ <
σ2γ2

0

54n2d2 and C is a constant.

Proof: Follows directly from Theorem 58 and Lemma 61.

Theorem 44. Let Q, Ξ, bi, ŵ(t), γ0 and l be as above. Then

Pr
bi∈Q, 1≤i≤d−2, B′

⊥∩Affine(h2,...,hd,0)∈Ξ

[
|〈ĵf1

2 |êf1〉| ≤ ɛ

]
≤ Cn8d2.5

σ4γ3
0

ɛ + 2n−2.9d+3.9.

Proof: Follows from Lemma 40, Observation 42 and Theorem 43.

Combining Theorems 44 and 37 we have

Theorem 45.

Pr
b1,...,bd−2

[
|〈êf1 |ĵf1

2〉| ≤ ɛ|E(ug) ∧ S(ef )
]
≤ Cn32d13

σ16
ɛ +

1

d
+ 4n−2.9d+3.9,

where C is some constant, σ < 1.0 and n > d > 3.
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Putting Theorems 45 and 37 together we have:

Theorem 46.

Pr
b1,...,bd−2

[
| ||ef || 〈êf1 |ĵf1

2〉| ≤ ɛ2|E(ug) ∧ S(ef )
]

≤ Cn8d3.5

σ4
ɛ +

Cn32d13

σ16
ɛ

+
1

d
+ 6n−2.9d+3.9,

where C is some constant, σ < 1.0 and n > d > 3.

From this it follows that

Theorem 47.

E
b1,...,bd−2

[
| ||ef || 〈êf1 |ĵf1

2〉| |E(ug) ∧ S(ef )
]
≥ Cσ16

n64d28
,

where C is some constant, σ < 1.0 and n > d > 3.

3.9 Technical Details: The Effect of Perturbations

We prove our main technical result in this section. The following Lemmas from [ST04]

will prove useful.

Lemma 48 ([ST04]). Let k ≥ 0 and t be a non-negative random variable with density

proportional to µ(t)tk such that for some t0 > 0, max0≤t≤t0
µ(t)

min0≤t≤t0
µ(t)

≤ c, then, Pr[t ≤ ɛ] ≤

c
(

ɛ
t0

)k+1

.

Lemma 49 ([ST04]). Let x be a d-dimensional Gaussian vector with standard deviation

σ centered at a. Then:

1. For any point p, Pr[‖x − p‖ ≤ ɛ] ≤
(

ɛ
σ

)d.

2. For any plane H , of dimension h, Pr[dist(x, H) ≤ ɛ] ≤
(

ɛ
σ

)d−h.
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Lemma 50 ([ST04]). Let x be a d-dimensional Gaussian vector of standard deviation σ

centered at the origin. Then:

Pr
x

[‖x‖ ≥ kσ] ≤ kd−2e
−k2+d

2

d
d
2

Lemma 51 ([ST04]). Let µ be a Gaussian distribution of standard deviation σ centered

at a. Let v be some vector and r a real. Then, the induced distribution µ(x | vTx = r)

is a Gaussian distribution of standard deviation σ centered at the projection of a onto the

plane {x : vTx = r}.

Lemma 52 ([ST04]). Let x be a Gaussian random vector in Rd of standard deviation σ

centered at the origin. Then, for n ≥ 3, Pr[‖x‖ ≥ 3
√

d log nσ] ≤ n−2.9d. More generally

Pr[‖x‖ ≥ α
√

dσ] ≤ e−α2 d
4 ,

where α > 2.

Lemma 53 ([ST04]). Let µ(x) be a Gaussian distribution of standard deviation σ cen-

tered at a point a. Let k ≥ 1, let ‖x− a‖ ≤ k and ‖x − y‖ < ɛ ≤ k. Then, µ(y)
µ(x)

≥ e
−3kɛ
2σ2 .

Let ω and q be unit vectors in d-dimensions and let c = 〈ω|q〉. Then, ω can be rep-

resented in the following form: ω = (c, ψ
√

1 − c2) where ψ is the unit vector obtained

by projecting ω onto the (d − 1)-plane perpendicular to q.

Lemma 54 ([ST04]). The Jacobian of the change of variables from ω to (c, ψ) is given

by ∣∣∣∣det

(
∂(ω)

∂(c, ψ)

)∣∣∣∣ = (1 − c2)
d−3
2 .

As before, we let B′ = {b1, . . . ,bd−2} be Gaussian vectors, with standard deviation

σ, in n dimensions with bi centered at bi. Let Q be some fixed (d−1)-dimensional plane
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through the origin and for any point (or vector) p let pQ denote the image of p on Q under

orthogonal projection.

Consider the case where bi ∈ Q, 1 ≤ i ≤ d − 2. In this case, Span(B′) is a (d − 2)-

plane in Q. We let ω ∈ Q be the unit vector perpendicular to this (d − 2)-plane and

denote the n − d + 1 space perpendicular to Q (and containing the origin) by Q⊥.

We fix some (arbitrary) coordinate system for Span(B′) and let C ′ = {c1, . . . , cd−2}

be the coordinates of the points of B′ (within Span(B′)) under this coordinatization. It is

clear that every point bi can be specified by ω and ci (recall that bi ∈ Q). The Jacobian

of this change of variables was given by Blaschke [ST04, San02].

Theorem 55. Let b1, . . . ,bd−2, ω and c1, . . . , cd−2 be as described above. Then

db1 . . . dbd−2 = (d − 3)!V ol(Δ(0, c1, . . . , cd−2))dωdc1 . . . dcd−2,

where Δ(. . .) denotes the simplex determined by the arguments.

Recall that the initial points a1, . . . , an were centered at points ai such that ‖ai‖ ≤ 1.

It follows that ‖bi‖ ≤ n and so ‖bQ

i ‖ ≤ n. From Lemma 51 it follows that the induced

distribution of bi conditioned on the event that bi ∈ Q is a Gaussian with standard

deviation σ centered at b
Q

i . Similarly from Lemma 52 it follows that

Pr
bi∈Q

[
‖bi − b

Q

i ‖ ≥ 3
√

d log nσ
]
≤ n−2.9(d−1).

Hence we have:

Lemma 56.

Pr
bi∈Q

[‖bi‖ ≥ 2n] ≤ n−2.9(d−1).

Hence ‖bi‖ ≤ 2n for all 1 ≤ i ≤ d − 2 with an “error” probability of n−2.9d+3.9.

Let q ∈ Q be some fixed unit vector and let Λ be some fixed 2-plane containing q.

Let µ(p) be a Gaussian distribution of standard deviation σ centered at p.
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Theorem 57. Let c0 ∈ [−1, 1] and Q, b1, . . . ,bd−2, and ω be as above. Let b1, . . . ,bd−2

be restricted to vary in such a manner that:

1. bi ∈ Q, 1 ≤ i ≤ d − 2.

2. ω ∈ Λ.

Then,

Pr
b1,...,bd−2∈Q,ω∈Λ

[〈ω|q〉 ∈ [c0, c0 + ɛ]] ≤ C
ɛ

ɛ0

,

where n > d > 3, σ < 1.0, 0 < ɛ < σ2(1−|c0|)
3n2d

= ɛ0 and C is some constant.

Proof: First we use the change of variables described in Theorem 55 and specify

the variables b1, . . . ,bd−2 in terms of ω, c1, . . . , cd−2. The variables have density propor-

tional to

µ(b1) . . . µ(bd−2)(d − 3)!V ol(Δ(0, c1, . . . , cd−2)).

We now fix c1, . . . , cd−2 so that the only varying quantity is ω which is permitted to

vary within Λ. We now use the change of variables given by Lemma 54. The density is

now proportional to

µ(b1) . . . µ(bd−2)(1 − c2)
d−4
2 , (3.3)

where c = 〈ω|q〉. Notice that the other terms (like the volume of the simplex) are con-

stants since they are functions of fixed variables and can be ignored. Let Λ⊥ be the

(d − 3)-space (within Q) perpendicular to Λ and containing the origin. Let bi = qi + ti

where qi is the projection of bi on Λ. Notice that since we only permit ω to vary inside

Λ, the values of qi, ‖ti‖ and Λ⊥ are all fixed and ti ∈ Λ. Let q⊥ be a vector within Λ

perpendicular to q. Then we have, ω = qc+q⊥
√

1 − c2 and ti = ‖ti‖(q⊥c−q
√

1 − c2).

Since ‖bi‖ ≤ 2n ∀i it follows that ‖ti‖ ≤ 2n ∀i.
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Since we seek to apply Lemma 48, we now compute the change in density as ɛ varies

in the range [0, ɛ0].

1 − (c0 + ɛ)2

1 − c2
0

= 1 − ɛ

(
ɛ + 2c0

1 − c2
0

)
≥ 1 − 3ɛ

1 − c2
0

=⇒
(

1 − (c0 + ɛ)2

1 − c2
0

) d−4
2

≥
(

1 − 3ɛ

1 − c2
0

)d

≥ 1 − 3ɛd

1 − c2
0

≥ 1 − σ2

n2
. (3.4)

As for the change in ti we have:

δti = ‖ti‖
(
q⊥ɛ + q

(√
1 − c2

0 −
√

1 − (c0 + ɛ)2

))
.

where √
1 − c2

0

(
1 −

√
1 − (c0 + ɛ)2

1 − c2
0

)
≤

√
1 − c2

0

3ɛ

1 − c2
0

=
3ɛ√
1 − c2

0

≤ σ2

n2d
.

