
Abstractions for In-memory Distributed Computation

by

Russell Power

A dissertation submitted in partial fulfillment

of the requirements for the degree of

Doctor of Philosophy

Department of Mathematics

New York University

May 2014

Professor Jinyang Li

c© Russell Power

All Rights Reserved, 2014

Abstract

The recent cloud computing revolution has changed the distributed computing landscape,

making the resources of entire datacenters available to ordinary users. This process has been

greatly aided by dataflow style frameworks such as MapReduce which expose simple model

for programs, allowing for efficient, fault-tolerant execution across many machines. While the

MapReduce model has proved to be effective for many applications, there are a wide class of

applications which are difficult to write or inefficient in such a model. This includes many familiar

and important applications such as PageRank, matrix factorization and a number of machine

learning algorithms. In lieu of a good framework for building these applications, users resort to

writing applications “by-hand”, using MPI or RPC, a difficult and error-prone construction.

This thesis presents 2 complementary frameworks, Piccolo and Spartan, which help program-

mers to write in-memory distributed applications not served well by existing approaches.

Piccolo presents a new data-centric programming model for in-memory applications. Unlike

data-flow models, Piccolo allows programs running on different machines to share distributed,

mutable state via a key-value table interface. This design allows for both high-performance and

additional flexibility. Piccolo makes novel use of commutative updates to efficiently resolve write-

write conflicts. We find Piccolo provides an efficient backend for a wide-range of applications:

from PageRank and matrix multiplication to web-crawling.

While Piccolo provides an efficient backend for distributed computation, it can still be some-

what cumbersome to write programs using it directly. To address this, we created Spartan.

Spartan implements a distributed implementation of the NumPy array language, and fully sup-

ports important array language features such as spatial indexing (slicing), fancy indexing and

broadcasting. A key feature of Spartan is its use of a small number of simple, powerful high-level

operators to provide most functionality. Not only do these operators dramatically simplify the

design and implementation of Spartan, they also allow users to implement new functionality with

ease.

We evaluate Piccolo and Spartan on a wide range of applications and find that they both

perform significantly better than existing approaches.

iii

Contents

Abstract . iii

List of Figures . viii

List of Tables . ix

List of Listings . x

1 Introduction 1

1.1 Piccolo . 7

1.2 Spartan . 8

1.3 Contributions . 10

2 Piccolo Design 12

2.1 Overview . 12

2.2 Programming Model . 13

2.2.1 Program structure . 13

2.2.2 Controller Interface . 13

2.2.3 Table interface and semantics . 15

2.2.4 Expressing locality preferences . 17

2.2.5 User-assisted checkpoint and restore . 17

2.2.6 Putting it together: PageRank . 18

2.3 System Design . 20

2.3.1 Load-balanced Task Scheduling . 22

2.3.2 Fault Tolerance . 23

iv

2.4 Implementation . 25

3 Piccolo Evaluation 26

3.1 Applications . 26

3.1.1 Distributed Web Crawler . 26

3.1.2 k-means . 28

3.1.3 n-body . 28

3.1.4 Matrix Multiplication . 29

3.2 Overview . 29

3.3 Test Setup . 30

3.4 Scaling Performance . 30

3.5 EC2 . 31

3.6 Comparison with Other Frameworks . 32

3.7 Work Stealing and Slow Machines . 35

3.8 Checkpointing . 36

3.9 Distributed Crawler . 37

4 Spartan Design 40

4.1 Overview . 40

4.2 Motivation . 41

4.3 Array Language Features . 42

4.4 Challenges . 44

4.5 Overall Approach . 45

4.6 Detailed Design . 47

4.6.1 Distributed Arrays . 47

4.6.2 Programming Model . 48

4.6.3 Lazy Evaluation . 48

4.6.4 High-level Operators . 49

4.6.5 Optimization . 51

4.6.6 Backend . 52

4.6.7 Implementing High-level Operators . 55

v

4.7 Implementation . 57

5 Spartan Evaluation 58

5.1 Test Setup . 58

5.2 Micro-benchmarks . 59

5.3 Effect of Optimizations . 61

5.4 Applications . 62

5.4.1 Linear Regression . 62

5.4.2 Black-Scholes . 62

5.4.3 k-means . 63

5.4.4 Price-change Calculation . 65

5.4.5 PageRank . 66

5.4.6 Convolutional Neural Network . 67

5.4.7 Matrix Factorization . 67

6 Related Work 71

6.1 Piccolo . 71

6.2 Spartan . 74

7 Conclusion 76

Bibliography 78

vi

List of Figures

2.1 Master-worker interaction during a Piccolo program. 21

3.1 Scaling performance (fixed default input size) . 31

3.2 Scaling input size. 32

3.3 Scaling input size on EC2. 33

3.4 PageRank and k-means in Hadoop and Piccolo (fixed default input size). 34

3.5 Runtime of matrix multiply, scaled relative to MPI. 35

3.6 Effect of Work Stealing and Slow Workers . 36

3.7 Checkpoint overhead scaled relative to without checkpointing. 37

3.8 Expected scaling for large clusters. 38

3.9 Crawler throughput . 39

4.1 Spartan System Design . 46

4.2 Linear Regression DAG . 48

5.1 Slicing Performance . 59

5.2 Stencil Performance . 60

5.3 Matrix Multiplication Speedup . 60

5.4 Performance of Black-Scholes with Optimizations 61

5.5 Scaling Performance for Linear Regression vs. Spark 63

5.6 Scaling Performance for Black-Scholes . 64

5.7 Scaling Performance for k-Means . 64

vii

5.8 Scaling Performance for Price Change computation 66

5.9 Scaling Performance for PageRank . 67

5.10 Scaling Performance for Convolutional Neural Network 68

5.11 Netflix Matrix Factorization . 69

viii

List of Tables

3.1 Application input sizes . 30

4.1 High-level operators . 49

4.2 Example applications of operators . 50

5.1 Application input sizes . 62

ix

Listings

1.1 PageRank algorithm . 3

1.2 DSM PageRank Implementation . 4

1.3 MapReduce PageRank Implementation . 5

1.4 Sample Array Program . 10

2.1 Controller Interface . 14

2.2 Shared Table Interface . 15

2.3 Accumulator Interface . 16

2.4 PageRank Implementation . 19

3.1 Snippet of crawler implementation . 27

4.1 Spread Prediction Example . 41

4.2 Linear Regression . 47

4.3 Backend API . 53

4.4 Map Implementation . 56

4.5 Reduce Implementation . 56

4.6 Slice Operator Implementation . 56

5.1 Black-Scholes . 63

5.2 Spartan k-Means Implementation . 65

5.3 Price fluctuation . 65

5.4 Spartan PageRank Implementation . 66

5.5 Convnet Forward Propagation . 68

5.6 Matrix Factorization Implementation . 70

x

1
Introduction

Distributed computing – leveraging large numbers of machines to solve problems – is no longer

a niche application. Publicly available services such as Amazon EC2 and Google’s Compute

Engine allow users to effectively rent hundreds or thousands of machines for short periods of

time. This is a radical change: even 10 years ago, distributed computing was the exclusive

domain of large software companies, government research labs and well-financed universities.

Programmers can now leverage these machine resources to to speed up their applications or to

run them on more data.

Of course, having access to machines takes us only so far: programmers also need to write

code which uses these machines to solve their problem. Unfortunately, programming distributed

applications is notoriously difficult. Developers must deal with a large number of challenges,

1

including:

• Coordination. Data and computation must be partitioned across machines to maximize

effiency. As accessing information from a remote machine is orders of magnitude slower

than reading local data, care must be taken to minimize communication.

• Synchronization. Programming distributed systems requires handling what amounts to

“multi-threading on steroids”: updates to shared data from thousands of machines must

be synchronized efficiently and correctly.

• Hardware failures. Individual machines and datacenter networks are reliable, but when

running on thousands of machines, failures are frequent. For long running computations,

some mechanism must be provided to ensure that a single machine failure does not result

in the entire computation being restarted.

• Slow machines. Even in a datacenter where every machine is theoretically identical, pro-

grammers must account for some machines running slower than others. This is often due to

other processes sharing the machine, but it can also be the result of unexpected hardware

defects. 1

To address the difficulties of writing distributed applications, a variety of distributed computation

systems have been created. These systems allow programmers to write code for a simple model

of execution; the system translates operations on the model to actually run on a cluster of

machines. The goal of any of these systems to insulate users from the vagaries of programming

“raw” distributed systems, while at the same time offering reasonably high performance. These

systems can be divided into two main groups: distributed shared memory (DSM) and dataflow.

DSM is the first distributed programming model to arise, and it continues to be actively

researched; modern implementations include UPC [33], Chapel [24] and X10 [28]. (We include

key-value models such as Linda and JavaSpaces in the DSM category). DSM models all provide a

mechanism for starting new processes, and allow processes to communicate using a shared address

space. Intuitively, these models extend the concept multi-threading, frequently seen on a single

1A frequent culprit is overheating, which causes CPU’s to slow down to avoid damage. As an example of a more
difficult case: the author has personally seen an issue where writing to certain memory locations triggered a CPU
bug which disabled caching. This would (seemingly at-random) cause programs to run an order of magnitude
slower.

2

machine; enabling “threads” to be run on many machines in parallel. Modern implementations

take into consideration issues such as locality of reference (reading/writing from a local machine

is an order-of-magnitude faster than from a remote machine).

Dataflow frameworks (popularized by MapReduce [36] and its open-source implementation

Hadoop [1]), eschew the idea of any direct communication between processes. (This is unlike

DSM, where processes can interact with one another via the shared address space). Instead,

dataflow frameworks are organized around sparse (key-value) collections. To manipulate these

collections, a small number of data parallel operators such as map, shuffle, and reduce are

supplied. Programmers combine applications of these data-parallel operators to transform their

data and compute a desired result.

Given the large number of competing frameworks available, we ned some way to compare

models with one another: what makes a distributed frameworks “good”? To begin, we need

to consider a problem we want to solve; a system may be efficient and easy to use for one

problem (running grep across a million web pages), but bad for another (computing the Cholesky

factorization of a matrix). For our purposes, we consider implementing the PageRank algorithm

for ranking web pages, as shown in Listing 1.1.

graph is a list of pages, each of which contains a number of links

pages are identified by a 64 bit number

def pagerank(graph):

current = random(graph.size)

while not converged:

next = [0...]

for page in graph:

for link in page:

next[link] += current[page.id] / page.num_links

swap(current, next)

return current

Listing 1.1: PageRank algorithm

PageRank computes a rank for each web page in the graph and attempts to assign higher

ranks to “good” pages2.

This algorithm is fairly simple to represent in a single threaded context; this gives us reason

to hope that a distributed version will not be too complicated (at least conceptually). It also

2The definition is recursive: a good page is a one that has many links from other good pages. (The result of
the PageRank computation is actually the eigen-vector of the graph matrix.)

3

exhibits features which should make it relatively easy to parallelize: it runs over the entire graph

of data at a time, and updates should be spread out across all pages (assuming a non-adversarial

graph). What happens when we try to write this application using our existing models?

Let’s consider how we might write this program using a DSM model. At first glance, this seems

straightforward: we store our graph, current, and next collections in our shared memory

space, and have each process iterate over some disjoint portion of the graph, accumulating ranks

into the next array. We ignore the complication of partitioning the data to minimize remote

reads (all modern DSM systems support this in some fashion)3. Our version of this application

look like Listing 1.2.

graph, current, and next are stored in a shared address space

def dsm_pagerank():

while not converged:

next.clear()

forall(pages p in graph):

for link in p:

next[link] += current[p.id] / p.num_links

swap(current, next)

return current

Listing 1.2: DSM PageRank Implementation

Here we are using the forall operator to run our inner loop in parallel across our graph.

This implementation looks good, but it is hiding a critical problem. Consider the following line

of our code:

next[link] += current[p.id] / p.num_links

If we expand the +=, we see we are doing a read and a write:

next[link] = next[link] + current[p.id] / p.num_links

This line has two problems. First, our process is reading from an effectively random mem-

ory location, virtually ensuring we have to talk to a remote machine to fetch the value of

next[link]. Second, many processes may be updating the value of next[link] simulta-

neously; without some form of synchronization, these updates will conflict and our computation

will be incorrect.

3 In a typical system, page identifiers are sparse: they are spread out across the address space. To handle this,
we must use hash maps or a similar structure to manage our rank data. Coordinating updates to such a data
structure across many processes is both slow and nightmarishly complex. This disqualifies most DSM systems
(including X10 and UPC) from being used for our problem. Some DSM systems (Linda, Javaspaces, and Chapel)
do support hashmaps as a builtin structure, so we will assume we are using such a model.