Hence we have ‖δti‖ ≤ ‖ti‖
√

2σ2

n2d
. Using Lemma 53, the variation in µ(bi) is lower

bounded by e−
6n‖ti‖

√
2σ2

n2d
2σ2 = e−

3
√

2
d , since the ‖ti‖ ≤ n. Hence the total variation in

µ(b1) . . . µ(bd−2) is lower bounded by e−3
√

2. Putting this and the result of equation 3.4

together, it follows that there exists a constant C such that the variation in density as

ɛ varies in the range [0, ɛ0] is at most C. We can now apply Lemma 48 and the result

follows.

Theorem 57 shows that we can avoid a “bad” point c0 with “high” probability. Notice

that this result gets weaker and weaker as |c0| → 1. But this will be sufficient for our

purposes.

We now obtain a slightly more involved form of Theorem 57 which will be more

convenient for our purposes.

Recall Span(B′)⊥ is a (n − d + 2)-dimensional plane through the origin and so it

intersects any (d − 1) subspace in a line. Now let T be some (d − 1)-dimensional plane

through the origin and let t1 be some (fixed) unit vector in T . Let t2 be the unit vector
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along the intersection of Span(B′)⊥ and T . Now let f : T → Q be the map obtained

by projecting T onto Q and for any unit vector t ∈ T let f̂(t) be the unit vector along

its projection. Now, let Ξ be some 2-plane containing t1 and t3 ∈ Ξ be a unit vector

perpendicular to t1. We now condition the bi so that t2 lies on Ξ.

Since we wish to extend the result in Theorem 57, we let q = f̂(t1) and let the 2-plane

Ξ be mapped to the 2-plane Λ under f . It is easy to see that f̂(t2) = ω. Every unit vector

t ∈ Ξ can be represented by (t,
√

1 − t2) where t = 〈t|t1〉. Under the mapping f this

representation gets mapped to (c,
√

1 − c2) on Λ where c = 〈f̂(t)|q〉. Let δ = 〈f̂(t3)|q〉.

We now obtain the Jacobian of f restricted to Ξ.

We have

c =
t + δ

√
1 − t2√

1 + 2δt
√

1 − t2
, and

dc

dt
=

1 − δ2(
1 + 2δt

√
1 − t2

) . (3.5)

Theorem 58. Let t0 ∈ [−1, 1] and Q, bi, ω, ti, Ξ and δ be as above. Let b1, . . . ,bd−2 be

restricted to vary in such a manner that

1. bi ∈ Q, 1 ≤ i ≤ d − 2.

2. t2 ∈ Ξ.

Then,

Pr
b1,...,bd−2∈Q,t2∈Ξ

[〈t2|t1〉 ∈ [t0, t0 + ɛ]] ≤ 4C

(1 − |δ|)2

ɛ

ɛ0

, (3.6)

where n > d > 3, σ < 1.0, 0 < ɛ < σ2(1−|t0|)
3n2d

= ɛ0 and C is some constant.

Note that the difference between Theorems 57 and 58 really is in Condition 2.

Proof: We proceed exactly as in the proof of Theorem 57 with one difference: we

first use the map f : Ξ → Λ to change the coordinate from t to c. The Jacobian is given
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by equation 3.5. So we have

c0 =
t0 + δ

√
1 − t20√

1 + 2δt0
√

1 − t20

,

from which it follows that

(1 − |t0|)
(1 − |δ|)

2
≤ 1 − |c0|.

This explains a factor of 2
1−|δ| in the RHS of equation 3.6.

The density is now proportional to

µ(b1) . . . µ(bd−2)(1 − c2)
d−4
2

1 − δ2(
1 + 2δt

√
1 − t2

) , (3.7)

which is the counterpart of equation 3.3.

We have
maxt∈[−1,1]

dc
dt

mint∈[−1,1]
dc
dt

=
1 + |δ|
1 − |δ|

≤ 2

1 − |δ|
.

This explains the other 2
1−|δ| in the RHS of equation 3.6. The rest follows from the

proof of Theorem 57.

Projection on Random (d − 2)-planes

Let q be a unit vector in n dimensions and B′ = {b1, . . . ,bd−2}, and Q = Span(B′) be

as before. Let qQ be the image of q on Q.

Theorem 59.

Pr
b1,...,bd−2

[
‖qQ‖ ≤ ɛ

]
≤

(
2nɛ

σ

)d−2

+ n−2.9d+3.9.

Proof: We wish to show that projecting q onto a random (d − 2)-space does not

change its length significantly. This is equivalent to showing that there exists a unit vector

in the (d − 2)-space which is such that projecting it onto q does not change its length

significantly. This is what we do.
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Let b̂i be the unit vector along bi and q̂Q the unit vector along qQ. Let κ0 = |〈q|q̂Q〉|

and κi = |〈q|b̂i〉|, 1 ≤ i ≤ d − 2. It is clear that κ0 ≥ max1≤i≤d−2(κi). Notice that

κ0 = ‖qQ‖.

Let bq
i be the projection of vector bi onto q. It follows that bq

i is a Gaussian with

standard deviation σ centered at b
q

i . Since this is a one dimensional Gaussian it follows

that Pr
bi

[‖bq
i‖ ≤ ɛ] ≤ ɛ

σ
.

From lemma 56 we may assume that ‖bi‖ ≤ 2n with an “error” probability of

n−2.9d+2.9. Hence it follows that Pr
bi

[κi ≤ ɛ] ≤ 2nɛ
σ

and since the bi are all independent,

Pr
b1,...,bd−2

[κ1 ≤ ɛ ∧ . . . ∧ κd−2 ≤ ɛ] ≤
(

2nɛ

σ

)d−2

.

Hence we have

Pr
b1,...,bd−2

[κ0 ≤ ɛ] ≤
(

2nɛ

σ

)d−2

+ n−2.9d+3.9

and the result follows.

Theorem 60. Let q1 and q2 be unit vectors in n dimensions and let B′ and Q be as

before. Let qQ
1 and qQ

2 be their projections on Q and q̂Q
1 and q̂Q

2 denote the unit vectors

in these directions. Then

Pr
b1,...,bd−2

[
‖q̂Q

1 − q̂Q
2‖

‖q1 − q2‖
≤ ɛ

]
≤

(
2nɛ

σ

)2(d−2)

+

(
2nɛ

σ

)d−3

+ n−2.9d+3.9.

In other words projecting the vectors q1 and q2 on Q does not change the angle between

them significantly (with high probability).

Proof: Let Λ =∈ Span(q1,q2). As before we assume that ‖bi‖ ≤ 2n with an

“error” probability of n−2.9d+3.9. For any unit vector b̂i, let mi denote the magnitude of

its projection on Λ and b̂Λ
i denote the unit vector along this projection. Using the same

reasoning as in the proof of Theorem 59, it is easy to see that we can find a unit vector, say
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b̂j which is such that mj ≥ ɛ with a probability of at least 1 −
(

2nɛ
σ

)2(d−2). Without loss

of generality we assume that this vector is b̂1. Let q3 ∈ Λ be a unit vector perpendicular

to b̂Λ
1 and let L be the (n − 2)-dimensional plane through the origin perpendicular to b̂1

and b̂Λ
1. It follows that q3 lies in L.

We now project the points b2, . . . ,bd−2 on L and apply Theorem 59. Let the new unit

vectors (in L) be given by b̂L
i, 2 ≤ i ≤ d − 2. From Theorem 59 it follows that there

exist a unit vector b̂L
j such that |〈q3|b̂L

j〉| ≥ ɛ with probability at least 1 −
(

2nɛ
σ

)d−3.

Without loss of generality, we assume that this vector is b̂L
2.

Let c1 = 〈b̂Λ
1|b̂1〉 and c2 = 〈b̂L

2|q3〉. Let {b̂1, b̂L
2, l3, . . . , ld−2} be a basis of

Span(B′).

Let q1 = b̂Λ
1 cos(θ1) + q3 sin(θ1) and q2 = b̂Λ

1 cos(θ2) + q3 sin(θ2).

Then the projection of q1 and q2 onto Span(B′) can be written in the form

qQ
1 = c1 cos(θ1)b̂1 + c2 sin(θ1)b̂L

2 + 〈q1|l3〉l3 + . . . ,

qQ
2 = c1 cos(θ2)b̂1 + c2 sin(θ2)b̂L

2 + 〈q2|l3〉l3 + . . . ,

‖q̂Q
1 − q̂Q

2‖ ≥
√

c2
1 (cos(θ1) − cos(θ2))

2 + c2
2 (sin(θ1) − sin(θ2))

2,

where the last inequality follows because ‖qQ
1 ‖, ‖q

Q
2 ‖ ≤ 1 as projection cannot increase

the length of a vector.

Hence we have

Pr
b1,...,bd−2

[
‖q̂Q

1 − q̂Q
2‖

‖q1 − q2‖
≤ ɛ

]
≤

(
2nɛ

σ

)2(d−2)

+

(
2nɛ

σ

)d−3

+ n−2.9d+3.9.

Lemma 61. Let q1 and q3 be mutually perpendicular unit vectors in n dimensions and

let B′ and Q be as before. Let qQ
i i = 1, 3 be their projections on Q and q̂Q

i, i = 1, 3

denote the unit vectors in these directions. Then,
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Pr
b1,...,bd−2

[
1 − |〈q̂Q

1 |q̂
Q
3 〉| ≤ ɛ

]
≤ 4

(
2
√

2nɛ

σ

)d−3

+ n−2.9d+3.9.

Proof: We have ‖q3 − q1‖ = ‖q3 − (−q1)‖ =
√

2.

From Theorem 60, it follows that

Pr
b1,...,bd−2

[
‖q̂Q

3 − q̂Q
1‖ ≤ ɛ ∨ ‖q̂Q

3 − (−q̂Q
1)‖ ≤ ɛ

]
≤ 4

(√
2nɛ

σ

)d−3

+ n−2.9d+3.9.

Hence it follows that:

Pr
b1,...,bd−2

[
1 − |〈q̂Q

1|q̂Q
3〉| ≤

ɛ

2

]
≤ 4

(√
2nɛ

σ

)d−3

+ n−2.9d+3.9.

3.10 Conclusions

We have shown that the shadow size of a smoothed polyhedron satisfies partial concen-

tration bounds. There are two improvements possible. First, the bound can be improved

by fine tuning the parameters in our theorems. We believe that the bound on the shadow

size can be reduced to much smaller powers of n, d and σ−1.

Second, the concentration bound can be extended to all variables. We believe a bound

of the form

Pr
a1,...,an

[
|C ∩ Π| ≥ Poly(n, d, σ−1)

]
≤ n−d,

where Poly(n, d, σ−1) is some polynomial should be possible.
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Chapter 4

LOW RANK DECOMPOSITIONS FOR

NOISY DATA

4.1 To Buy Or Not To Buy

Modern commerce has brought a deluge of options to today’s consumer. Where one

was restricted to what was locally available, be it books in the neighborhood bookstore

or movies at the local theater, a few years ago, the power of Internet has now brought

figuratively and for all practical purposes, literally, unlimited choice. Indeed it is possible

and in fact quite convenient to buy our books or rent our movies from stores located in

other parts of the country or even in other parts of the world. This vast increase in options

has made it quite difficult for the average consumer to decide what exactly to buy or rent.

For instance, given a choice of over 50000 movies on NETFLIX, word of mouth or even

reading movie reviews is not of much help in deciding which one to rent out.

In light of these developments, modern retailers have become interested in recom-

mendation systems which provide personalized recommendations to users based on their

preferences. Such systems are used by may e-commerce leaders like AMAZON and NET-
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FLIX.

4.2 Overview of Recommendation Systems

Recommendation systems use one of two main approaches: Content Filtering or Collab-

orative Filtering. The former creates a profile for each user or product to characterize

its nature. For instance a user buying a Baby Einstein Bendy Ball from AMAZON may

well be recommended a Munchkin Mozart Magic Cube as they are both aimed at the

same target demographic: babies. The major drawback of this technique is that it is hard

to scale up as it requires each product to be categorized manually. For instance, the sys-

tem needs to know that both products mentioned above are intended for babies and it is

not hard to see that this kind of (rather specific and detailed) information may be hard to

obtain when the inventory of products (or users) is very large.

The other type of recommendation system, Collaborative Filtering relies not on spe-

cific information about products or users but simply on past user behavior. It stores a list

of all users and products they have purchased in the past and uses this to make recommen-

dations. For instance, if many users who purchased a Baby Einstein Bendy Ball also

purchased a Munchkin Mozart Magic Cube in the past, then any user purchasing the

former would be recommended the latter. Note that the system does not have any prior

information about the similarity of these two products. The recommendation is based on

past user behavior alone. The most obvious advantages of this system are that (a) it is

domain independent and (b) it is more easily scalable.
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Collaborative Filtering

The two main kinds of Collaborative Filtering are Neighborhood Methods and Latent

Factor Models. The former depends on computing relationships between products (or

users). The preference for a product by an user is determined by his preference for similar

or neighboring products. A product’s neighbors are those products that are rated similarly

by other users. For instance, consider the three Matrix movies: The Matrix, The Matrix

Reloaded and The Matrix Revolutions. These three can be identified as neighbors

because many users who like (or dislike) one also tend to like (or dislike) the others. This

similarity in the response of the users can be used to cluster these movies together. So to

determine if a user would like The Matrix Revolutions we just look at his ratings (if any)

for the other two movies. Of course, instead of looking at neighboring products one may

look at neighboring users and the preferences of a user can be inferred by looking at the

preferences of users similar to him. Note that these measures of similarity are extracted

from past user behavior alone and not from detailed product descriptions (as would be the

case in Content Filtering).

Latent Factor Models

Latent Factor Models are an alternative approach that tries to model user preferences and

product characteristics by assuming that there are a small number of factors determining

them. For instance, the space of all movies can be modeled as a combination of a few

(say around 50 to 100) factors like Action, Adventure, Animation, Comedies, Horror etc.

This set of factors can be considered as a basis for movie-space and any movie can be

expressed as a tuple of weights m = (mi, . . . ,mk) where mi measures the content (or

strength) of the ith factor. For instance, the movie Rambo would receive a large weight

for the Action factor and a small weight for Comedy or Romance while Ratatouille would
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receive large weights for Animation and Comedy and low weight for Action.

A similar tuple u = (u1, . . . , uk) can be assigned to any given user as well where

ui captures the users interest or preference for the ith factor. For instance, a user who

likes action movies and dislikes comedies would have a large weight for Action and a low

weight for Comedy.

Once this assignment is complete, to find the preference of user u for movie m, we

just compute the dot product of u and m. Hence, in this model every movie and user is a

k-tuple (where k is small and independent of the number of movies and users). It follows

that the preference (or rating matrix) R where Ri,j is the rating by user i of movie j is

given by R = UMT where U is a n × k matrix with row i corresponding to the ith user

and M is a m×k matrix with row j corresponding to jth movie and n and m are the total

number of users and movies respectively.

While working with real world data, the idea that only a few factors explain all user

preferences is only an approximation at best so the equation above is more accurately

written as R ≈ UMT

So the task of Collaborative Filtering using Latent Factor Models boils down to the

following Matrix Factorization problem:

Matrix Factorization 1. Given a partial rating matrix R (i.e., not all entries of R are

known) with n rows and m columns find factor matrices U (n × k) and M (m × k) such

that a “good” approximation of R can be obtained by R ≈ UMT.

The main appeal of this technique is that the value of k (the number of factors) is

typically much smaller than n or m. A factorization of this form with a “low” value

of k is called a low rank approximation (LRA) of R. This is also known as Principal

Component Analysis.
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A Geometric View of LRA

We give a brief intuitive description of LRA in this section. First consider the case where

all entries of R are known and let R be a n × 2 matrix. Since each row has two columns

we can consider each row to be a point in two dimensions. Figure 4.1 shows two different

500 × 2 matrices. The points corresponding to the one with rank 1 (4.1b) lie (approxi-

mately) on a lower dimensional linear manifold (in this case a line). Hence for this matrix

a good LRA (with k = 1) can be found (and is shown as a solid line) while such an

approximation does not exist1 for the matrix in (a).
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(a) (b)

Figure 4.1: Rows of two 500× 2 matrices plotted as points in the plane. The matrix in (a)
has rank 2 and the one in (b) has rank (approximately) 1. The rank 1 LRA of (b) is shown
as a solid line.

The intuition from this case carries over to higher dimensions. Let R be a n × m

matrix. The rows (columns) of R can be thought of as points in m (n) dimensions. The

main argument behind LRA is that if R were a rating matrix then these points lie on or

close to some linear k dimensional manifold. How “good” the LRA is depends on how

well this assumption is satisfied.
1More precisely, a “good” approximation does not exist. Any rank 1 approximation for (a) will have

large error.
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Now consider the case where not all entries of R are known. For instance, if in

Figure 4.1b some entries are missing, it may still be possible to reconstruct the matrix

once we have retrieved the line from the known entries. Indeed, given one entry of a row

and the line, the other entry can be obtained by assuming that the point lies on the line.

This, in a nutshell, is the idea behind using LRA for Collaborative Filtering.

4.3 Overview of Matrix Factorization

Given any matrix R and factors U and M we need some measure of how “good” the

approximation is. We use the Frobenius norm of the error matrix.

Definition 62. Given any n × m matrix A = [ai,j], the Frobenius norm of A is

Fr(A) =
n∑

i=1

m∑
j=1

a2
i,j.

For a given U and M, the error matrix is given by R − UMT and the error function

E(U,M) is its Frobenius norm.

Let A0 = {(i, j)|1 ≤ i ≤ n, 1 ≤ j ≤ m} and A ⊆ A0 be the subset of R that is

known and let EA(U,M) be the error function restricted to A (i.e., terms of E(U,M)

that correspond to unknown entries of R are dropped).

First, notice that if all entries of R are known then the LRA of a given rank with

lowest error can be obtained from the Singular Value Decomposition (SVD) of R, [SJ03].

Let R = XΣYT be the SVD of R then the LRA of rank k with lowest (Frobenius) error

can be obtained by simply taking the columns of X,Y and Σ corresponding to the largest

k singular values. Hence EA0(U,M) can be minimized by first computing the SVD.

Of course, this cannot be done if some entries of R are unknown as the SVD cannot be

computed in this case.
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When not all entries of R are known, a natural generalization of the above approach

would be to find the M and U that minimize EA(U,M). While dropping the unknown

entries from the error function might seem like a trivial change, it has rather significant

consequences. The properties of this problem2 were investigated in [SJ03, CT09]. They

showed the following:

1. Finding the R with minimum rank such that some (fixed) entries of R have known

value is NP-hard.

2. The error function EA(U,M) has only one local minima (which is also the global

minimum) if A = A0 but this function can have multiple local minima otherwise .

3. When A = A0 the optimal U and M have a greedy substructure. In other words,

a solution of rank k is contained in a solution of rank k + 1. This is lost when

A 6= A0.