4

On a local machine, we can resolve these issues by either locking the next array to protect

the read and write, or using an atomic operation such as atomic_add to update the value

in-place. Most DSM models offer similar operations, but the problem is that these primitives

no longer scale in a distributed context. On a single machine, locking or atomic operations are

resolved at the level of a the CPU cache, with latencies under 10 nanoseconds. In a distributed

system, these operations require network communication between hosts with a minimum latency

of 2 microseconds: several orders of magnitude slower4. These issues effectively bottleneck the

inner loop of our application, making it impossible to scale efficiently5.

DSM frameworks struggle to implement PageRank efficiently. By contrast, using a dataflow

model we can write our PageRank computation in a relatively elegant and performant fashion.

This is illustrated by the (simplified) implementation shown in Listing 1.3.

graph, current and next are stored on a distributed file system

def mr_pagerank():

while not converged:

joined = join(graph, current)

output an update for each link in the graph

updates = map(joined,

fn(page, pr):

for link in page:

yield link, current[page.id] / p.num_links

)

shuffle so that all updates for a given page are together

grouped = group_by_key(updates)

sum together all of the updates for a page

next = reduce(updates, fn(page, updates): (page, sum(updates)))

write out our data so we can read it for the

next iteration

next.write_to_disk()

Listing 1.3: MapReduce PageRank Implementation

Note that the use of the data parallel operators completely hides the difficulty of handling

concurrent updates: the reduce operator simply manages this for us internally. While this im-

plementation seems more scalable than our attempt with DSM, we still have a problem. Dataflow

systems like MapReduce require that data be written back out to a distributed file system before

4This number is for a high-performance network (e.g. Infiniband). On a more common ethernet based network,
latencies are another order of magnitude higher.

5Technically, programmers could manually buffer updates using local memory, and exchange data manually
between workers at fixed intervals. But at this point, our model isn’t really saving us any effort versus implementing
our application by hand.

5

it can be used. In this case, we must write our next collection out after each iteration. This

forces us to serialize and replicate our data to disk, which turns out to be prohibitively expensive

relative to the cost of actually computing the new ranks6.

The skeptical reader will likely be thinking that our PageRank application has been carefully

chosen and is exceptional in some way. If so, we needn’t worry about the fact that our current

models don’t help with writing it: we can simply implement it manually once, and use our

framework of choice for other applications. Unfortunately, PageRank is actually emblematic of

an entire class of important applications, including:

• Matrix factorization algorithms like Singular Value Decomposition (SVD) and Principal

Component Analysis (PCA).

• Eigen-vector computation (e.g. PageRank)

• Many machine learning algorithms, including regression, neural networks, clustering and

nearest neighbors.

• n-body simulation

• Continuously running programs, such as web crawlers.

These applications share 3 properties which distinguish them:

• State fits in memory. We can store the mutable state of our application in the total memory

available on our cluster. This implies that serializing data can be avoided while processing.

• Iterative or continuous operation. As these applications require many passes over a data

set (or run perpetually), the overhead of serializing data between iterations is an important

performance concern.

• Concurrent updates to state. Each of these applications requires multiple processes to make

updates to shared state. For correctness, we need some way of efficiently synchronizing these

updates.

6Since the time the work in this thesis was published, other systems have addressed some, but not all, of the
limitations of dataflow frameworks. We discuss this more in Section 6.

6

A system which can efficiently model these types of operations would allow us to implement

any of the above applications easily. In this thesis, we present two complementary approaches

which dramatically simplify writing these applications. We first present Piccolo, a framework for

distributed in-memory applications. Piccolo combines features from dataflow frameworks and

DSM, allowing programmers to efficiently implement applications like our PageRank example

above. The Piccolo model provides allows programmers to create in-memory key-value tables and

introduces the concept of “accumulators” which allow concurrent updates without the need for

expensive locking or atomic operations. We demonstrate how Piccolo can be used to implement

a variety of in-memory distributed applications efficiently.

Second, we present Spartan, a distributed array language implementation. Spartan closes

the “semantic gap” between the Piccolo interface and the type of code users want to write. It

provides a distributed implementation of the popular NumPy [64] array language extension to

Python. Spartan uses a number of techniques including lazy evaluation, high-level operators and

expression graph optimization, to efficiently execute high-level array language applications. We

used Spartan to implement a variety of array programs from machine learning and finance, and

show that it performs competitively with existing solutions while offering an easy-to-use interface.

1.1 Piccolo

We designed Piccolo to address the limitations of existing DSM and dataflow frameworks for

writing in-memory computations. Piccolo extends the basic DSM model, allowing users to create

one or more typed, key-value tables which are used to share data. Tables are partitioned across

machines in a cluster; to help minimize communication, users can control the partitioning by

providing a partitioning function. Parallelism in Piccolo is provided via kernel functions : these

are user defined functions which are executed in parallel on each partition of a table. Kernel

instances access data and communicate with one another by reading and writing to tables.

Piccolo tables support the usual (put, get, remove) interface, but also add a new method:

update. The update method, combined with a user-defined accumulators, enables Piccolo to au-

tomatically combine concurrent updates for the same key (similar to reduce functions in MapRe-

duce [36]). The use of accumulators eliminates the need for fine-grained synchronization for

7

many applications, which as we described above, is a critical performance limitation in other

DSM systems.

In addition to the table interface described above, the Piccolo runtime supports dynamic

load-balancing of data, even while applications are running, and provides a global checkpoint/re-

store mechanism to recover from machine failures. The Chandy-Lamport snapshot algorithm [26]

is used to generate a consistent snapshot of the execution state without pausing active compu-

tations. Upon machine failure, Piccolo recovers by re-starting the computation from its latest

snapshot state.

We show that Piccolo can be used to write natural and efficient implementations of a variety

of applications, like linear regression, k-means computation, n-body simulation, and PageRank.

Piccolo also enables online applications, such as a distributed web crawler, that require immediate

access to modified state; a type of operation which is simply not available in dataflow based

systems.

Our experiments have shown that Piccolo is fast and provides excellent scaling for many ap-

plications. For example, computing a PageRank iteration for a 1 billion-page web graph takes

only 70 seconds on 100 EC2 instances (10 times faster than an optimized Hadoop implementa-

tion), and a distributed web crawler implemented in Piccolo easily saturates a 100 Mbps internet

uplink when running on 12 machines.

1.2 Spartan

Piccolo provides a flexible, efficient platform suitable for in-memory applications. Never-

theless, writing a Piccolo program involved a non-trivial amount of work to define tables and

accumulators, and manually write kernels. The cumbersome nature of writing to the raw backend

is not limited to Piccolo – we see it with MapReduce style systems as well. One approach taken

by many projects is to design a simpler or higher-level language interface which is then compiled

down to a MapReduce core. Examples of this include Pig [66], Spark [93], Scalding [87] and

DryadLINQ [92].

While a similar approach was not unreasonable for Piccolo, we felt it was more promising

to start from the other direction. That is, rather than design a language around our backend,

8

could we take an existing, popular language and use a Piccolo style backend to make an efficient

distributed implementation?

As it turns out, a candidate language exists and is widely used: NumPy [64]. NumPy is

a array language extension to the Python programming language, and borrows heavily from

the syntax and conventions of the popular Matlab commercial language. Array languages rely

heavily on intrinsic operations which process entire arrays at a time – an effective source of

implicit parallelism. NumPy does not have a distributed implementation (despite some partial

attempts [35]), and it is widely used for exactly the type of iterative, non-trivial applications we

are interested in.

Implementing a distributed version of an array language such as NumPy presents some in-

teresting challenges. First, NumPy is not a small language: it contains well over 100 builtin

operations for examining array contents (slicing, equality comparisons isnan, etc), comput-

ing aggregate statistics (sum, min, max, mean, mode) and selecting out values of interest (where,

nonzero, argmin, argmax). Writing Piccolo implementations of all of these operators by-hand

would be immensely time-consuming. To avoid this, we need some way to encapsulate (abstract?)

common patterns (mapping, filtering, reducing, etc.), and re-use them to simplify writing oper-

ations.

Second, idiomatic array programs generate large numbers of expensive temporary variables if

they are not optimized. While it is a minor problem for local programs, in a distributed system

is an larger issue, as constructing even small arrays requires multiple network round-trips. For

instance, consider a simple function which computes a an arbitrary statistic over 2 arrays shown

in Listing 1.4. A näıve implementation of such a program would evaluate each expression in

isolation (first evaluate x + y, then squaring, then evaluating x - y, etc). This results in 4

expensive temporary arrays being created. An optimized implementation should combine all of

the expressions into a single map over the x and y arrays.

Finally, many users rely on extensions to NumPy itself; most of these extensions are written

in a language such as C or Fortran and manipulate the internal state of NumPy arrays. While

automatically converting such code to run on a distributed implementation is beyond our scope,

we still need to provide some mechanism for users to add new functionality to the system, ideally

in a way which cooperates with existing methods and optimizations. An accumulative Piccolo-

9

each operation actually element-wise over arrays.

e.g. "x + y" is equivalent to:

z = new_array(length(x))

for i in 0 -> length(x):

z[i] = x[i] + y[i]

def compute_stat(x, y):

return sqrt((x + y) ** 2 / (x - y))

Listing 1.4: Sample Array Program

style backend is used to store distributed array data, execute parallel operations and coordinate

updates to arrays.

Spartan uses three techniques to address these challenges and provide an efficient distributed

implementation of NumPy: lazy evaluation, high-level operators and a comprehensive set of

expression optimizations.

Instead of directly evaluating operations such as a+b, Spartan uses lazy evaluation to capture

users intentions in the form of an expression graph. The expression graph is then lowered to a

comprehensive set of high-level operators. These operators encapsulate common array operations

such as mapping, reducing, slicing and filtering and dramatically simplify the implementation of

common builtin functions. They serve another important purpose as well, as they enable array

programs to be effectively optimized, which turns out to be critical for performance.

After the expression graph has been converted to use the high-level operators, a number

of optimizations can be applied. Optimizations such as map and reduce fusion and common-

subexpression elimination are used to eliminate expensive temporary values. A final optimization

pass enables Spartan’s integration with Parakeet [77], an optimizing compiler for single-machine

NumPy programs. This integration allows Spartan programs to run seamlessly on GPU acceler-

ators and run faster, even on a single machine, than their NumPy equivalents.

Our evaluation of Spartan shows that it can provide the same raw performance as Piccolo

(up to 5 times faster than existing in-memory frameworks such as Spark) while presenting users

with a familiar and easy-to-use interface.

1.3 Contributions

The contributions of this thesis are:

10

• The development of the Piccolo computation framework, which provides a flexible key-value

storage system with support for accumulators, dynamic load-balancing and an efficient

checkpointing system.

• The design and implementation of the Spartan distributed array language. Spartan com-

bines the use of lazy evaluation, high-level operators, a number of optimization passes and

a Piccolo-like accumulative backend to provide a complete and efficient implementation of

the core of NumPy array language.

The remainder of this thesis is organized as follows: in Chapter 2, we describe the design

and implementation of the Piccolo distributed computation framework. Chapter 3 demonstrates

Piccolo’s performance on a number of applications. Chapter 4 gives a brief introduction to array

languages, and details the design of the Spartan distributed array language. Chapter 5 shows

Spartan’s performance on a number of common applications. In Chapter 6 we describe related

work. We conclude with a review of the presented work.

11

2
Piccolo Design

2.1 Overview

Piccolo was designed to address the limitations we found in existing frameworks when it

came to writing distributed in-memory computations, such as PageRank, k-means and n-body

simulation. In particular, we desired the following features:

• Applications should be able to access and manipulate shared state at all times during a

computation.

• Multiple processes must be able to update a common data item in an efficient and consistent

manner.

12

• Users should be able to specify locality policies to minimize remote data access.

• The system should provide fault-tolerance with a minimum of user effort.

To accomplish these goals, Piccolo combines ideas from both DSM and data-flow frameworks.

In Piccolo, users store and access application data using typed, key-value tables. These tables are

split into a number of partitions, which are then distributed across all of the machines involved in

an application. Partitioning can be controlled by the user by specifying a partition function; this

allows users to ensure locality of reference for data. Piccolo provides accumulators (similar to

reducers in data-flow systems) as a mechanism for synchronizing updates to shared table entries.

Finally, Piccolo provides an efficient checkpointing mechanism which requires little user effort to

use.

The remainder of this chapter details the design and implementation of the Piccolo framework.

Section 2.2 describes the programming provided for users, this is followed by the design of the

Piccolo runtime (Section 2.3), and a brief description of our implementation (Section 2.4).

2.2 Programming Model

2.2.1 Program structure

Application programs written for Piccolo consist a control function which is executed a single

machine, and kernel functions which are executed concurrently on many machines. Control

functions create shared tables, launch tasks (instances of a kernel function which run in parallel),

and perform global synchronization. Kernel functions consist of sequential code; kernel functions

use shared tables to cooperate and share state among concurrently executing tasks.