Result 2 is particularly significant because it implies that finding the (global) mini-

mum of EA(U,M) is not easy. This difficulty is exacerbated by the presence of noise. In

fact, in real world data sets, noise is a big enough factor that minimizing EA(U,M) can

lead to errors in reconstructing R. Regularization factors need to be taken into account to

deal with noise. We explain more in the next few sections.

4.4 The NETFLIX PRIZE

On October 2, 2006, NETFLIX, an online movie rental company started a contest to im-

prove the internal recommendation system it used3. It released a huge dataset and asked

2 More precisely, a closely related problem, the Weighted LRA, was investigated in [SJ03].
3 See http://www.netflixprize.com/
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contestants to improve upon the accuracy of its own internal algorithms by 10%. The con-

test ended on September 18, 2009 and led to many new results in the field of Collaborative

Filtering.

The data set contains over 100 million ratings by over 480, 000 users of over 17, 780

movies. A rating is an integer in the range [1, 5] where 1 indicates that the user did not

like the movie and 5 indicates that he did. The data is very sparse in the sense that the

ratings are available for very few (user, movie) pairs. In fact, only about 1.1% of such

ratings are known. While the average user rated 200 movies and the average movie was

rated by over 5000 users, the data has high variance and some movies have as few as 3

ratings and some users have rated more than 10, 000 movies.

The challenge is to predict (some of) the unknown ratings by using the ones that are

known.

The data also contains a quiz/test set, around 2.8 million (user, movie) pairs4 whose

rating NETFLIX did not release. Of the total, half form a quiz set and the other half form

a test set. The exact split was also not described by NETFLIX. Any prediction of these

ratings was compared against the actual ratings (which NETFLIX had) and the RMSE of

the prediction was computed. The challenge was to get a prediction that would have an

RMSE of 0.8572 (or lower) on the test set.

Many results dealing with this problem have been published, some of the main ones

are [Kor09b, Kor08a, Kor08b, BK07, SM07] and the three papers that describe the final

solution that won the contest [Kor09a, TJ09, PC09].

A Brief Overview of the Techniques

Ensemble Techniques, i.e., techniques that take the output of different algorithms and

4The data also contains dates which we ignore since we don’t use this in any way
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combine them (for example by computing an average) have proven to be the most suc-

cessful in this contest. Indeed, the final solution was an ensemble of three different teams,

Big Chaos [TJ09], BellKor [Kor09a] and Pragmatic Theory [PC09] each of which was

an ensemble of many techniques.

As for the individual techniques, many different ones have been tried. The main ones

are Neighborhood models and Latent Factor models (see Section 4.2) and many different

flavors of these two have been published. Apart from these, models have been developed

for the time variation of the ratings, the choice of movies rated by a given user (i.e., the

actual rating is ignored, only the fact that a given user rated a given movie is used), various

measures of “similarity” between movies/users etc.

4.5 Our Results

We propose an improvement to the algorithm used for Matrix Factorization. We describe

the basic model in Section 4.6 and its main shortcoming, instability in presence of noise

and ill-conditioning in Section 4.7. While many variants of this model exist in practice,

we believe that this shortcoming and the solution we propose are both widely applicable.

We show the results produced by our algorithm in Section 4.9.

4.6 Matrix Factorization with Regularization

Finding the optimal U and M to minimize EA(U,M) would run into difficulty with real

world data due to the presence of noise and also due to users (or movies) with very few

ratings. For instance, consider a user who has rated just one movie. Clearly depending

on the ratings information to find his “preferences” (i.e., the row corresponding to him in

U) will not work since there is so little data. To avoid overfitting (i.e., being led astray by
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the noise in the data) we need some kind of a “prior” view about users and movies to deal

with rows/columns with too little information.

A common way of dealing with this is to add penalty terms to EA(M,U) that depend

on the Frobenius norms of M and U. The actual “error” function we use is

ER
A (U,M) =

∑
(i,j)∈A

(Ri,j − UiM
T
j )2 +

n∑
i=1

λi‖Ui‖2 +
m∑

j=1

γj‖Mj‖2, (4.1)

where Xk denotes row k for any matrix X and ‖ . . . ‖2 denotes the Frobenius norm (Defi-

nition 62) and λi and γj are positive weights whose values are determined experimentally.

A formal derivation of this error function as the MAP solution of a model with Gaus-

sian noise was developed in [SM07].

Two main algorithms for minimizing ER
A (U,M) exist. One based on stochastic gra-

dient descent [TPNT08] and the other based on solving multiple alternating least square

problems. We use the latter and describe this in more detail below.

Alternating Least Squares

The function ER
A (U,M) is not convex when both U and M are unknown and a closed

form solution of the minimum certainly cannot be obtained. But when one of U or M is

fixed, the function becomes quadratic (in the unknown) and a closed form expression for

the optimum value of the other parameter can easily be found.

The Alternating Least Squares technique for finding the minimum of ER
A (U,M) uses

this above idea and proceeds in the following manner:

1. First, let M = M(0) where M(0) is a random matrix of size m × k and let i = 0.

2. Repeat the following steps until some convergence condition is met:
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a) Let U(i) = argmin
U

ER
A (U,M(i)). Notice that this ER

A (U,M(i)) is a quadratic

function of U. So a closed form solution for the optimum U can be found.

b) Let M(i+1) = argmin
M

ER
A (U(i),M).

c) Let i = i + 1.

Notice that the above technique is not guaranteed to find the global optimum. In fact,

we will argue empirically in the next section that it does not find a global optimum most

of the time.

Using the above approach we can find the optimum solution of rank k. While some

authors have fixed the value of k in advance and used the above algorithm to find the best

solution of rank k, we use above algorithm to find the best rank 1 solution and use this to

find the best rank k solution in a greedy manner. After finding the first U and M of rank

1 we subtract out UMT from5 R and run the same algorithm on the residue. We repeat

this k times to obtain a solution of rank k.

While this approach has the obvious advantages of being easier to code and having

more flexibility since that value of k need not be fixed in advance, it has an additional

advantage in that it can be easily modified to deal with the numerical instability described

in Section 4.7.

Adding Biases

While directly trying to factorize R using the approach described in the previous section

will work, we add a minor modification that helps improve the solution obtained.

The basic idea behind the LRA approach is of course that a good low rank approx-

imation exists. It follows that if by some modification of the data we can make this

5We restrict this of course to the known entries of R
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approximation better then the LRA will work better as well. A simple modification is the

removal of any biases from the data.

Intuitively, consider two users u1 and u2 such that u1 tends to give low ratings to all

movies even the ones he likes and u2 tends to give high ratings to all movies even the ones

he dislikes. So even if both happen to like the same movie, their rating could be different.

The same problem could exist for movies as well.

While many different ways of eliminating this bias have been tried, we do this by

make the rows and columns have zero mean as described below.

Let µ and ν be vectors of length n and m respectively such that the matrix R′ where

R′
i,j = Ri,j − (µi + νj) be such that the rows and columns of R′ add up to 0. Notice that

all operations are restricted to known entries of R. Also, notice that since the number

of unknowns is the same as the number of variables, a unique solution exists and can be

found by solving a matrix equation.

We alternate between finding factors of rank 1 and making the rows and columns have

mean zero. This way we build up a LRA of the matrix in a greedy manner.

The complete technique is shown in Algorithm 1. Note that many different variants

of LRA are used in practice and the techniques used by other authors may differ from the

one shown in Algorithm 1. But we believe that the drawback mentioned in Section 4.7

is shared by all of them. Finally, notice that while Algorithm 1 takes k as input, this is

not really necessary. The optimum value of k can well be determined based on the the

vectors µ(t), ν(t),U(t), and M(t) say by computing the prediction error on a test set, see

Section 4.7.
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Input: The Ratings Matrix R and some integer k.
Output: The Biased Low Rank Approximation of R with rank k.
/* The output consists of 4k vectors µ(t), ν(t),U(t),M(t), 1 ≤ t ≤ k. */
R(1) ← R;
for t=1 to k do

(R
′(t), µ(t), ν(t)) ← zeroMeanRowsAndCols(R(t));

/* µ(t) of length n and ν(t) of length m are such that R
′(t) where

R
′(t)

i,j = R(t)
i,j − (µ(t)

i + ν
(t)
j ) has row and column mean zero. Recall that all

operations are restricted to the known entries of R. See Section 4.6. */

(U(t),M(t)) ← bestRank1Approx(R′(t)) // See Algorithm 2

R(t+1) ← R
′(t) −

(
U(t)

(
M(t)

)T
)

;

/* Here U(t) and M(t) are treated as col vectors and all operations are restricted, as
before, to the known entries of R. Recall that U(t) has size n, M(t) has size m and
R is a n × m matrix. */

end
Algorithm 1: Biased Low Rank Approximation

Input: The Ratings Matrix R′ modified as described in Algorithm 1.
Output: Vectors U and M such that ER′

A (U,M) is a (local) minimum.

M(0) ← randomVector(m) // Random Vector of length m.

i ← 0;

/* Keep iterating until the decrease in the function is less than some pre-set threshold. */
while Progress towards minimum more than threshold do

U(i) ← argmin
U

ER′
A (U,M(i)) // See Section 4.6.

M(i+1) ← argmin
M

ER′
A (U(i),M);

i ← i + 1;
end
return (U(i−1),M(i))

Algorithm 2: Best Rank 1 Approximation.
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4.7 Of Minima, Local and Otherwise

We discuss the main problem with Algorithm 2 in this section. Recall that the Alternating

Least Squares technique used here is not guaranteed to find the global minimum. While

other more powerful (say Conjugate Gradient [She94] based) algorithms may well find

the global minimum, we believe the more pertinent question here is if the global minimum

matters at all.

Indeed, we claim that it does not. Let min
(U,M)

ER′
A (U,M) be the global minimum of

ER′
A . Then,

Claim 63. The function ER′
A (U,M) is very ill-conditioned in the sense that there are

many, quite different, local minima (U(i),M(i)), 1 ≤ i ≤ r, which are such that the

ER′

A (U(i),M(i)) ≈ min
(U,M)

ER′

A (U,M), 1 ≤ i ≤ r.

(a) (b) (c)

Figure 4.2: Three functions with different kind of minima. The global minimum in each
case is marked with a circle and other minima, if present, are marked with squares. The
function in (a) has only one minima which is also the global minimum. In this case,
finding the minimum is “easy” (relatively speaking) and a simple gradient descent will
do the job. In (b), the global minimum is clearly “better” (i.e., has a much lower function
value) that the local minima but it may not be easy to find it. In this case, it may help
to invest in a more computationally expensive algorithm to find the global minimum. In
(c) the local minima are “as good as” the global minimum and so there is not much to be
gained by finding it. This is the case described in Claim 63.

In other words, there are many possible contenders for optimal U and M. A simple

illustration of this case (for a one dimensional function) is shown in Figure 4.2. Under
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these circumstances we claim that investing in a more powerful/computationally intensive

algorithm is not of much help. Indeed, the Alternating Least Squares method described

in Algorithm 2 is quite sufficient to find these local minima. To deal with the multiplicity,

we propose a simple averaging based approach that works well in practice.

In Section 4.8, we give some empirical evidence in support of Claim 63.

Since there are multiple local minima each of which is “as good ” as the global one,

it may seem that just arbitrarily picking one of them might be sufficient. Indeed, to the

best of our knowledge all authors working on LRA have done exactly this. But we show

in Section 4.9 that accuracy of LRA can be significantly increased by dealing explicitly

with this multiplicity.

4.8 Ill-Conditioning in Real World Data

In this section we first provide some empirical evidence for Claim 63. For convenience,

we use a small subset of the NETFLIX data.

The details of the data set is given in Table 4.1. Among all users with 50 ratings

or more 40, 000 were first randomly sampled. Of these many rows (users) and columns

(movies) were dropped so that the density of known ratings was close to that of the orig-

inal data set. We also ensured that after this was done, every user had at least 17 ratings.

This data set was further split into two parts a Test set which contains exactly 10 rat-

ings from each user (chosen at random) and a Training data set which contains everything

else6.

The idea is to train the models using the Training set and check their efficacy on the

Test set. Notice that the Test and Training data are disjoint, i.e., no rating is present in

6Note that the original NETFLIX data set was partitioned in a similar manner. See www.
netflixprize.com
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both.

Number of Users (Rows) 26760
Number of Movies (Cols) 8845

Tr
ai

ni
ng Number of (known) Ratings 5705874

Density of Ratings 0.0241067
(Min, Average, Max) Ratings per User (7, 213.2, 4371)
(Min, Average, Max) Ratings per Movie (27, 645.09, 12581)

Te
st Ratings 267600 (10 per user)

(Min, Average, Max) Ratings per Movie (1, 31.8, 1417)

Table 4.1: The characteristics of the data set used to show evidence of multiple local
minima.

Given two sets of vector pairs L1 = (U(1),M(1)) and L2 = (U(2),M(2)) correspond-

ing to two local minima we need a way of determining if they are different. There are

many ways of doing this. For instance, since these are vectors, we could compute the an-

gle between U(1) and U(2) (and between the two M(i)) after normalizing them. But since

our real interest is the performance on the Test & Training data sets, we do the following:

Definition 64.

TrainingDiff(L1, L2) =

√
1

T

∑
Ri,j∈ Training Data

(
U

(1)
i M

(1)
j − U

(2)
i M

(2)
j

)2

where X
(i)
j is the jth element of vector X(i) and T is total number of ratings in the Training

data set. In other words TrainingDiff is the RMSE difference in approximation of the

training data. TestDiff is defined in a similar manner on the Test data set.

To have a baseline for judging the values of TestDiff and TrainingDiff , recall

that the goal of the NETFLIX contest was to obtain an RMSE of 0.8572 on the Test set

in the original data set. Also, as we describe in Section 4.9, our techniques enable us to

obtain a RMSE less than 0.8900. So a TestDiff or TrainingDiff value of 0.01 or

more can be considered “high” where as a value of around 0.0001 is considered “low”.
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For ease of comparison all numerical function values shown are normalized. In other

words we show
√

1
T
ER
A instead of just ER

A where T is number of ratings in the Training

set.

In each table below we show the differences between four different local minima.

The values above the diagonal are on the Training data (TrainingDiff ) and the ones

below are on Test data (TestDiff ). The vectors being compared are the local minima

obtained by Algorithm 2 for different values of t in Algorithm 1. In the terminology of

Algorithm 1, the minima are the output of Algorithm 2 run four different times (with

random start points) for different values of t. Notice that the effects of the multiple local

minima are negligible for low values of t but become quite significant as t increases.

Minima for t = 1.
Min 1 2 3 4 Func. Value

TrainingDiff
1 0 0.0000233977 0.00014336 0.000103278 0.885207
2 0.0000222078 0 0.000140455 0.000113472 0.885207
3 0.000125653 0.000123273 0 0.000175208 0.885207
4 0.0000916749 0.000103449 0.00015439 0 0.885207

TestDiff

Table 4.2: Local minima for t = 1. The (normalized) function value is the same and the
differences between the minima are all of the order of 0.0001 and so can be considered
“low”.

4.9 Stability in the Presence of Ill-Conditioning

In this section we describe a simple way of dealing with the Ill-Conditioning detailed

above.

The first question is of course if one needs to explicitly deal with this at all. Indeed,

to the best of our knowledge, this phenomenon has not been addressed in practice. But
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Minima for t = 2.
Min 1 2 3 4 Func. Value

TrainingDiff
1 0 0.000197014 0.00465571 0.00518868 0.868197
2 0.000181879 0 0.00453304 0.00502271 0.868197
3 0.00415142 0.00403386 0 0.00234874 0.868197
4 0.00463414 0.00447895 0.00204568 0 0.868198

TestDiff

Minima for t = 3.
Min 1 2 3 4 Func. Value

TrainingDiff
1 0 0.00611607 0.00685102 0.0137033 0.857469
2 0.00559149 0 0.00624819 0.00821366 0.857468
3 0.00685371 0.00566217 0 0.00936824 0.857469
4 0.0130176 0.00796279 0.00837535 0 0.85747

TestDiff

Minima for t = 5.
Min 1 2 3 4 Func. Value

TrainingDiff
1 0 0.00620409 0.00272794 0.104782 0.840448
2 0.00551914 0 0.00351568 0.101353 0.840444
3 0.00244566 0.0031107 0 0.10329 0.840446
4 0.0923895 0.0894177 0.0910847 0 0.840469

TestDiff

Table 4.3: Local minima for t=2, 3 and 5. Notice that the (normalized) function value is
almost the same but the differences between the minima increase with t.

we show (empirically) that addressing this can improve accuracy of the LRA.

Our approach is rather simple. We compute multiple local minima and average them

out. This modified version of Algorithm 1 is given in Algorithm 3. We do not modify

Algorithm 2. Notice that different invocations of Algorithm 2 in Algorithm 3 differ only

in the start vector M (0) which is randomly assigned. This random start point results in the

local minima
(
U(t,l),M(t,l)

)
being different.
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Minima for t = 10.
Min 1 2 3 4 Func. Value

TrainingDiff
1 0 0.092726 0.0602415 0.0158364 0.810196
2 0.0882396 0 0.0715442 0.0925134 0.810197
3 0.057659 0.071235 0 0.0579986 0.810221
4 0.0151036 0.0880427 0.0553639 0 0.810201

TestDiff

Table 4.4: Local minima for t = 10. The (normalized) function value is almost the same
but the differences between the minima are quite “high”.

Finally, note that while Algorithm 3 takes k and r as input they can also be determined

dynamically at run time.

Input: The Ratings Matrix R and integers k and r.
Output: The Stable Biased Low Rank Approximation of R with rank k.
/* The output consists of 2k(r + 1) vectors in total of which 2k are vectors

µ(t), ν(t), 1 ≤ t ≤ k and 2rk are vectors U(t,l),M(t,l), 1 ≤ t ≤ k, 1 ≤ l ≤ r. */
R(1) ← R;
for t=1 to k do

(R
′(t), µ(t), ν(t)) ← zeroMeanRowsAndCols(R(t));

/* µ(t) of length n and ν(t) of length m are such that R
′(t) where

R
′(t)
i,j = R(t)

i,j − (µ(t)
i + ν

(t)
j ) has row and column mean zero. Recall that all

operations are restricted to the known entries of R. See Section 4.6. */

for l=1 to r do
(U(t,l),M(t,l)) ← bestRank1Approx(R′(t)) // See Algorithm 2

end

R(t+1) ← R
′(t) − 1

r

(∑r
l=1

(
U(t,l)

(
M(t,l)

)T
))

;

/* Here U(t,l) and M(t,l) are treated as col vectors and all operations are restricted, as
before, to the known entries of R. Recall that U(t,l) has size n, M(t,l) has size m

and R is a n × m matrix. */
end

Algorithm 3: Stable Low Rank Approximation
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Figure 4.3: The RMSE of the output of Algorithm 1 and Algorithm 3 on the Test set.
Notice that the errors are comparable for small number of factors but that Algorithm 3
is more stable and has lower error as the number of factors increases. The lowest error
Algorithm 1 is 0.89370 with 22 factors while Algorithm 3 attains an error of 0.882839
with 95 factors.