2.2.2 Controller Interface

The user-supplied controller function is responsible for creating and destroying tables and

running kernels. The API used by the controller function to accomplish these tasks is shown in

Listing 2.1. The controller function performs 3 basic operations:

Creating tables: The create and load methods are used to create a new table or load an

existing table from disk. Tables must be created by the controller function prior to use.

13

Master:

Table<Key, Value> load(key_type, value_type)

Table<Key, Value> create(key_type, value_type, accumulator, partitioner)

destroy(table)

group([tables])

run(table, kernel_fn, args)

barrier()

cp_barrier([tables], userdata)

cp_continuous([tables], userdata, frequency)

userdata restore_from_checkpoint()

Listing 2.1: Controller Interface

Piccolo tables are typed – these are arbitrary user-defined types (e.g. string, float, int, etc.).

Both key and value types must be serializable (for storing and moving table data). Having types

helps ensure program correctness and also enables Piccolo to efficiently serialize and combine table

data. Tables are also partitioned ; table data is split across workers – each worker is responsible

for one or more partitions of a table.

The usage of the accumulator and partitioner arguments is described later. Pre-existing data

located on a shared filesystem (e.g GFS) can be loaded into Piccolo using the load method.

Tables loaded this way are read-only.

Kernel invocation: The programmer uses the run function to launch kernel instances

executing the desired kernel function. One kernel instance is launched for each partition of the

supplied table; instances are run with locality: kernel instance i runs on the worker which holds

table partition i. Kernel functions can obtain references to and manipulate existing tables; they

cannot create new tables. Each kernel instance has an identifier 0 · · ·m−1 which can be retrieved

using the my_instance function; typically this identifier is used to iterate over a local portion

of the table.

Kernel synchronization: The programmer invokes a global barrier from within a control

function to wait for the completion of all previously launched kernels. Piccolo does not support

locking of individual table entries. We have found that Piccolo’s use of accumulation functions

(described below) eliminates most of the cases where locking operations would otherwise be

required. This overall application structure, where control functions launch kernels across one or

more global barriers, is reminiscent of the CUDA model [63] which also explicitly eschews support

14

Table<Key, Value>:

void clear()

bool contains(Key)

Value get(Key)

void put(Key, Value)

void remove(Key)

updates the existing entry via

user-defined accumulation.

void update(Key, Value)

Commit any buffered updates/puts

void flush()

Return an iterator on a table partition

Iterator get_iterator(int)

Listing 2.2: Shared Table Interface

for pair-wise thread synchronization. The usage of the cp barrier and cp continous methods is

described in the fault tolerance section 2.3.2.

2.2.3 Table interface and semantics

Concurrent kernel instances share intermediate state across machines using key-value based

in-memory tables. Table entries are spread across all nodes and each key-value pair resides in the

memory of a single node. As Figure 2.2 shows, the key-value interface provides a uniform access

model whether the underlying table entry is stored locally or on another machine. The table

APIs include the expected get, put and remove operations, but also includes Piccolo-specific

functions like update, flush and get_iterator. Only control functions can create tables;

both control and kernel functions can read and write to tables.

User-defined accumulation: In many programs, multiple kernel instances can issue concur-

rent updates to the same key. To resolve such write-write conflicts, Piccolo allows programmers

to associate a user-defined accumulation function with each table. Piccolo executes the accumu-

lator during run-time to combine concurrent updates on the same key. If the programmer expects

results to be independent from the ordering of updates, the accumulator must be a commutative

and associative function [91]. The interface used for accumulators is shown in Figure 2.3.

Piccolo provides a set of standard accumulators such as summation, multiplication and min/-

max. To define an accumulator, the user specifies four functions: initialize to initialize an

accumulator for a newly created key, accumulate to incorporate the effect of a single update

15

Accumulator<Value>

initialize()

update(Value)

merge(Accumulator<Value>)

Value view()

Listing 2.3: Accumulator Interface

operation, merge to combine the contents of multiple accumulators on the same key, and view

to return the current accumulator state reflecting all updates accumulated so far. Accumula-

tor functions have no access to global state; they can only access their local state and supplied

update value.

By using accumulator functions, Piccolo applications can avoid most, if not all, of the situa-

tions where locking would be required in another framework.

Table Partitioning: Piccolo uses a user-specified partition function [36] to divide the key-

space into partitions. Table partitioning is a key primitive for expressing user programs’ locality

preferences. The programmer specifies the number of partitions (p) when creating a table. The

p partitions of a table are named with integers 0...p− 1. Kernel functions can scan all entries in

a given table partition using the get_iterator function (see Figure 2.2).

Piccolo does not reveal to the programmer which node stores a table partition, but guarantees

that all table entries in a given partition are stored on the same machine. Although the run-time

aims to have a load-balanced assignment of table partitions to machines, it is the programmer’s

responsibility to ensure that the largest table partition fits in the available memory of a single

machine. This can usually be achieved by specifying a the number of partitions to be much larger

than the number of machines.

Table Semantics: All table operations involving a single key-value pair are atomic from the

application’s perspective. Write operations (e.g. update, put) destined for another machine

are buffered to avoid blocking kernel execution. In the face of buffered remote writes, Piccolo

provides the following guarantees:

• All operations issued by a single kernel instance on the same key are applied in their issuing

order. Operations issued by different kernel instances on the same key are applied in some

total order [51].

• Upon a successful flush, all buffered writes done by the caller’s kernel instance will have

16

been committed to their respective remote locations, and will be reflected in the response

to subsequent gets by any kernel instance.

• Upon the completion of a global barrier, all kernel instances will have been completed and

all their writes will have been applied.

2.2.4 Expressing locality preferences

While accumulators allow writes to remote table entries to be buffered and combined, the

communication latency involved in reading remote table entries cannot be effectively hidden.

Given this, a key factor in achieving good application performance is to minimize remote gets

by exploiting locality of access. Piccolo provides a simple way for programmers to express locality

policies. Such policies enable the underlying Piccolo run-time to execute a kernel instance on a

machine that stores most of its needed data, thus minimizing remote reads.

Piccolo supports two kinds of locality policies: (1) co-locate a kernel execution with some

table partition, and (2) co-locate partitions of different tables. When launching a kernel, the

programmer specifies the table in the run function to express their preference for co-locating

the kernel execution with that table. To optimize for kernels that read from more than one

table, the programmer uses the group(T1,T2,..) function to co-locate multiple tables. The

run-time then ensures the i-th partition of T1,T2,... is stored on the same machine. As a result,

by co-locating kernel execution with one of the tables, the programmer can avoid remote reads

for kernels that read from the same partition of multiple tables.

2.2.5 User-assisted checkpoint and restore

Piccolo handles machine failures via a global checkpoint/restore mechanism. The mechanism

is not fully automatic – Piccolo saves a consistent global snapshot of all shared table state,

but relies on users to save additional information to recover the position of their kernel and

control function execution. We believe this design makes a reasonable trade-off. In practice, the

programming effort required to checkpoint user information is relatively small. In exchange for

this small amount of user effort, our design avoids the overhead and complexities involved in

automatically checkpointing C/C++ executables.

17

Based on our experience of writing applications, we arrived at two checkpointing APIs: one

synchronous (cp_barrier) and one asynchronous (cp_periodic). Both functions are invoked

from the controller function. Synchronous checkpoints are well-suited for iterative applications

(e.g. PageRank) which launch kernels in multiple rounds separated by global barriers and desire

to save intermediate state every few rounds. On the other hand, applications with long running

kernels (e.g. a distributed crawler) need to use asynchronous checkpoints to save their state

periodically.

cp_barrier takes as arguments a list of tables and a dictionary of user data to be saved

as part of the checkpoint. Typical user data might contain the value of some iterator in the

control thread. For example in PageRank, the programmer would like to record the number of

PageRank iterations computed so far as part of the global checkpoint. cp_barrier performs a

global barrier and ensures that the checkpointed state is equivalent to the state of execution at

the barrier.

cp_periodic takes as arguments a list of tables, a time interval for periodic checkpointing,

and a kernel callback function cp_callback. This callback is invoked for all active kernels on

a node immediately after that node has checkpointed the state for its assigned table partitions.

The callback function provides a way for the programmer to save the necessary data required to

restore running kernel instances. Oftentimes this is the position of an iterator over the partition

that is being processed by a kernel instance. When restoring, Piccolo reloads the table state on

all nodes, and invokes kernel instances with the dictionary saved during the checkpoint.

2.2.6 Putting it together: PageRank

As a concrete example, we show how to implement PageRank using Piccolo. The PageRank

algorithm [20] takes as input a sparse web graph and computes a rank value for each page. The

computation proceeds in multiple iterations: page i’s rank value in the k-th iteration (p
(k)
i) is

the sum of the normalized ranks of its incoming neighbors in the previous iteration, i.e. p
(k)
i =

∑
∀j∈Ini

p
(k−1)
j

|Outj |
, where Outj denotes page j’s outgoing neighbors.

The complete PageRank implementation in Piccolo is shown in Figure 2.4 (we use Python

syntax for brevity). The input web graph is represented as a set of outgoing links, page → target,

for each page. The graph is loaded into the shared in-memory table (graph) from a distributed

18

tuple PageID(site, page)

const PropagationFactor = 0.85

def PRKernel(curr, next, graph):

for page, outlinks in

graph.get_iterator(my_instance()):

rank = curr[page]

update = PropagationFactor * rank / len(outlinks)

for target in outlinks:

next.update(target, update)

def PageRank(Master m):

graph is partitioned by site

graph = m.load("/dfs/graph")

curr = m.create(PageId, double, graph.num_partitions(),

sum_accum, partition_by_site)

next = m.create(PageId, double, graph.num_partitions(),

sum_accum, partition_by_site)

make sure partitions are aligned

m.group(graph, curr, next)

meta = master.restore_from_checkpoint()

if meta:

last_iter = meta["iteration"]

else:

last_iter = 0

run 50 iterations

for i in range(last_iter, 50):

m.run(graph, PRKernel, args=(curr, next, graph))

checkpoint every 5 iterations, storing the

current iteration alongside checkpoint data

if i % 5 == 0:

m.cp_barrier(tables=curr, {iteration=i})

else:

m.barrier()

the values accumulated into ’next’ become the

source values for the next iteration

swap(curr,next)

Listing 2.4: PageRank Implementation

19

file system. For link graphs too large to fit in memory, Piccolo also supports a read-only interface

for streaming data from disk.

The intermediate rank values are kept in two tables: curr for the ranks to be read in the

current iteration, next for the ranks to be written. The control function (PageRank) iteratively

launches p PRKernel kernel instances where p is the number of table partitions in graph (which

is identical to that of curr and next). The kernel instance i scans all pages in the i-th partition

of graph. For each page → target link, the kernel instance reads the rank value of page in curr,

and generates updates for next to increment target’s rank value for the next iteration.

Since the program generates concurrent updates to the same key in next, it associates the

sum accumulator with next, which correctly combines updates as desired by the PageRank com-

putation. The overall computation proceeds in rounds using a global barrier between PRKernel

invocations.

To optimize for locality, the program groups tables graph, curr, next together and ex-

presses preference for co-locating PRKernel executions with the curr table. As a result, none

of the kernel instances need to perform any remote reads. In addition, the program uses the

partition function, partition_by_site, to assign the URLs in the same domain to the same

partition. As pages in the same domain tend to link to one another frequently, such partitioning

significantly reduces the number of remote updates.

Checkpointing/restoration is straightforward: the control thread performs a synchronous

checkpoint to save the next table every five iterations and loads the latest checkpointed ta-

ble to recover from failure.

2.3 System Design

Piccolo’s execution environment consists of one master process and many worker processes,

each executing on a potentially different machine. Figure 2.1 illustrates the overall interactions

among workers and the master when executing a Piccolo program. As Figure 2.1 shows, the

master executes the user control thread by itself and schedules kernel instances to execute on

workers. The master also decides how table partitions are assigned to workers. Each worker

is responsible for storing assigned table partitions in its memory and handling table operations

20

�✁✂✄✁☎
✆✄✝✞✟✄✠✁

✞✟✡☎✁
☛✟✂✞✆✞✆☞✄✝

✌✍✎✏✑✎ ✌✍✎✏✑✎

✌✍✎✏✑✎ ✌✍✎✏✑✎ ✒✓✔✕✑✎✌✍✎✏✑✎

✌✍✎✏✑✎

✖✗✗✘✙✚ ✛✖✜✢✘✢✘✣✚✤

✥✦✥✧★✢✥ ✩✥✜✚✥✪✫✬
✭✮
✯✰
✭✮
✰✯
✱✲
✭✬

✳✴✵✶✷✴✸
✶✹✷✺✻✼

✽✾✿❀✾❁ ❂❃❀❃❄❅✾❆

❇❈❉❊ ❋●❉❊●❋❍■❉❈

Figure 2.1: Master-worker interaction during a Piccolo program.

associated with those partitions. Having a single master does not introduce a performance

bottleneck: master operations are all very light-weight, and the master informs all workers of the

current partition assignment so that workers need not consult the master to perform performance-

critical table operations.