We compare the results of Algorithm 1 and Algorithm 3 in Figure 4.3 where the

RMSE (over the Test set) of the output of each is shown. While the errors are comparable

for few factors, Algorithm 3 is clearly more stable and manages to obtain an error that is

lower by around 0.01, as the number of factors increases.

4.10 Conclusions

We explored the effects of Ill-Conditioning in real world data on the stability of LRA. We

showed that multiple local minima, each of which is “as good as” the global one, exist
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and came up with a simple technique to deal with this multiplicity.

Our technique is more stable and leads to lower prediction errors. It would be inter-

esting to combine this with the other Ensemble techniques that have been published.
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Chapter 5

CONVEXITY IN THE TOPOLOGICAL

AFFINE PLANE

5.1 Basic Definitions

The notion of a topological affine plane (TAP) A is most simply defined by means of one

of its standard models (see, e.g., [Gru72]): Consider a circle C∞ in the Euclidean plane;

its interior, int C∞, constitutes the set |A| of points of A. For each pair of antipodal

points on C∞, the interior of a simple Jordan arc joining the points (and not meeting C∞

anywhere else except at its endpoints) is called a pseudoline. Suppose we are given, for

each pair x, y of points of |A|, a unique pseudoline ←→xy containing x and y and depending

continuously on x and y in the Hausdorff metric. (Recall that two point sets lie within

distance d of each other in the Hausdorff metric if each point of either lies within distance

d of some point of the other.) Suppose further that any two of these pseudolines meet (and

necessarily cross) at exactly one point, or else that they share their endpoints on C∞, and

that their intersection depends continuously on the two pseudolines. (It can be shown that

this last condition follows as a consequence of the previous continuity assumption; see
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[Sal68] for a more thorough discussion.) Thus any finite collection of these pseudolines

forms what is commonly known as an arrangement; the TAP A can thus be thought of as

a two-parameter “continuous arrangement” of pseudolines. If we work in the closed disk

|A| ∪C∞, rather than in the open disk |A|, and identify antipodal points in C∞, the same

definitions give what is known as a topological projective plane.

In A, the terms pseudoray, pseudohalfspace, pseudotriangle, etc. all have the obvious

meaning.

We fix a parametrization of the circle C∞ by a variable θ running from 0 to 2π. If a

pseudoline in A is directed, we may then speak of its direction as the value of θ corre-

sponding to its terminal point. The angle from one directed pseudoline to another is the

length of the counterclockwise arc of C∞ from the first endpoint to the second, and if

x, y, z are three points in |A|, ∠xyz means the angle from −→yx to −→yz. Two pseudolines are

called parallel if their endpoints on C∞ coincide. Given a direction θ, we may therefore

speak of a parallel sweep having direction θ: choose any pseudoline not in direction θ,

and join each point on it with the point on C∞ having direction θ; by the continuity as-

sumption, this gives a continuously varying family of parallel pseudolines. In the same

way, we can speak of continuously rotating a pseudoline, or alternatively a pseudoray,

about a point x ∈ |A|.

If a directed pseudoline l meets a set Y and Y lies in the closed right pseudohalfplane

determined by l, we call l a left tangent to Y ; similarly for a right tangent.

The following facts about arrangements and topological affine planes will be used in

the sequel.

1. Every arrangement of eight or fewer pseudolines in a TAP A is stretchable, i.e.,

there is a homeomorphism of |A| with the Euclidean plane that maps the pseudolines to

straight lines [GP80]; this is not the case, in general, with arrangements of nine or more

84



pseudolines. (This fact is not used here in an essential way, but we invoke it occasionally

to make the situation easier to depict.)

2. There is a homeomorphism from the Euclidean plane to |A| taking each line to an

arc of a circle passing through two antipodal points of C∞. (The inverse of the mapping

(x, y) 7→ (
x

1 − x2 − y2
,

y

1 − x2 − y2
)

does this, for example.) This shows that the Euclidean plane is, in particular, a TAP.

3. Every arrangement of pseudolines can be extended to a TAP [GPWZ94]; see also

[Kal00].

For basic facts about pseudoline arrangements, see [Goo04] or [Gru72].

Given any two points x, y ∈ |A|, we can speak unambiguously of the pseudosegment

xy. As in the Euclidean plane, we may therefore call a set Y ⊂ |A| convex if x, y ∈ Y ⇒

xy ⊂ Y . Trivially, the intersection of convex sets is convex; this enables us to define, as

usual, the convex hull convS of a set S as the smallest convex set containing S, i.e., the

intersection of all the convex sets containing S.

This notion of convexity enjoys the same basic properties with respect to the under-

lying set of pseudolines that defines our TAP as ordinary convexity does with respect to

straight lines:

Proposition 65.

1. A ⊂ convA

2. A ⊂ B ⇒ convA ⊂ convB

3. conv convA = convA
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We also have

Proposition 66. If A and B are TAPs and f : |A| → |B| is a homeomorphism that maps

the pseudolines of A to those of B, then

1. X is convex in A⇒ f(X) is convex in B

2. x ∈ convX in A ⇔ f(x) ∈ convf(X) in B.

Proof: These both follow immediately from the definitions.

We add that Cantwell [Can74] takes a synthetic-geometric approach to some of the

same questions, and obtains several of the same results we do using different (and in some

cases more difficult) proofs.

5.2 The Separation Theorem

We begin by establishing the following basic result.

Theorem 67. Given disjoint compact convex sets X,Y in a topological affine plane, there

is a pseudoline l of the plane that separates X from Y .

The proof proceeds by a sequence of auxiliary results.

Lemma 68. If Y is a compact convex set and x /∈ Y , there is a pseudoline l through x

that misses Y .

Proof: Suppose every pseudoline through x met Y . Consider each pseudoray starting

at x. Its line meets Y , either on the side of the pseudoray or on the opposite side, but not

both (otherwise, by the convexity of Y , we would have x ∈ Y ). This defines a function
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fx : C∞ → {+,−} which, for the same reason, cannot have the same value on a pair

of antipodal points of C∞. Hence for some θ0 ∈ [0, 2π), we must have fx(θ) = + for a

sequence of directions arbitrarily close to θ0, and fx(θ) = − for another such sequence.

This means that there is a sequence of points yi with −→xyi in directions θi arbitrarily close to

θ0, and another such sequence y′
i with

−→
xy′

i in directions arbitrarily close to θ0 + π. By the

compactness of Y and the continuity of the pseudoline determined by a pair of points, we

therefore get points y0, y
′
0 ∈ Y with −→xy0 and

−→
xy′

0 pointing in opposite directions, which

again implies that x ∈ Y by the convexity of Y , a contradiction.

Lemma 69. If Y is a compact convex set and x /∈ Y , there is a unique left tangent

pseudoray −→xy from x to Y .

Proof: Rotate a pseudoray xθ in direction θ = 0 to 2π around x. Then xθ meets Y for

some θ = θ1 and, by Lemma 68, misses it for some θ = θ2. As we rotate counterclock-

wise from θ1 to θ2, we reach (by the compactness of Y ) a final direction θ0 in which there

exists a pseudoray xy0, before we lose this property. Then xθ0 is clearly a left tangent

pseudoray from x to Y .

The uniqueness follows from the fact that two pseudolines cannot meet twice.

Lemma 70. If X and Y are disjoint compact convex subsets of |A| with xi ∈ X and yi ∈

Y for i = 1, 2, then the pseudorays −−→x1y1 and −−→x2y2 cannot point in opposite directions.

Proof: Stretching the four pseudolines gives the situation depicted in Figure 5.1.

Since lines x1y1 and x2y2 are parallel, pseudosegments x1x2 and y1y2 would have to cross,

with their intersection therefore lying in both X and Y , contradicting the disjointness of

these sets.
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1

y1

2

x

x2y

Figure 5.1: Opposite directions.

Lemma 71. If a pseudoline l misses a compact convex set Y , and p is a point on l, we

can rotate l slightly in both directions around p so that the resulting pseudolines still miss

Y . The corresponding result holds if p is one of the endpoints of l on C∞.

Proof: Let δ = inf{dist(y, x) | y ∈ Y , x ∈ l}. Then δ > 0 by the compactness of Y .

If we rotate l in either direction around p so that the Hausdorff distance to l remains less

than δ, the result follows. (The proof is unchanged if x ∈ C∞.)

Lemma 72. If Y is a compact convex set and x /∈ Y , there is a pseudotriangle containing

x in its interior, all of whose sides (extended) miss Y , such that Y is contained in a region

bounded by only two sides of the pseudotriangle, suitably extended.

Proof: By Lemma 68, there is a pseudoline l through x missing Y . We may assume,

without loss of generality, that l is directed so that Y lies on its right. Choose points u and

v on l so that v < x < u (along l), as in Figure 5.2. By Lemma 71, we can rotate l slightly

around u, in the counterclockwise direction, so that the resulting directed pseudoline lu

still has Y on its right, and similarly we can rotate l slightly around v, in the clockwise

direction, so that the resulting directed pseudoline lv still has Y on its right. Let m be a

pseudoline parallel to l and lying to its left. Let p = lu ∩ lv, q = lu ∩ m, and r = lv ∩ m.