The master begins the execution of a Piccolo program by invoking the user-defined controller

function. Upon each table creation API call, the master decides on a partition assignment.

The master informs all workers of the partition assignment and each worker initializes its set of

partitions, which are all empty at startup. When run(table, kernel_fn) is invoked the

master preparesm tasks, one for each partition of the table. The master schedules these tasks for

execution on workers based on user’s locality preferences. Workers run a single kernel instance

at a time and notifies the master when a kernel instance completes; this process continues until

every kernel instance is finished. Upon encountering a global barrier, the master blocks the

control thread until all active tasks are finished.

During kernel execution, a worker buffers update operations destined for remote workers,

combines them using user-defined accumulators and flushes them to remote workers after a short

timeout. To handle a get or put operation, the worker flushes accumulated updates on the same

key before sending the operation to the remote worker. Each owner applies operations (including

accumulated updates) in their received order. Piccolo does not perform caching but supports

a limited form of pre-fetching: after each get_iterator API call, the worker pre-fetches a

portion of table entries beyond the current iterator value.

21

Two main challenges arise in the above design. First, how can we assign tasks in order to

minimize the amount of time wasted waiting for global barriers? This is particularly important

for iterative applications that incur a global barrier at each iteration of the computation. The

second challenge is how we can perform efficient checkpointing and restoration of table state. In

the rest of this Section, we detail how Piccolo addresses both challenges.

2.3.1 Load-balanced Task Scheduling

We first describe the basic scheduling algorithm without load-balancing. At table creation

time, the master assigns table partitions to all workers using a simple round-robin assignment

for empty memory tables. For tables loaded from a distributed filesystem, the master chooses

an assignment that minimizes inter-rack transfer while keeping the number of partitions roughly

balanced among workers. When running kernels, the master schedules kernel instances to ensure

access locality: namely, it assigns task i to execute on a worker storing table partition i.

This initial schedule may not be ideal. Due to heterogeneous hardware configurations or

variable-sized computation inputs, workers can take varying amounts of time to finish assigned

tasks, resulting in load imbalance and non-optimal use of machines. Therefore, the run-time

needs to load-balance kernel executions after the initial schedule.

Piccolo’s scheduling freedom is limited by two constraints: First, no running tasks should be

killed. As a running kernel instance modifies shared table state, re-executing a terminated kernel

instance requires performing an expensive restore operation from a saved checkpoint. Therefore,

once a kernel instance is started, it is better to let the task complete than terminating it halfway

for re-scheduling. By contrast, MapReduce systems do not have this constraint [47] as reducers

do not start aggregation until all mappers are finished. The second constraint comes from the

need to honor user locality preferences. Specifically, if a kernel instance is to be moved from one

worker to another, its co-located table partitions must also be transferred across those workers.

Load-balancing via work stealing: Piccolo performs a simple form of load-balancing: the

master observes the progress of different workers and instructs a worker (widle) that has finished

all its assigned tasks to steal a not-yet-started task i from the worker (wbusy) with the most

remaining tasks. We adopt the greedy heuristic of scheduling larger tasks first. To implement

this heuristic, the master estimates the input size of each task by the number of keys in its

22

corresponding table partition. The master collects partition size information from all workers at

table loading time as well as at each global barrier. The master instructs each worker to execute

its assigned tasks in decreasing order of estimated task sizes. Additionally, the idle worker widle

always steals the biggest task among wbusy ’s remaining tasks.

Table partition migration: Because of user locality preferences, worker widle needs to

transfer one or more table partitions from wbusy before it executes stolen task i. Since table

migration occurs while other active tasks are sending operations to partition i, Piccolo must

take care not to lose, re-order or duplicate operations from any worker on a given key in order

to preserve table semantics. Piccolo uses a multi-phase migration process that does not require

suspending any active tasks.

The master coordinates the process of migrating partition i from wa to wb, which proceeds in

two phases. In the first phase, the master sends message Mbegin to all workers indicating the new

ownership of i. Upon receiving M1, all workers flush their buffered operations for i to wa and

begin to send subsequent requests for i to wb. Upon the receipt of Mbegin, wa “pauses” updates

to i, and begins to forward requests received from other workers for i to wb. wa then transfers

the paused state for i to wb. During this phase, worker wb buffers all requests for i received from

wa or other workers but does not yet handle them.

After the master has received acknowledgments from all workers that the first phase is com-

plete, it sends Mcommit to wa and wb to complete migration. Upon receiving Mcommit, wa flushes

any pending operations destined for i to wb and discards the paused state for partition i. wb

first handles buffered operations received from wa in order and then resumes normal operation

on partition i.

This table migration process does not block any update operations and thus incurs little

latency overhead for most kernels. The normal checkpoint/recovery mechanism is used to cope

with faults that might occur during migration.

2.3.2 Fault Tolerance

Piccolo relies on user-assisted checkpoint and restore to cope with both master and worker

failures during program execution. The Piccolo run-time saves a checkpoint of program state

(including tables and other user-data) on a distributed file system and restores from the latest

23

completed checkpoint to recover from a failure.

Checkpoint: Piccolo needs to save a consistent global checkpoint with low overhead. To

ensure consistency, Piccolo must determine a global snapshot of the program state. To ensure

low overhead, the run-time must carry out checkpointing in the face of actively running kernel

instances or the control thread. Fortunately, an algorithm already exists which allows Piccolo

to provide both of these properties: the Chandy-Lamport distributed snapshot algorithm [26].

Piccolo uses the Chandy-Lamport (CL) algorithm to perform checkpointing. To save a CL

snapshot, each process records its own state and two processes incident on a communication

channel cooperate to save the channel state. In Piccolo, channel state can be efficiently captured

using only table modification messages as kernels communicate with each other exclusively via

tables.

To begin a checkpoint, the master chooses a new checkpoint epoch number (E) and sends

the start checkpoint message StartE to all workers. Upon receiving the start message, worker w

immediately takes a snapshot of the current state of its responsible table partitions and buffers

future table operations (in addition to applying them). Once the table partitions in the snapshot

are written to stable storage, w sends the marker message ME,w to all other workers. Worker

w then enters a logging state in which it logs all buffered operations to a replay file. Once w

has received markers from all other workers (ME,w′, ∀w′ 6= w), it writes the replay log to stable

storage and sends FinE,w to the master. The master considers the checkpointing done once it

has received FinE,w from all workers.

For asynchronous checkpoints, the master initiates checkpoints periodically based on a timer.

To record user-data consistently with recorded table state, each worker atomically takes a snap-

shot of table state and invokes the checkpoint callback function to save any additional user state

for its currently running kernel instance. Synchronous checkpoints provide the semantics that

checkpointed state is equivalent to those immediately after the global barrier. Therefore, for

synchronous checkpointing, each worker waits until it has completed all its assigned tasks be-

fore sending the checkpoint marker ME,w to all other workers. Furthermore, the master saves

user-data in the control thread only after it has received FinE,w from all workers. There is a

trade-off in deciding when to start a synchronous checkpoint. If the master starts the checkpoint

too early, (e.g. while workers still have many remaining tasks), then time is wasted writing lots

24

of data to replay files, which also become unnecessarily large. On the other hand, if the master

delays checkpointing until all workers have finished, it misses opportunities to overlap kernel

computation with checkpointing. Piccolo uses a heuristic to balance this trade-off: the master

begins a synchronous checkpoint as soon as one of the workers has finished all its assigned tasks.

To simplify the design, the master does not initiate checkpointing while there is active table

migration and vice-versa.

Restore: Upon detecting any worker failure, the master resets the state of all workers and

restores computation from the last completed global checkpoint. Piccolo does not checkpoint the

internal state of the master - if the master is restarted, restoration occurs as normal, however, the

replacement master is free to choose a different partition assignment and task schedule during

restoration.

2.4 Implementation

Piccolo’s programming environment is exposed as a library to existing languages (our current

implementation supports C++ and Python) and requires no change to underlying OS or compiler.

SWIG [14] is used to help construct the Python interface to Piccolo. Our implementation re-uses

a number of existing libraries, such as OpenMPI for communication, Google’s protocol buffers

for object serialization, and LZO for compressing on-disk tables.

All the parallel computations (PageRank, k-means, n-body and matrix multiplication) are

implemented using the C++ Piccolo API. The distributed crawler is implemented using the

Python API.

25

3
Piccolo Evaluation

3.1 Applications

In addition to PageRank, we implemented a variety of other applications in Piccolo, 4 of

which we describe here: a distributed web crawler, k-means, n-body and matrix multiplication.

We also describe how Piccolo’s programming model enables efficient implementation for these

applications.

3.1.1 Distributed Web Crawler

Apart from iterative computations such as PageRank, Piccolo can be used by applications to

distribute and coordinate fine-grained tasks among many machines. To demonstrate this usage,

26

#local variables kept by each kernel instance

fetch_pool = Queue()

crawl_output = OutputLog(’./crawl.data’)

def FetcherThread():

while 1:

url = fetch_pool.get()

txt = download_url(url)

crawl_output.add(url, txt)

for l in get_links(txt):

url_table.update(l, ShouldFetch)

url_table.update(url, Done)

def CrawlKernel(Table(URL,CrawlState) url_table):

for i in range(20)

t = FetcherThread()

t.start()

while 1:

for url, status in url_table.my_partition :

if status == ShouldFetch

#omit checking domain in robots table

#omit checking domain in politeness table

url_table.update(url, Fetching)

fetch_pool.add(url)

Listing 3.1: Snippet of crawler implementation

we implemented a distributed web crawler. The basic crawler operation is simple: beginning

from a few initial URLs, the crawler repeatedly downloads a page and parses it to discover new

URLs to fetch. A practical crawler must also satisfy other important constraints: (1) honor the

robots.txt file of each web site, (2) refrain from overwhelming a site by capping fetches to a site

at a fixed rate, and (3) avoid repeated fetches of the same URL.

Our implementation uses three co-located tables:

• The url table stores the crawling state for each URL: one of ToFetch, Fetching, Blacklisted,

Done. For each URL p in ToFetch state, the crawler fetches the corresponding web page

and sets p’s state to Fetching. After the crawler has finished parsing p and extracting its

outgoing links, it sets p’s state to Done.

• The politeness table tracks the last time a page was downloaded for each site.

• The robots table stores the processed robots file for each site.

The crawler spawns m kernel instances, one for each machine. Our implementation is done

in Python in order to utilize Python’s web-related libraries. Listing 3.1 shows the simplified

27

crawler kernel (omitting details for processing robots.txt and capping per-site download rate).

Each kernel scans its local url table partition to find ToFetch URLs and processes them using

a pool of helper threads. As all three tables are partitioned according to the partition by site

function and co-located with each other, a kernel instance can efficiently check for the politeness

information and robots entries before downloading a URL. Our implementation uses the max

accumulator to resolve write-write conflicts on the same URL in url table according to Done >

Blacklisted > Fetching > ToFetch. This allows the simple and elegant operation shown in

Listing 3.1, where kernels re-discovering an already-fetched URL u can simply attempt to update

u’s state to ToFetch without checking the current value; the correct behavior is ensured by the

accumulation function.

Consistent global checkpointing is important for the crawler’s recovery. Without global check-

pointing, the recovered crawler may find a page p to be Done but does not see any of p’s extracted

links in the url_table, possibly causing those URLs to never be crawled. Our implementa-

tion performs asynchronous checkpointing every 10 minutes so that the crawler loses no more

than 10 minutes worth of progress due to node failure. Restoring from the last checkpoint can

result in some pages being crawled more than once (those lost since the last checkpoint), but the

checkpoint mechanism guarantees that no pages will “fall through the cracks.”

3.1.2 k-means

The k-means algorithm is an iterative computation for grouping n data points into k clusters

in a multi-dimensional space. Our implementation stores the assigned centers for data points

and the positions of centers in shared tables. Each kernel instance processes a subset of data

points to compute new center assignments for those data points and update center positions for

the next iteration using the summation accumulator.

3.1.3 n-body

This application simulates the dynamics of a set of particles over many discrete time-steps.

We implemented an n-body simulation intended for short distances [78], where particles further

than a threshold distance (r) apart are assumed to have no effect on each other. During each

time-step, a kernel instance processes a subset of particles: it updates a particle’s velocity and

28

position based on its current velocity and the positions of other particles within r distance away.

Our implementation uses a partition function to divide space into cubes so that a kernel instance

mostly performs local reads in order to retrieve those particles within r distance away.

3.1.4 Matrix Multiplication

Computing C = AB where A and B are two large matrices is a common primitive in numerical

linear algebra. The input and output matrices are divided into m × m blocks stored in three

tables. Our implementation co-locates tables A,B,C. Each kernel instance processes a partition

of table C by computing Ci,j =
∑m

k=1 Ai,k · Bk,j .

3.2 Overview

We tested the performance of Piccolo on the applications described above. Some applications,

such as PageRank and k-means, can also be implemented using the existing data-flow model and

we compared the performance of Piccolo with that of Hadoop for these applications.

The highlights of our results are:

• Piccolo is fast. PageRank and k-means are 11× and 4× faster than those on Hadoop.

When compared against the results published for DryadLINQ [92], in which a PageRank

iteration on a 900M page graph were performed in 69 seconds, Piccolo finishes an iteration

for a 1B page graph in 70 seconds on EC2, while using 1/5 the number of CPU cores.

• Piccolo scales well. For all applications evaluated, increasing the number of workers shows

a nearly linear reduction in the computation time. Our 100-instance EC2 experiment on

PageRank also demonstrates good scaling.

• Piccolo can help a non-conventional application like the crawler to achieve good parallel

performance. Our crawler, despite being implemented in Python, manages to saturate the

Internet bandwidth of our cluster.

29

Application Default input size Maximum input size

PageRank 100M pages 1B pages
k-means 25M points, 100 clusters 1B points, 100 clusters
n-body 100K points 10M points
Matrix Multiply edge size = 2500 edge size = 6000

Table 3.1: Application input sizes

3.3 Test Setup

Most experiments were performed using our local cluster of 12 machines: 6 of the machines

have 1 quad-core Intel Xeon X3360 (2.83GHz) processor with 4GB memory, the other 6 ma-

chines have 2 quad-core Xeon E5520 (2.27GHz) processors with 8GB memory. All machines are

connected via a commodity gigabit ethernet switch. Our EC2 experiments involve 100 “large

instances” each with 7.5GB memory and 2 “virtual cores” where each virtual core is equivalent

to a 2007-era single core 2.5GHz Intel Xeon processor. In all experiments, we created one worker

process per core and pinned each worker to use that core.

For scaling experiments, we vary the input size of different applications. Table 3.1 shows

the default and maximum input size used for each application. We generate the web link graph

for PageRank based on the statistics of a web graph of 100M pages in UK[18]. Specifically, we

extract the distributions for the number of pages in each site and the ratio of intra/inter-site

links. We generate a web graph of any size by sampling from the site size distribution until the

desired number of pages is reached; outgoing links are then generated for each page in a site

based on the distribution of the ratio of intra/inter-site links. For other applications, we use

randomly generated inputs.

3.4 Scaling Performance

Figure 3.1 shows application speedup as the number of workers (N) increases from 8 to 64 for

the default input size. All applications are CPU-bound and exhibit good speedup with increasing

N . Ideally, all applications (except for PageRank) have perfectly balanced table partitions and

should achieve linear speedup. However, to have reasonable running time at N=8, we choose a

relatively small default input size. Thus, as N increases to 64, Piccolo’s overhead is no longer

30

8 16 32 64

Workers

0

2

4

6

8

S
pe

ed
up

K-Means
N-Body
Matrix Multiply
PageRank
Ideal

Figure 3.1: Scaling performance (fixed default input size)

negligible relative to applications’ own computation (e.g. k-means finishes each iteration in 1.4

seconds at N=64), resulting in 20% less than ideal speedup. PageRank’s table partitions are not

balanced and work stealing becomes important for its scaling (see § 3.7).

We also evaluate how applications scale with increasing input size by adjusting input size to

keep the amount of computation per worker fixed with increasing N . We scale the input size

linearly with N for PageRank and k-means. For matrix multiplication, the edge size increases as

O(N1/3). We do not show results for n-body because it is difficult to scale input size to ensure a

fixed amount of computation per worker. For these experiments, the ideal scaling has constant

running time as input size increases with N . As Figure 3.2 shows, the achieved scaling for all

applications is within 20% of the ideal number.

3.5 EC2

We investigated how Piccolo scales with a larger number of machines using 100 EC2 instances.

Figure 3.3 shows the scaling of PageRank and k-means on EC2 as we increase their input size with

N . We were somewhat surprised to see that the resulting scaling on EC2 is better than achieved

on our small local testbed. Our local testbed’s CPU performance exhibited quite some variability,

impacting scaling. After further investigation, we believe the source for such variability is likely

31

8 16 32 64

Workers

0

0.2

0.4

0.6

0.8

1.0

1.2

R
el

at
iv

e
R

un
tim

e

K-Means
Matrix Multiply
PageRank
Ideal

Figure 3.2: Scaling input size.

due to dynamic CPU frequency scaling.

At N=200, PageRank finishes in 70 seconds for a 1B page link graph. On a similar sized

graph (900M pages), our local testbed achieves comparable performance (80 seconds) with many

fewer workers (N=64), due to the higher performing cores on our local testbed.

3.6 Comparison with Other Frameworks

Comparison with Hadoop: We implemented PageRank and k-means in Hadoop to com-

pare their performance against that of Piccolo. The rest of our applications, including the

distributed web crawler, n-body and matrix multiplication, do not have any straightforward

implementation with Hadoop’s data-flow model.

For the Hadoop implementation of PageRank, as with Piccolo, we partition the input link

graph by site. During execution, each map task has locality with the partition of graph it is

operating on. Mappers join the graph and PageRank score inputs, and use a combiner to ag-

gregate partial results. Our Hadoop k-means implementation is highly optimized. Each mapper

fetches all 100 centroids from the previous iteration via Hadoop File System (HDFS), computes

the cluster assignment of each point in its input stream, and uses a local hash map to aggregate

32

12 24 48 100 200

Workers

0.0

0.2

0.4

0.6

0.8

1.0

1.2

R
el

at
iv

e
R

un
tim

e

K-Means
Pagerank
Ideal

Figure 3.3: Scaling input size on EC2.

the updates for each cluster. As a result, a reducer only needs to aggregate one update from

each mapper to generate the new centroid.

We made extensive efforts to optimize the performance of PageRank and k-means on Hadoop

including changes to Hadoop itself. Our optimizations include using raw memory comparisons,

using primitive types to avoid Java’s boxing and unboxing overhead, disabling checksumming,

improving Hadoop’s join implementation etc. Figure 3.4 shows the running time of Piccolo and

Hadoop using the default input size. Piccolo significantly outperforms Hadoop on both bench-

marks (11× for PageRank and 4× for k-means with N=64). The performance difference between

Hadoop and Piccolo is smaller for k-means because of our optimized k-means implementation;

the structure of PageRank does not admit a similar optimization.

Although we expected to see some performance difference because Hadoop is implemented in

Java while Piccolo in C++, the order of magnitude difference came as a surprise. We profiled

the PageRank implementation on Hadoop to find the contributing factors. The leading causes

for the slowdown are: (1) sorting keys in the map phase (2) serializing and de-serializing data

streams and (3) reading and writing to HDFS. Key sorting alone accounted for nearly 50% of the

runtime in the PageRank benchmark, and serialization another 15%. In contrast, with Piccolo,

33

8 16 32 64

Workers

1

10

100

1000

P
ag

eR
an

k
(s

ec
s)

Piccolo
Hadoop

1

10

100

1000

k-
m

ea
ns

 (
se

cs
)

Figure 3.4: PageRank and k-means in Hadoop and Piccolo (fixed default input size).

the need for (1) is eliminated and the overhead associated with (2) and (3) is greatly reduced.

PageRank rank values are stored in memory and are available across iterations without being

serialized to a distributed file system. In addition, as most outgoing links point to other pages at

the same site, a kernel instance ends up performing most updates directly to locally stored table

data, thereby avoiding serialization for those updates entirely.

Comparison with MPI: We compared the the performance of matrix multiplication using

Piccolo to a third-party MPI-based implementation [6]. The MPI version uses Cannon’s algorithm

for blocked matrix multiplication and uses MPI specific communication primitives to handle data

broadcast and the simultaneous sending and receiving of data. For Piccolo, we implemented the

näıve blocked multiplication algorithm, using our distributed tables to handle the communication

of matrix state. As Piccolo relies on MPI primitives for communication, we do not expect to see

performance advantage, but are more interested in quantifying the amount of overhead incurred.

Figure 3.5 shows that the running time of the Piccolo implementation is no more than 10%

of the MPI implementation. We were surprised to see that our Piccolo implementation out-

performed the MPI version in experiments with more workers. Upon inspection, we found that

34

16 25 36 64

Workers

0

1

R
el

at
iv

e
T

im
e

Piccolo
MPI

Figure 3.5: Runtime of matrix multiply, scaled relative to MPI.

this was due to slight performance differences between machines in our cluster; as the MPI

implementation has many more synchronization points than that of Piccolo, it is forced to wait

for slower nodes to catch up.

3.7 Work Stealing and Slow Machines

The PageRank benchmark provides a good basis for testing the effect of work stealing because

the web graph partitions have highly variable sizes: the largest partition for the 900M-page graph

is 5 times the size of the smallest. Using the same benchmark, we also tested how performance

changed when one worker was operating slower then the rest. To do so, we ran a CPU-intensive

program on one core that resulted in the worker bound to that core having only 50% of the

CPU time of the other workers.

The results of these tests are shown in Figure 3.6. Work stealing improves running time by

10% when all machines are operating normally. The improvement is due to the imbalance in

the input partition sizes - when run without work stealing, the computation waits longer for the

workers processing more data to catch up.

The effect of slow workers on the computation is more dramatic. With work-stealing disabled,

the runtime is nearly double that of the normal computation, as each iteration must wait for

the slowest worker to complete all assigned tasks. Enabling work stealing improves the situation

dramatically - the computation time is reduced to less then 5% over that of the non-slow case.

35

0 1 2 3 4

Iteration number

0

20

40

60

80

100

120

R
un

tim
e

(s
ec

s)

Normal - No Stealing
Normal - Stealing
Slow Worker - No Stealing
Slow Worker - Stealing

Figure 3.6: Effect of Work Stealing and Slow Workers

3.8 Checkpointing

We evaluated the checkpointing overhead using the PageRank, k-means and n-body problems.

Compared to the other problems, PageRank has a larger table that needs to be checkpointed,

making it a more demanding test of checkpoint/restore performance. In our experiment, each

worker wrote its checkpointed table partitions to the local disk. Figure 3.7 shows the runtime

when checkpointing is enabled relative to when there is no checkpointing. For the näıve syn-

chronous checkpointing strategy, the master starts checkpointing only after all workers have

finished. For the optimized strategy, the master initiates the checkpoint as soon as one of the

workers has finished. As the figure shows, overhead of the optimized checkpointing strategy is

quite negligible (∼2%) and the optimization of starting checkpointing early results in significant

reduction of overhead for the larger PageRank checkpoint.

Limitations of global checkpoint and restore: The global nature of Piccolo’s failure

recoverymechanism raises the question of scalability. As the of a cluster increases, failure becomes

more frequent; this causes more frequent checkpointing and restoration which consume a larger

fraction of the overall computation time. While we lacked the machine resources to directly test

the performance of Piccolo on thousands of machines, we estimate scalability limit of Piccolo’s

checkpointing mechanism based on expected machine uptime.

We consider a hypothetical cluster of machines with 16GB of RAM and 4 disk drives. We

measured the time taken to checkpoint and restore such a machine in the “worst case” - a

36

Naive Optimized

Checkpoint Strategy

0.8

1.0

1.2

R
el

at
iv

e
T

im
e

Pagerank
N-Body
K-Means

Figure 3.7: Checkpoint overhead scaled relative to without checkpointing.

computation whose table state uses all available system memory. We estimate the fraction of

time a Piccolo computation would spend working productively (not in a checkpoint or restore

state), for varying numbers of machines and failure rates. In our model, we assume that machine

failures arrive at a constant interval defined by the failure rate and the number of machines in

a cluster. While this is a simplification of real-life failure behavior, it is a worst-case scenario

for the restore mechanism, and as such provides a useful lower bound. The expected efficiency

based on our model is shown in Figure 3.8. For well maintained datacenters that we are familiar

with, the average machine uptime is typically around 1 year. For these datacenters, the global

checkpointing mechanism can efficiently scale up to a few thousand machines.