Then pqr is the desired pseudotriangle.
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Figure 5.2: Modifying a pseudoline missing Y to a pseudotriangle.

Lemma 73. Let Y be a compact convex set and l a pseudoline missing Y . For x ∈ l,

let f(x) be the direction of the pseudoray from x that is left tangent to Y . Then f is

a monotone mapping from l to C∞. The same conclusion holds if l passes through Y ,

provided f is restricted to the points of l lying on one side of Y . In both cases, the

mapping f is continuous.

Proof: Consider first the case where l misses the set Y altogether. Direct l so that

Y is on its left, and direct C∞ so that θ increases in the counterclockwise direction. We

claim that f : l → C∞ is then a monotone increasing function.

Suppose x1 < x2 on l, and let li be the left tangent from xi to Y for i = 1, 2. Stretching

l, l1, and l2 (Fact 1 above), we obtain the situation shown in Figure 5.3(a). If l1 did not

cross l2 to the left of l, the portion of l1 to the left of l would lie entirely below l2, hence

l1 could not be tangent to Y . Therefore f(x1) < f(x2).

A similar argument works in the case where l passes through Y and where x1 <

x2 on the same side of Y , as in Figure 5.3(b) (where x1 < x2 are both below Y ; the

corresponding argument works if they are both above).

Finally, suppose f(x0) = θ0, and suppose θ1 < θ0 < θ2, as in Figure 5.3(c). For

i = 1, 2, let xi be the intersecton of l with the (unique) right tangent li from θi to Y . (This
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makes li the left tangent from xi to Y .) Then by the above, f(x) lies between θ1 and θ2

for every x between x1 and x2 on l, so that f : l → C∞ is continuous.

l2

1l

l2

l

(b)

l

C

Y

(c)

1

2

l

1

x

x

Y

(a)

1

0

2

C 8
l

2l

2

1

x
2x
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θ
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x
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1
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l

x

x

1

x
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f(   )

f(   )

f(   )
f(   )

2

2

Figure 5.3: Monotonicity of tangent direction along a line.

Theorem 74. Let Y be a compact convex set. For x /∈ Y , let f(x) be the direction of

the pseudoray from x that is left tangent to Y . Then f is a continuous mapping from the

complement of Y to C∞.

Proof: Suppose x /∈ Y . By Lemma 72, there is a pseudotriangle pqr containing x

whose sides, ←→pq , ←→pr , and ←→qr , suitably extended, miss Y , with Y contained in the region

bounded by only (say) ←→pr and ←→qr , as in Figure 5.4(a). Suppose f(x) = θ0, and suppose

θ1 < θ0 < θ2. We must show that there is an open neighborhood of x that is mapped into

(θ1, θ2) by f .

Consider the pseudosegments xp, xq, and xr. For a real parameter t going from 0

to 1, move a point p(t) monotonically along segment xp from p to x, and — for each

value of t — consider the parallel translate of pseudoline ←→pq passing through p(t). The

latter intersects segment xq at some point: call it q(t). Now the parallel translate of

pseudoline←→pr and that of pseudoline←→qr passing through p(t) and q(t) respectively each

meet the pseudosegment xr (but not necessarily at the same point: that would require
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Y Y

p(t)

q

q(t)

r(t)

x

w
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Figure 5.4: Continuity of the left tangent to a fixed set Y .

Desargues’s theorem, which is generally false in a TAP!), say at points r1(t) and r2(t),

respectively. Let r(t) be the one of the these two points which lies closer to x along xr,

as in Figure 5.4(a).

Then by construction, and by the continuity both of a pseudoline as a function of a

point pair and of the intersection of two pseudolines as a function of the pseudolines, for

t sufficiently close to 1, the points p(t), q(t), r(t) will reach positions p′, q′, r′ with the

following properties, as in Figure 5.4(b) :

1. f(p′), f(q′), f(r′) ∈ (θ1, θ2)

2. x belongs to pseudotriangle p′q′r′

3. p′q′, p′r′, and q′r′ all miss Y , and Y lies in the region bounded by only p′r′ and q′r′

(see Figure 5.4(b)).
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Then given any point v inside the pseudotriangle p′q′r′, there is a pseudoline con-

taining v that passes through vertex p′, crosses pseudosegment
←→
q′r′ at a point w between

vertices q′ and r′, and misses the region containing Y , hence misses Y itself. By Lemma

73, we have, first, f(w) ∈ (θ1, θ2), and then, finally, f(v) ∈ (θ1, θ2).

We can now complete the proof of Theorem 67.

Proof: For each x ∈ X , consider the (unique) directed left tangent pseudoray lx from

x to Y (see Figure 5.5); it exists, by Lemma 69. This tangent has a direction θx. Since,

by Lemma 70, the existence of such a pseudoray precludes the existence of another such

pointing in the opposite direction, it follows that there is a direction θ0, 0 < θ0 ≤ 2π,

such that no lx has direction θ0. Let

Θ = {θ , θ0 − 2π ≤ θ < θ0 | lx has direction θ for some x ∈ X},

and let θ′ = sup Θ. Then, by the compactness of X and the continuity of θx as a function

of x (Theorem 74), there is an x0 ∈ X such that lx0 has direction θ′. It follows that lx0 is a

right tangent to X , since the existence of a point of X to its right would (as a consequence

of Lemma 73) contradict the fact that no direction in Θ exceeds θ′. This shows that X

and Y have a “right-left XY tangent” l, i.e., a common tangent that meets X on the right

before it meets Y on the left.

X

θ
x xl

Y

x

Figure 5.5: The left tangent from point x to set Y .
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Finally, to show the existence of a strict separator for X and Y , choose any point

p ∈ l strictly between l ∩ X and l ∩ Y , as in Figure 5.6; such a point must exist by the

compactness of X and Y . Rotating l slightly in the counterclockwise direction about p

will then produce a strict separator, by Lemma 71.

X
Y

p

Figure 5.6: A strict separator.

5.3 Some Theorems of Combinatorial Convexity

In this section we generalize a number of standard results in combinatorial convexity

to topological affine planes. An excellent single source for the original theorems is

[DGK63].

We begin with an extension of Radon’s theorem to a TAP.

Theorem 75. Any set S of cardinality at least 4 in a TAP A can be partitioned into two

subsets whose convex hulls meet.
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Proof: It is enough to prove this if |S| = 4. In that case, Fact 1 above allows

us to straighten the arrangement of the at most 6 pseudolines joining the four points of

S in pairs, and then an application of the standard version of Radon’s theorem in R2

immediately yields the result, by Proposition 66(2)

The usual proof of Helly’s theorem from Radon’s works in our situation:

Theorem 76. If {Xi}i∈I is a family of at least three convex sets in a TAP A with either I

finite or each set Xi compact, and if every three of the sets have a nonempty intersection,

then all the sets meet.

Proof: Suppose first that the index set I is finite, say I = {1, . . . , n}. We prove

the result by induction. It clearly holds for n = 3. Supposing n > 3, we let Ξj =

{Xi | i 6= j}. By induction hypothesis, the sets belonging to each family Ξj , j = 1, . . . , n,

contain a point xj . For each j, we have xj ∈ Xi for all i 6= j. Since n ≥ 4, we can

apply Radon’s theorem to the points x1, . . . , xn: they can be partitioned into two sets

{x1, . . . , xk} ∪ {xk+1, . . . , xn} such that there is a point x0 ∈ conv{x1, . . . , xk}∩ conv

{xk+1, . . . , xn}. But then by Proposition 65, we have x0 ∈ Xi for i = k + 1, . . . , n and

(respectively) x0 ∈ Xi for i = 1, . . . , k, so that the conclusion follows.

If I is infinite, but each Xi is compact, the result follows from the finite case, since

any collection of compact sets has the finite intersection property (if every finite collection

has a point in common, so does the entire set).

The generalization of Carathéodory’s theorem to TAPs requires a slightly more subtle

argument:

Lemma 77. If x, y1, y2, y3 are four distinct points in |A| such that the three angles

∠y1xy2, ∠y2xy3, and ∠y3xy1 are all at most π, then x ∈ conv (y1, y2, y3), and conversely.
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Proof: The situation is as shown in Figure 5.7(a). If, say, ∠y1xy2 = π, then y1, x, y2

are copseudolinear, in that order, so we are done. We may therefore assume that each of

the three angles is less than π. Suppose we had x /∈ conv (y1, y2, y3). Then by Lemma

68, there would be a pseudoline l through x missing conv (y1, y2, y3), as in Figure 5.7(b),

but then one of the three angles in question (∠y3xy1 in the figure) could not be less than

π.

For the converse, we need only observe that if, say, ∠y3xy1 > π, as in Figure 5.7(b),

then there is a pseudoline l through x with all of the points yi lying on the same side of l

(in the figure, start with y1x and rotate it slightly around x), so that x could not belong to

conv (y1, y2, y3).

(a)

x
y y
1

3

y2

y
y

y
1

2

3

x

(b)

l

Figure 5.7: x ∈ conv(y1, y2, y3).

Theorem 78. If X is a set of points in a TAP and y ∈ conv X , then there are points

x1, x2, x3 ∈ X such that y ∈ conv{x1, x2, x3}.

Proof: We assume that y 6∈ X as the result would be trivially true otherwise. Since

y ∈ convX we must have X 6= ∅. In fact, we can assume that X contains more than three

points as as the result follows immediately otherwise. Choose any point x ∈ X .

Let

ΘL = {θ, 0 ≤ θ < π | there is some z ∈ X with z to the left of −→xy and ∠zyx = θ}
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and

ΘR = {θ, 0 ≤ θ < π | there is some z ∈ X with z to the right of −→xy and ∠xyz = θ}.

Let θL = sup ΘL and θR = sup ΘR.

If θL + θR > π, we are done, by Lemma 77: see Figure 5.8.

R
L

x

y

θ
θ

Figure 5.8: θL + θR > π.

If θL + θR < π, then by Lemma 77 (converse) we have a contradiction to the as-

sumption that y ∈ convX (see Figure 5.9: the convex set shown there contains X but not

y).

L

x

y

R

θ
θ

Figure 5.9: θL + θR < π.

The only remaining case is where θL + θR = π. Notice first that if θL or θR is itself

equal to π, say the former, then either we are done if there is a point z ∈ X to the right of

−→xy, as in Figure 5.10(a), or else we have a contradiction to the fact that y ∈ convX , as in

Figure 5.10(b), where the convex set shown contains X but not y.
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(a) (b)

x

y
L

z

x

y
Lθ θ

Figure 5.10: θL = π.

So suppose finally that θL + θR = π, with both θL and θR > 0. Let l be the line

formed by the two rays in those directions. If there are points z1, z2 ∈ X on line l lying

on opposite sides of y, we are done. If not, say there is no point z ∈ X on one side of

y on l, as in Figure 5.11. Then y is not contained in the convex set shown, but this set

contains X , which again contradicts the hypothesis.

L

x

y

R

θ
θ l

Figure 5.11: θL + θR = π, θL > 0, θR > 0.

Notice that a similar argument gives us the existence of a supporting pseudoline at

any boundary point of a convex set in a TAP:

Theorem 79. If X is a convex set in a TAP A, and x is a boundary point of X , then there

is a pseudoline l through x with no point of X on one side of it.
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Proof: We may suppose X contains points other than x. Let y be such a point, and

consider the pseudoline ←→xy . If there were a point z ∈ X ∩←→xy lying on the other side of

x from y, as in Figure 5.12(a), then there could not be points of X on both sides of ←→xy ,

since otherwise x would be an interior point of X; hence in this case we are done. Let us

suppose, then that there is no point of X ∩←→xy lying on the other side of x from y, as in

Figure 5.12(b). Then, as in the proof of Theorem 78, let

ΘL = {θ, 0 ≤ θ < π | there is some z ∈ X with z to the left of −→yx and ∠zxy = θ}

and

ΘL = {θ, 0 ≤ θ < π | there is some z ∈ X with z to the right of −→yx and ∠yxz = θ}.

Let θL = sup ΘL and θR = sup ΘR. We cannot have θL + θR > π, since that would make

x an interior point of X . It follows that the pseudoline through x in direction (say) θL is

a supporting pseudoline for X .

x

y

u

z

vv

L

R

y

x

(a) (b)

θ

θ

Figure 5.12: Existence of a supporting pseudoline.

As a corollary of Carathéodory’s theorem, we obtain yet another basic fact about

convex sets in the setting of a TAP:

Corollary 80. If X is compact, then convX is also compact.
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Proof: Since X is bounded (i.e., bounded away from C∞), a parallel sweep in

three suitable directions yields a pseudotriangle T containing X . But the interior of T is

convex; this shows that convX , which is inside T , is also bounded.

To show that conv X is closed, we argue as follows. Suppose limn→∞ xn = x and

xn ∈ convX for every n. By Theorem 78, for every n, there are points x1
n, x2

n, x3
n ∈ X

such that xn ∈ conv(x1
n, x2

n, x
3
n). Since all the points x1

n belong to the compact set X , there

is a subsequence (x1
ni

) of (x1
n) converging to a point x1 of X , then there is a subsequence

(x2
nij

) of (x2
ni

) converging to a point x2 of X , and finally there is a subsequence (x3
nijk

)

of (x3
nij

) converging to a point x3 of X . Since xn ∈ conv (x1
nijk

, x2
nijk

, x3
nijk

) for every

n, we must have x ∈ conv(x1, x2, x3), otherwise by the separation theorem for a point

and a convex set in a TAP, there would be a pseudoline strictly separating x from conv

(x1, x2, x3), and we could not have xn ∈ conv(x1
nijk

, x2
nijk

, x3
nijk

) for all n.

A second corollary is a generalization of Kirchberger’s theorem to TAPs:

Theorem 81. If X and Y are compact sets of points in a TAP A with the property that

given any four points in their union there is a pseudoline of A separating those in X from

those in Y , then there is a pseudoline of A separating all of X from all of Y .

Proof: Suppose not. Since conv X and conv Y are compact by Corollary 80, it

follows from Theorem 67 that there is a point z ∈ conv X∩ conv Y . By Theorem 78,

there are points x1, x2, x3 ∈ X and y1, y2, y3 ∈ Y such that z ∈ conv (x1, x2, x3) and

z ∈ conv (y1, y2, y3). For convenience, straighten the six pseudolines ←−→x1x2,
←−→x1x3,

←−→x2x3,

←→y1y2,
←→y1y3,

←→y2y3. This yields two intersecting triangles with vertices x1, x2, x3 and y1, y2, y3

respectively. If any xi were contained in triangle y1y2y3 or any yi in triangle x1x2x3, as

in Figure 5.13(a), this would contradict the hypothesis. Since the interiors of the two

triangles meet, however, it follows that a side of one must intersect a side of the other, as
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in Figure 5.13(b), again contradicting the hypothesis.

x1

y1

x y1 2

3

y2

(a) (b)

x2 y3

x3

y1

y
x3

x2

z

Figure 5.13: Kirchberger’s theorem.

Yet another corollary is the following result, which allows us to define extreme points

of convex sets in a TAP, and to generalize to TAPs the planar case of the Minkowski

theorem on extreme points (see, e.g., [Sch93], p.276).

Proposition 82. If X is a convex set in a TAP A and x ∈ X , the following are equivalent:

1. X \ {x} is convex

2. There are no points y, z ∈ X \ {x} such that x lies between y and z.

Proof: (1) ⇒ (2) is clear, since if x were between y and z then X \ {x} would not

be convex.

Conversely, suppose X \ {x} is not convex. Since X is, we have x ∈ conv(X \ {x}).

Therefore, by Theorem 78, there are points w, y, z ∈ X \{x} such that x ∈ conv(w, y, z).

If x lies in the boundary of the pseudotriangle conv (w, y, z), then x ∈ (say) conv (y, z),

and we are done. Otherwise, x lies in the interior of the pseudotriangle, as in Figure 5.14.

Consider any pseudoline l through x. It meets the sides of the pseudotriangle in two

points — either one of w, y, z plus another point v on one of the sides of the pseudotrian-

gle, or else in two points u, v lying on different sides of the pseudotriangle, say u on wy

and v on wz. In each case, however, we get a contradiction to condition (2).
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v

x
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Figure 5.14: Minkowski’s theorem on extreme points.

If the situation in Proposition 82 holds, we say that x is an extreme point of the convex

set X .

Theorem 83. A compact convex set X in a TAP A is the convex hull of its extreme points.

Proof: Take a point x ∈ X . Choose a pseudoline l through x. Let l meet the

boundary ∂X in two points, y and z, lying on opposite sides of x. Consider a supporting

pseudoline to X at y; it exists by Theorem 79. The pseudosegment of ∂X containing y

has extreme endpoints p and q (one or both of which may be y itself). Similarly for z:

extreme endpoints r and s. Then x ∈ conv(p, q, r, s).

As a final corollary to Carathéodory’s theorem we get the so-called anti-exchange

principle for convex sets in a TAP:

Theorem 84. If S is a compact convex set in a TAP A with x, y /∈ S but y ∈ conv

(S ∪ {x}) and x ∈ conv(S ∪ {y}), then y = x.

Proof: It follows from Theorem 78 plus the hypothesis x, y /∈ S that there are

points s1, s2, s3, s4 ∈ S such that y ∈ conv (s1, s2, x) and x ∈ conv (s3, s4, y). Let l be

a pseudoline (strictly) separating x from S. It follows that l (strictly) separates y from S

as well, since otherwise the entire set conv(S ∪ {y}) would lie in the (closed) halfplane

determined by l that does not contain x, so that x could not lie in conv(S ∪ {y}).
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As a consequence of Fact 1 above, we may assume that the seven pseudolines con-

sisting of l plus the sides of the pseudotriangles s1s2x and s3s4y are straight, and that A

is the Euclidean plane. Assuming y 6= x, this gives the situation depicted in Figure 5.15.

Since x is in triangle s3s4y, the distance from x to l must be less than the distance from

y to l. But the reverse is true for the corresponding reason, and this gives a contradiction.

s
s

s

s

x

y

l

1
2

3

4

Figure 5.15: Anti-exchange.

We remark that Theorem 84 can also be proven without recourse to the Euclidean

plane, by simply considering the order of points along the directed pseudoline −→xy.

5.4 Conclusions

The reader may wonder why we have extended the standard convexity theorems only in

dimension 2. What about topological affine d-spaces? The reason is simply that there are

none, besides the standard Euclidean ones. It has been known for well over a century (see

[Hil10], for example) that as soon as the dimension is 3 or more, the standard axioms of

geometry imply Desargues’s theorem; it follows from this that the space in question is

isomorphic to the usual Euclidean d-space [CK78]. Thus it is only in dimension d = 2,

where nonstretchable pseudoline arrangements proliferate, that non-Euclidean topologi-

cal affine d-spaces can exist.
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