3.9 Distributed Crawler

We evaluated our distributed crawler implementation using various numbers of workers. The

URL table was initialized with a seed set of 1000 URLs. At the end of a 30 minutes run of the

experiment, we measured the number of pages crawled and bytes downloaded. Figure 3.9 shows

the crawler’s web page download throughput in MBytes/sec as N increases from 1 to 64. The

crawler spends most CPU time in the Python code for parsing HTML and URLs. Therefore, its

throughput scales approximately linearly with N . At N=32, the crawler download throughput

peaks at ∼10MB/s which is limited by our 100-Mbps Internet uplink. There are highly optimized

single-server crawler implementations that can sustain higher download rates than 100Mbps [86].

However, our Piccolo-based crawler could potentially scale to even higher download rates despite

37

0 2000 4000 6000 8000

Machines

0
0.2
0.4
0.6
0.8
1.0

P
ro

du
ct

iv
e

C
om

pu
ta

tio
n MTBF

3 years

1 year

3 weeks

Figure 3.8: Expected scaling for large clusters.

being built using Python.

38

0 10 20 30 40 50 60 70

Workers

0
2
4
6
8

10

M
B

yt
es

/s

Figure 3.9: Crawler throughput

39

4
Spartan Design

4.1 Overview

Piccolo proved to be a flexible and efficient platform for writing many in-memory applica-

tions. But writing an efficient Piccolo program still required a significant amount of “boilerplate”

effort to allocate and manage tables, and to define the accumulators and kernels required for a

computation.

We designed Spartan to address this boilerplate problem by providing users with a high-level

language which hid most of the tedium associated with writing raw Piccolo programs. Spartan

is a distributed array language which provides used all of the expected array language operations

such as array-wide operations, slicing, filtering, and reductions. Spartan uses lazy evaluation,

40

a common intermediate form and an extended version of the Piccolo accumulative backend to

enable an efficient implementation of many interesting array language applications.

In this chapter we demonstrate the utility of array languages and the challenges associated

with distributing them. We then describe the model, design and implementation of the Spartan

language. Finally we demonstrate the performance of Spartan for a number of interesting array

problems.

4.2 Motivation

To illustrate how array languages can be useful for data analysis problems, consider the

following scenario: we are a financial analyst (a “quant”), and we are interested in determining if

change in the spread (the difference between the cost of buying something and the price at which

it can be sold) can help up predict future prices. Using an array language like NumPy [64],

we can very quickly sketch out a linear predictor for prices and test our theory, as shown in

Listing 4.1.

ask - price you can buy at

bid - price you can sell at

t - how far forward to predict

def predict_price(ask, bid, t)

element-wise difference

spread = ask - bid

element-wise average of ask and bid

midprice = (ask + bid) / 2

slices allow for cheaply extracting parts of an array

d_spread = spread[t:] - spread[:-t]

find prices ‘t‘ steps in the future of d_spread

d_spread = d_spread[:-t]

future_price = midprice[2*t:]

compute a univariate linear predictor

regression = mean(future_price / d_spread)

prediction = regression * d_spread

error = mean(abs(prediction - future_price))

return error

Listing 4.1: Spread Prediction Example

This same example is equally easy to write in R [83], Matlab [57], Julia [4] or any other array-

oriented language. These languages are all frequently used for data analysis problems and the

41

types of in-memory problems which Piccolo targets: unfortunately, all of these languages only

run on a single machine, which greatly restricts their applicability to larger problems. Having a

distributed implementation of such a language would greatly extend its reach.

4.3 Array Language Features

Array languages provide several compact and efficient ways to express operations on arrays.

As you might expect from their name, they are distinguished from other languages by their

flexible slicing mechanism and array-wide operations. Below we give a brief overview of the

some of the important features of array languages: a more complete discussion can be found in

Rubinsteyn’s thesis [77].

Builtin Functions

Array languages come builtin with an extensive library of functions for array manipulation

and analysis: part of the appeal of these languages is having powerful analysis tools “at one’s

fingertips”. These include basic concepts such as adding and subtracting arrays, reductions

over arrays (sum, min, max, mode), functions to locate regions of interest (where, nonzero,

argmin, argmax), and common array operations such as matrix multiplication. Also important

are more involved operations such as matrix factorization, Fourier transformations and eigen-

value analysis. NumPy has over one hundred builtin operations, many of which are commonly

used in array programs. Array-wide operations and reductions are particularly common.

Array-wide operations: Array languages extend common arithmetic and boolean opera-

tions to work on arrays (a+ b adds a and b element-wise). When one array has fewer dimensions

than another, broadcasting is used to extend the smaller array, this generalizes the natural idea

of adding arrays and scalars (e.g. a+ 1).

42

element-wise addition

c = array([1,2]) + array([3,4}) # c = [4, 6]

broadcasting scalar values

d = 5 * c # d = [20, 30]

Reductions: Reduction operations are used to extract global information from arrays; these

include operations such as sum, min, max, argmin (the index of the element with the minimum

value), argmax, etc. Reductions can be performed over the entire array (returning a single scalar

value), or over an axis of the array, in which case they collapse the array along that axis. Some

operations we can perform using these operators include:

create a new random 100x100 array

array = rand((100, 100))

sum every element

array.sum()

sum over rows

array.sum(axis=0)

sum over columns

array.sum(axis=1)

index of the minimum value

array.argmin()

Slicing

Array languages allow multiple array elements to be selected simultaneously through the use

of multi-dimensional slice expressions. A slice consists of a starting offset, and ending offset and

a step size. If a slice is omitted for a dimension, than all of the elements in that dimension are

selected. Some examples of slicing are shown below:

43

array[4] # 5th element of array

array[:20] # first 20 elements of array

array[-20:] # last 20 elements of array

array[::2] # every other element

array[::-1] # array reversed

Slicing is not limited to a single dimension. For example the following code computes a simple

blurring of an image:

blur = (img[0:-2,0:-2] +

img[1:-1,1:-1] +

img[1:-1,0:-2] +

img[0:-2,1:-1]) / 4

An important feature of slices is that they are arrays themselves in every respect: any oper-

ation that can be performed on a top-level array can also be performed on a slice.

Fancy indexing

Slicing allows users to extract fixed chapters of an array; “fancy” indexing can be viewed as

extending slicing by making it data dependent. Fancy-indexing allows indexing an array with a

mask or an array of indices. This allows users to re-order and filter arrays based on data:

nonzero = array[array > 0]

shuffle two arrays in the same way

rand_idx = random(x.shape)

x = x[rand_idx]

y = y[rand_idx]

4.4 Challenges

If a distributed array language is to be successful, it needs to support the full set of functions

expected by users and it should be as fast (or nearly as fast) as hand-written solutions. This

implies a number of challenges:

Builtin functions Array programs depend on a large library of builtin functions, and the

writing of each of these functions in isolation would be a very time-consuming process. In

44

addition, users often make use of additional extension libraries to handle problems not addressed

by the core language. Many of these extensions are written in C++ or Fortran: this makes them

effectively impossible to automatically distribute. In order to address these issues, we need a way

to simplify writing builtin functions and enable users to create their own extensions easily.

Temporary elision The idiomatic style of array programs leads to the creation of a large

number of expensive temporary arrays if executed näıvely. (This is an issue even for single

machine array languages, and has led to the creation of tools like numexpr [8]). For example,

consider the following line from our predict_price application:

midprice = (ask + bid) / 2

In this example, without optimization, 2 expensive temporary arrays will be generated in

the process of computing midprice. Since this type of element-wise operation is very common in

array programs, we need some way optimize away the creation of these temporaries.

Slicing In single-machine array languages, slices do not require any data to be copied, and

are therefore very cheap. As slices are used extensively in array applications, a distributed

implementation should offer the same no-copy guarantee.

4.5 Overall Approach

The goal of Spartan is to overcome the challenges listed above while still providing the same

level of convenience found in a single-machine programming language. To accomplish this, Spar-

tan adopts a layered approach, which splits execution into frontend and backend steps.

The execution of an array program in Spartan consists of 4 parts: capturing user code into

expression graphs, lowering expression graphs to a common set of high-level operators, optimizing

the high-level operation graph, and executing operations on the backend.

Array-language frontend: Users interact with Spartan using a variant of the NumPy array

language. Spartan uses a lazy evaluation strategy to avoid evaluating user expressions until

necessary; the result of this lazy evaluation is an expression graph. By evaluating expressions

lazily, Spartan can avoid creating temporary arrays for expressions which are never used; it also

allows for optimizations to be performed on the expression graph before evaluation.

Intermediate representation: Rather than directly implementing every array possible op-

45

Figure 4.1: Spartan System Design

eration (which would both reduce expressiveness and require many distinct implementations),

Spartan uses a common set of high-level operators to capture common patterns for array oper-

ations: user expressions are lowered to applications of one or more of these operators. These

operators include the usual suspects (map and reduce), as well as additional operations for prefix

scans, slicing and filtering.

Optimization: The use of high-level operators not only simplifies the implementation of

many functions, it also provides a consistent intermediate representation. The use of an in-

termediate form allows a number of simple, yet powerful fusion optimizations to be applied.

These optimizations combine expression nodes together using algebraic rewrite rules, effectively

eliminating most unnecessary temporary variables.

Distributed array backend: Once an expression graph has been optimized, it can be

executed against the distributed array backend. The backend “understands” multi-dimensional

arrays natively, which enables efficient fetching and updating of arbitrary array regions, and

zero-copy slices. The backend also exposes methods to parallelize operations over arrays, and

leverages the accumulator concept from Piccolo to allow for consistent concurrent updates to

46

x: N (examples) x 100 (features)

x = load(’examples.bin’)

y: N x 1

y = load(’predictions.bin’)

w = random((100, 1))

epsilon = 1e-6

for i in range(100):

yp = dot(x, w)

grad = sum(x * (yp - y), axis=0)

w = w - grad * epsilon

Listing 4.2: Linear Regression

arrays.

This layered approach has many advantages. First, it enables a very modular design, sim-

plifying the task of adding new functionality. Users can update Spartan without needing to

understand or modify the backend: they need only express their extension using one or more

high-level operators. Moreover, such extensions will automatically be optimized by the frontend.

It also greatly simplifies writing new optimizations: optimization writers only need to consider a

small number of high-level operators, rather then the entire set of user functions.

The remainder of this chapter details the programming model and design of the Spartan

system.

4.6 Detailed Design

Listing 4.2 shows a simple linear regression application written in Spartan. The remainder of

this chapter will show how Spartan transforms and executes such an application.

4.6.1 Distributed Arrays

The fundamental data structure for Spartan is the tiled array. A tiled array is an n-

dimensional array which has been divided into one or more contiguous, non-overlapping pieces

(tiles); tiles are spread across machines in a cluster. In Spartan, tiles are uniquely identified by

their extent : the upper-left and lower-right corners of the tile in an array. The Spartan backend

handles storage and processing of these arrays.

47

*

+

s u m

- w’

*

x

do t yp

w

-

y epsilon

Figure 4.2: Linear Regression DAG

4.6.2 Programming Model

Programs in Spartan are written using a variant of the NumPy array language; NumPy itself

is an extension to the Python programming language. As with NumPy, Spartan expressions can

be freely inter-mixed with normal Python code.

To create a new array, users use one of the array creation options: bulk loading data from a

distributed file system, copying a local array into a distributed one, or using one of the builtin

array creation routines (e.g. empty, zeros, ones, rand). Each of these returns an array expression

which can then be manipulated. Once an array has been loaded or created, users can manipulate

it as if it were an ordinary NumPy array – slicing, broadcasting, basic arithmetic operations and

reductions all work as expected.

4.6.3 Lazy Evaluation

Spartan uses lazy evaluation to capture user expressions before evaluating them. This results

in a an expression graph, where each expression in such a graph represents a high-level user

expression.

This lazy evaluation strategy is critical: it allows Spartan to inspect and optimize the resulting

expression graph before running operations. The expression graph resulting from one execution

of the linear regression loop is shown in Figure 4.2.

Expressions are evaluated only when forced : this occurs in a few situations: when a value is

used for flow control (if or while statements), when a user explicitly calls the force function,

when a value must be returned to the user for display (e.g. print(sum(a))), or when the user

requests an array be serialized to disk. It should be noted that this can implicitly cause a form

of loop unrolling to take place: as long as there is no data dependent control flow, expression

graphs will simply continue growing. In theory this could cause memory issues (with very large

48

Operator Usage
empty(shape, dtype) Array initialization routines.
map(map fn, array1, array2. . .) Arithmetic operators, builtins.
filter(fn or mask, array) Boolean indexing.
reduce(reducer fn, accum fn, array, axis) Sum,min,max,etc.
scan(fn, array, axis) Cumulative sum.
shuffle(map fn, accum fn, array) Generic operations.
slice(array, region) Slicing
stencil(array, filter, stride, axes) Image processing.

Table 4.1: High-level operators

loops); if this becomes an issue, a user can always explicitly force an expression to collapse the

graph.

Expressions in Spartan are immutable. This restriction simplifies program analysis and op-

timization, by ensuring that expression graphs are acyclic. This immutability is in contrast to

traditional NumPy arrays, which can be modified. As in practice, most array programs do not

mutate arrays, we find this to be an acceptable limitation.

4.6.4 High-level Operators

The next step in converting an expression graph to an executable form is to lower user ex-

pressions to a consistent set of high-level operators. This lowering operation has two advantages:

it greatly simplifies writing many common functions, as almost all can be expressed using one of

the high-level operators. Second, using a set of common operations enables optimizations to be

applied to the graph, improving performance.

The list of high level operators and their example usage is given in Table 4.1. All operators

which take a function to map over data (map, reduce, scan and shuffle) expect a function which

can process an entire tile of data at a time. We give a brief description of each operator here:

• empty(shape, type) Create a new, empty array of the given shape and data type (float,

int, etc.).

• map(fn, array...) Map a function over one or more arrays, producing a new array

as a result. Input arrays are broadcast to ensure they have the same shape, and a join is

performed across all of the arrays.

• reduce(reduce_fn, accum_fn, array, axis) Reduce an array over a given axis.

49

Operation Translation
yp - y map(lambda a, b: a - b, [yp, y])

sum(z, axis=0) reduce(lambda t: sum(t, axis=0), add, z, 0)

a[0:10, :] slice(a, [0:10])

val[mask] filter(mask, val)

Table 4.2: Example applications of operators

This operator is used to implement all of the builtin reduction functions (min, max, argmin,

argmax, sum, mean, and mode).

• scan(reduce_fn, accum_fn, array, axis) Compute a cumulative reduction over

an axis of an array.

• slice(region, array) Extract a region from array.

• stencil(array, filter, stride, axis) This is an example of a more special-

ized operator. The stencil scans a window across an array along one or more axes and

multiplies each window with one or more filters. This is a basic building block of many

image processing algorithms and convolution neural networks.

• filter(fn_or_mask, array) Apply a filter to array. The filter can be either a

function which returns a boolean value, or a boolean array.

• shuffle(map_fn, accum_fn, array) This operator serves as a sort of ”catch-all”

for functions that are not addressed well by the other operators. The shuffle operator allows

a user to create a target array of an arbitrary shape. The mapper fn is called for each tile

of the source array and returns a list of (region, data) pairs; these are then accumulated

into the target array using the supplied accum_fn. It is used for the matrix multiplication

and array reshaping builtins, and also as a building block for many user-defined operations.

At first glance, the set of operators available may seem overly verbose: we could implement

almost all of them using just the shuffle operator. Making these operations explicit has two im-

portant benefits. First, using separate operators allows Spartan to provide higher-performance

implementations for operations such as slice and stencil. Additionally, the use of separate oper-

ators enables the map and reduce fusion optimizations which are critical for performance.

With these high level operators defined, the process of lowering expressions is straightforward.

A few example translations are shown in Table 4.2.

50

4.6.5 Optimization

After the initial compilation step, we are left with a DAG of high-level operations. While

this can be immediately executed against the backend, we can greatly improve application per-

formance by applying a number of optimizations to the graph at this point.

As is common in most compiler frameworks, each Spartan optimization is structured as a pass :

an optimization takes as input a DAG of operations, and returns (a potentially unmodified) DAG

which computes the same final result. Spartan uses a number of optimization passes. Fusion

rules such as map fusion and reduce fusion combine consecutive operations together into one

aggregate operation, which reduces temporary variables. This type of optimization is also found

in lazy functional languages such as Haskell [2]. The cache collapsing operation prevents fusion

operators from re-evaluating expressions which have already been evaluated. Parakeet generation

executes after the fusion optimizations have been performed. It inspects fused operations and

compiles the fused operations into equivalent Parakeet [77] code.

Map-map fusion Idiomatic use of array expressions results in large numbers of temporary

arrays. In the linear regression application, we can see an example of this during the gradient

calculation grad = sum(x * (yp - y)). Without optimization, this will result in the creation

of 2 temporary arrays before we begin evaluating the sum. An extreme case of this can be seen in

the Black-Scholes implementation found in the evaluation chapter; in this case map-map fusion

results in 33 fewer temporaries.

The map folding optimization eliminates these common temporaries by identifying and com-

bining consecutive map tasks together. Since map operations preserve the shape of the in-

put, fusion is a straightforward process: when the optimizer encounters a sub-tree of the form:

map(g,map(f, x)), it replaces it with a single equivalent map. The replacement rule is:

map(g,map(f, x)) → map(g ⊙ f, x)

Reduce-map fusion Fusing map and reduce operations is similar. If the input to a reduction

is a map operation, then the map operation can be performed locally as part of the reduction,

instead of creating a temporary. The replacement performed is:

51

reduce(g,map(f, x)) → reduce(g ⊙ f, x)

Collapsing Cached Expressions This optimization implements a form of common subex-

pression elimination (CSE). When an expression is evaluated by Spartan, the result is cached

until the expression itself is garbage collected (when it is no longer referenced by a user variable

or another expression graph.) This optimization replaces previously evaluated expressions in the

expression graph with their computed value. Without this optimization, the map and reduce fu-

sion optimizations can end up fusing already evaluated expressions, resulting in redundant work

being performed.

Parakeet Code Generation The fusion operations greatly reduce the number of distributed

temporaries created, but the local evaluation on each worker will still result in local temporaries

being created. This is a known performance issue with NumPy, and projects such as numexpr [8]

have been written to help address it. Unfortunately, tools such as numexpr are rather limited

in their expressiveness; they cannot handle the full set of local expressions output from Spartan.

Recently, the Parakeet [77] optimizing compiler has been released. Parakeet supports a large

subset of NumPy and can target single core, multi-core and (experimentally) GPU accelerators.

The Parakeet optimization pass compiles fused map and reduce operations to Parakeet com-

patible Python code; this code is then compiled to C or CUDA by Parakeet. By leveraging the

Parakeet GPU backend, Spartan can transparently run array language code on a distributed

GPU cluster.

Non-Idempotent Operations The fusion operations all assume that expressions are idem-

potent, and can be evaluated multiple times in the graph affecting correctness. This is not true

for some operations (e.g random), in which case fusing must be disabled. Currently this handled

by explicitly black-listing non-idempotent functions.

4.6.6 Backend

Once the optimization passes are finished, the optimized DAG is ready for execution on the

backend. The backend of Spartan is responsible for storing and accessing arrays and executing

operations provided by the frontend. The basic design of the Spartan backend is similar to that of

52

Master:

new_array(shape, type, tile_hint)

Array:

fetch(selector)

update(extent, data, accum)

map(fn)

Tile:

fetch(selector)

update(extent, data, accum)

make_slice(array, region)

broadcast(array, shape)

Listing 4.3: Backend API

Piccolo, but whereas Piccolo manages key-value tables the Spartan backend manages distributed

arrays; arrays have a slightly more complex interface in order to efficiently handle indexing and

slicing operations. The backend API is shown in Listing 4.3.

The backend consists of a master, which manages array metadata and coordinates execution

and workers which hold array data and execute individual tasks. Only the master process can

create new arrays or map a function over an array; arrays can be retrieved and updates by the

master or any worker.

Tiles At the lowest level, the Spartan backend tracks individual tiles of an array. Tiles

hold a contiguous rectangular region of array data, and are spread across workers. Tiles have

2 representations: dense and sparse. The sparse representation holds a dictionary from array

indices to values. The dense representation holds an array of values and a mask indicating which

values have been initialized.

The fetch method returns data from a tile matching a selector. The selector can be either

a function (which takes the tile data and returns a result), a slice to be applied to the local tile

data, or a boolean or index array.

The update method merges the current data for a tile with that of the update, using the

specified accumulation function. As users are allowed to update arbitrary portions of a tile, a

mask is used for dense tiles to distinguish between uninitialized slots (which are replaced with the

new data) and previously initialized data (which are combined using an accumulation function).

Creating arrays Many primitives need the ability to create a new array; this is provided

by the new_array operation. Given a shape and a data type (e.g. float, double, int, etc), this

53

operation creates a new distributed array and returns a reference to the user. If a tile hint is

given, each tile will be of shape tile hint. (Tile hints may be supplied by the user, or inferred

from the type of operation being performed). If no tile hint is provided a heuristic method is

used which attempts to construct a generically ”good” tile shape. Tiles are uniquely identified

by their extent: this is the upper-left and lower-right corners where the tile resides in the array.

Spartan uses reference counting on the master to automatically garbage collect unused arrays;

when an array is collected, the master sends a request to each worker to remove any tiles belonging

to the dead array.

When an array is created, tiles are uninitialized (the data pointers are set to NULL). This

allows empty tiles to be transmitted and stored efficiently, and speeds up creating sparse or empty

arrays. Users specify the type of tile to be be used when creating arrays; by default Spartan uses

the dense tile format.

Tile alignment A very frequent operation in array applications is a map over multiple arrays:

element-wise operations such as a + b, for example, result in such a map. For efficiency, the

backend must ensure that these operations do not result in excess communication. The backend

handles this by ensuring that if any 2 arrays A and B have the same shape and tile layout, then

each tile t from array A and B will share the same worker.

Accessing and modifying arrays Arrays expose 2 methods for reading and updating

entries, which are natural extensions of the individual tile operations:

The fetch method takes a selector and returns a local array containing the data matching

the selector. As with the tile fetch operation, a selector can be a slice, or an array. A selector

can span multiple tiles; in this case the overlapping region of each tile is determined and fetched,

and the resulting parts are assembled together before returning to the user.

The update operation updates an existing array in place. As with the fetch operation, we

first determine which tiles the given slice overlaps with. The tile data is then split into pieces and

the sent to appropriate workers in parallel. Update operations re-use the accumulator concept

from Piccolo to allow for buffering and to avoid the need to lock or otherwise synchronize array

updates.

broadcast promotes a given array to have the requested shape, adding or increasing di-

mensions as necessary. Rather than creating a copy of the input array, broadcast returns a

54

broadcast object, which mimics the distributed array interface, and translates fetch operations

by dropping dimensions as appropriate. Broadcast objects do not support the update or map

operations.

The make_slice function returns a slice object which represents a slice of an existing array.

Slice objects behave like normal arrays: they can be mapped over, updated and fetched from;

these operations are translated and applied to their base array.

Concurrency The map operator enables parallel processing over an array. The map operator

invokes a user-provided function with locality on each tile of the array, ensuring that all operations

run locally with the machine that holds the tile data. The user function is supplied with the

extent currently being processed; it can use this to look up array data as required. The use

of accumulation functions for array updates eliminates the need for special-purpose reduction

operations or locking of array elements.

Fault Tolerance For fault tolerance, Spartan uses a the Chandy-Lamport global checkpoint-

ing protocol [27]. As most array language operations are fast to evaluate, it is generally sufficient

to save intermediate array data at the application level.

4.6.7 Implementing High-level Operators

Given this set of backend functions, implementing our high-level operators is straightforward.

For example, the map operator broadcasts input arrays to have a consistent shape, creates a new

target array, and then maps over the input arrays, writing the result of the user function to the

target. The full implementation of the map operator is shown in Listing 4.4.

This example also shows how the tile hint parameter can be used to minimize communication.

In this case, we choose to tile our output array in the same manner as our input; this ensures

that all writes to our output array will be local (as the backend ensures tiles are aligned between

arrays).

The reduce operator is similar: a new array is created to hold the output, and an accumula-

tion function is attached to combine updates as shown in Listing 4.5. The slice operator simply

creates a slice wrapper object, as shown in Listing 4.6.

55

def map(map_fn, [X, Y, Z]):

map over the largest array to minimize remote fetches (if any)

largest = find_largest([X, Y, Z])

coerce arrays to have the same shape

Xb, Yb, Zb = X.broadcast(largest), Y.broadcast(largest), Z.broadcast(largest)

create a target array

out = new_array(Xb.shape, tile_hint=Xb.tile_shape)

def _mapper(extent):

map_result = map_fn(Xb.fetch(extent),

Yb.fetch(extent),

Zb.fetch(extent))

out.update(extent, map_result)

invoke our mapper function on each tile

largest.map(_mapper)

Listing 4.4: Map Implementation

def reduce(reduce_fn, accum_fn, X, axis):

create an uninitialized target array with one dimension removed

Y = new_array(shape_for_reduce(X, axis),

tile_hint=tile_for_reduce(X))

def _reducer(ex):

reduce_result = reduce_fn(fetch(X, ex))

compute where to put the reduced value

output_ex = extent_for_reduce(ex, axis)

Y.update(output_ex, reduce_result, accum_fn)

invoke our reducer function on each tile

X.map(_reducer)

Listing 4.5: Reduce Implementation

def slice_op(array, region):

return make_slice(array, region)

Listing 4.6: Slice Operator Implementation

56

4.7 Implementation

Spartan is implemented in Python and consists of approximately 6000 lines of code. Most

of this is devoted to the expression language and optimizations. Spartan aims to replicate the

NumPy API as closely as possible, to reduce the effort of porting existing NumPy applications

to Spartan.

The original Spartan backend was built by extending Piccolo [71] tables, and inherited the

Chandy-Lamport checkpointing facility from Piccolo. The backend has since been replaced, but

we have not yet re-implemented the checkpointing protocol.

57

5
Spartan Evaluation

In this section, we implement a variety of applications in Spartan and evaluate the perfor-

mance of Spartan on each. We also demonstrate how the Spartan optimizations can dramatically

impact the performance of certain applications.

5.1 Test Setup

We evaluate the performance of Spartan on our local cluster. This is a heterogeneous setup

of 11 machines: 6 dual-processor AMD Opteron machines with 16GB of RAM and 16 cores,

and 5 dual-processor Intel Xeon machines with 8GB of RAM and 8 cores. As with the Piccolo

evaluation, we create one worker process per core, and pin processes to a single core.

58

1 2 4 8 16 32 64 80

Workers

0

0.05

0.1

S
ec

on
ds

 slice-box
 slice-cols
 slice-rows

Figure 5.1: Slicing Performance

5.2 Micro-benchmarks

We begin with some micro-benchmarks which evaluate Spartan’s performance for a few small

tasks in isolation.

Slicing The slicing benchmarks measure the amount of time to slice out and compute the sum

over 100 rows, columns or a 100x100 box of an input array of size 10000x1000*numworkers. (The

amount of work performed by the slice-cols operation increases with the number of workers). This

simulates the common activity of a user extracting and computing some statistic over a portion

of their dataset, e.g: array[x:y, a:b].sum().

For this example, the array has been tiled to have contiguous rows. Even with 80 workers

(a 800 million element array), these basic slicing operations are very fast, taking less than 50

milliseconds. They also scale well as the number of workers and data size increases. This makes

common slicing operations suitable for use in an interactive environment.

Stencil Figure 5.2 shows the performance of the stencil operation on our local cluster, for

16 images of size 128x128, and 32 5x5 filters. We increase the size of the images along with

the number of workers. After the initial jump from 1 to 2 workers (execution on one worker

requires no communication), the performance remains relatively stable: this reflects the fact that

very little communication is taking place, as the input and output arrays have been aligned

consistently.

59

1 4 9 16 25 36 49 64

Workers

0

1.0

2.0

3.0
S

ec
on

ds

Stencil

Figure 5.2: Stencil Performance

4 8 16 32 64 80

Workers

0.0
10.0
20.0
30.0
40.0
50.0
60.0
70.0
80.0

S
pe

ed
up

Figure 5.3: Matrix Multiplication Speedup

60

N
o

O
pt

Fu
si

on

Pa
ra

ke
et

G
PU

Optimization

0
10.0
20.0
30.0
40.0
50.0
60.0

S
ec

on
ds

Figure 5.4: Performance of Black-Scholes with Optimizations

Matrix Multiplication Figure 5.3 shows the the speedup for matrix multiplication from

one worker when multiplying 2 square 5000x5000 matrices. The speedup is close to ideal; for

larger numbers of workers, system overhead begins to play a role, as the amount of local work

per machine becomes very small.

5.3 Effect of Optimizations

The importance of the optimization passes is shown in Figure 5.4. This shows the time taken

to calculate 100 million call options using the Black-Scholes formula on a single worker, after

various optimizations have been applied. With all optimizations applied the application runs

over 5 times faster than the näıve version. The fusion operators have the greatest effect; this is

due to the dramatic reduction in temporary arrays needed by the computation.

These optimizations can actually have an even greater effect on shorter running or iterative

applications, where the time required to create and initialize temporaries begins to dominate the

actual processing time.

The remaining benchmarks in this section are evaluated with all optimizations enabled except

for GPU code generation (as GPU code generation is yet not implemented for all high-level

operators).

61

Application Minimum input size Maximum input size

Linear Regression 50M examples, 10 dimensions 4B examples
k-means 2.5M points, 1000 clusters 200M points
Black-Scholes Option Pricing 10M options 800M options
Price Change 10M prices 800M prices
PageRank 3M pages 200M pages

Table 5.1: Application input sizes

5.4 Applications

We implemented a number of applications using Spartan, including linear regression, k-means

clustering, a convolution neural network and PageRank. When evaluating these applications, we

scale the dataset size with the number of workers, keeping the amount of work performed by

each worker the same. Ideal scaling would result in the same runtime regardless of the number

of workers. The dataset sizes we used to test each application are shown in Table 5.1.

5.4.1 Linear Regression

This is the linear regression application shown in Listing 4.2. As this application uses dense

tiles, Spartan can utilize highly optimized local libraries such as Atlas [30] for performing many

of the operations. This is a relatively “easy” application: most of operations are element-wise

and require no communication, with the exception of the final summation.

The scaling performance for linear regression is shown in Figure 5.5. For comparison, we

show the performance of Spark [93], as derived from the Spark paper (we intend to reproduce

the exact times on our cluster shortly). Spartan is approximately 5-6 times faster than Spark on

this benchmark; this is due to the efficiency gains of performing large, tile-wise operations.

5.4.2 Black-Scholes

The Black-Scholes algorithm is used often in financial applications for pricing put and call

options. For Spartan, we compute the put and call price given an array of stock information.

This involves mapping a complex expression against a number of input arrays, and provides

a dramatic illustration of the importance of the map-fusion operator: without optimization,

evaluating an option price requires 34 separate kernel evaluations; map-fusion reduces this to

62

4 8 16 32 64 80

Workers

0

5

10

15

20

S
ec

on
ds

Spark
Spartan

Figure 5.5: Scaling Performance for Linear Regression vs. Spark

1. The code for this application is shown in Listing 5.1. The scaling performance is shown in

Figure 5.6. This application consists of only maps over the data; it thus does not require any

cross-worker communication. The slight performance drop as the number of workers increases is

due to cache and memory conflicts between cores as machines become more heavily loaded.

def black_scholes(current, strike, M, R, V):

d1 = 1.0 / (V * sqrt(M)) *
(log(current / strike) +

(R + V ** 2 / 2) * M)

d2 = d1 - V * M

call = cdf(d1) * current -

cdf(d2) * strike * exp(-R * M)

put = cdf(-d2) * strike * exp(-R * M)

- cdf(-d1) * current

return put, call

Listing 5.1: Black-Scholes

5.4.3 k-means

k-means clustering is an example of expectation-maximization, a popular unsupervised ma-

chine learning technique. k-means attempts to find good clusters for a number of n-dimensional

points. k-means can be implemented in an array language by combining the argmin and matrix

multiplication operators [5]; our implementation does not take this approach, as it requires sig-

63

1 4 16 32 64 80

Workers

0

1.0

2.0

3.0

4.0

S
ec

on
ds

Ideal

Figure 5.6: Scaling Performance for Black-Scholes

nificantly more memory to compute. Instead, we use a custom operator which maps over the

points array and finds the nearest cluster for each point. It then aggregates a local set of updates

for the cluster array. This is similar to the original Piccolo implementation. With the future

addition of optimizations for combining matrix multiplication and reductions, this can be greatly

simplified. Listing 5.2 shows the implementation.

The performance of this application is shown in Figure 5.7. As most of the work is performed

locally, we see the same scaling as for our Black-Scholes application.

4 8 16 32 64 80

Workers

0

50

100

150

S
ec

on
ds

Ideal

Figure 5.7: Scaling Performance for k-Means

64

def _find_clusters(inputs, ex, d_pts, old_centers, new_centers, new_counts):

centers = old_centers.fetch_all()

pts = d_pts.fetch(ex)

find the closest centers for our local points and

sum up their positions and counts

closest = _find_closest(pts, centers)

l_counts = zeros((centers.shape[0], 1))

l_centers = zeros_like(centers)

for i in range(centers.shape[0]):

matching = closest == i

l_counts[i,0] = matching.sum()

l_centers[i] = pts[matching].sum(axis=0)

update centroid positions

new_centers.update(extent.from_shape(new_centers.shape), l_centers)

new_counts.update(extent.from_shape(new_counts.shape), l_counts)

return []

def em_step(pts, centers):

new_centers = ndarray((num_centers, num_dim))

new_counts = ndarray((num_centers,1))

shuffle(pts, _find_clusters, pts, centers, new_centers, new_counts)

return new_centers / new_counts

Listing 5.2: Spartan k-Means Implementation

def find_change(prices, threshold=0.5):

diff = abs(prices[1:] - prices[:-1])

return prices[diff > threshold]

Listing 5.3: Price fluctuation

5.4.4 Price-change Calculation

Another example motivated by financial applications; this application returns positions in an

input array where the array changes by more than a certain threshold, which might be used when

trying to identify interesting points in a time series. This leverages the filter and scan operators.

The code for this application is shown in Listing 5.3.

A näıve implementation of this benchmark would require a reduction over the diff array in

order to compute how many prices changed, followed by a map over the prices array to copy

out the changed prices. Spartan leverages the it’s builtin support for masked tiles to avoid these

expensive operations. The performance for this benchmark is shown in Figure 5.8.

65

1 2 4 8 16 32 64 80

Workers

0

1.0

2.0

3.0

S
ec

on
ds

Ideal

Figure 5.8: Scaling Performance for Price Change computation

def pagerank():

graph = load(’/dfs/graph.dat’)

num_pages = graph.shape[0]

ranks = rand(num_pages)

for i in range(50):

ranks = dot(graph, ranks)

Listing 5.4: Spartan PageRank Implementation

5.4.5 PageRank

We implemented the PageRank algorithm in Spartan as shown in Listing 5.4. Rather than

using the more familiar explicit form which loops over pages and outlinks, we simply use the dot

(matrix multiplication) operator to multiply our graph matrix and rank vector. This is the Power

Method for computing eigenvalues. It is dramatically simpler than the Piccolo implementation

shown in Listing 2.4.

To evaluate this application, as with the Piccolo PageRank experiment, we generate a random

web graph based on the expected distribution of sites. As Spartan does not yet have support

for streaming sparse data from disk, we are not able to test it with as large of a graph. The

performance is shown in in Figure 5.9. The Spartan implementation is slightly slower than

the original Piccolo implementation. This is primarily due to inefficiencies in the local sparse

multiplication routines, which we are addressing.

We also implemented 2 larger applications in Spartan; a convolutional neural network and an

sparse matrix factorizer using stochastic gradient descent.

66

8 16 32 64

Workers

0

10

20

30

40

S
ec

on
ds

Ideal

Figure 5.9: Scaling Performance for PageRank

5.4.6 Convolutional Neural Network

This example implements the forward propagation pass for a convolutional neural network

(CNN) [52]. The builtin multiplication and stencil operators make this application reasonably

straightforward to implement. Distributing CNNs has become a very popular area of interest

recently [31], as they can achieve very good classification performance, but take a long time to

train, even when using optimized GPU kernels [50]. The implementation of this application is

shown in Listing 5.5. This application also makes use of the maxpool function; this function is

substantially similar to the stencil operation, but instead of multiplying a window of an array

with a set of weights, it applies a function (in this casemax). While these operations are currently

implemented separately in Spartan, we hope to combine their functionality soon.

Figure 5.10 shows the time to forward propagate a batch of images through a 3-layer CNN,

using 512x512 images and filters of size 9x9. We scale the batch size with the number of workers.

Our current implementation uses a CPU-based convolution routine, which limits the per-worker

performance. We are working on extending the stencil operation to support efficient GPU based

operations.

5.4.7 Matrix Factorization

For this experiment we implemented the stochastic gradient descent (SGD) based matrix

factorization technique described in the Sparkler[53] paper. We used the sparse Netflix Prize [7]

67

images is a 4-dimensional array (image #, width, height, color)

filters are 4-dimensional arrays: (filter#, filter_size, filter_size, color)

def fprop(images, filter_0, filter_1, filter_2):

convolve images with filter_0 using a stride of 4.

scan across the width and height of each image

conv1 = stencil(images, filter_0, 4, (1, 2))

pool1 = maxpool(conv1, stride=2, axis=(1,2))

conv2 = stencil(pool1, filter_1, 1, (1, 2))

pool2 = maxpool(conv2, stride=2, axis=(1,2))

conv3 = stencil(pool2, filter_2, 1, (1, 2))

pool3 = maxpool(conv3, stride=2, axis=(1,2))

return a vector of the final output

return pool3.ravel()

Listing 5.5: Convnet Forward Propagation

1 4 9 16 25 36 49 64

Workers

0
10.0
20.0
30.0
40.0
50.0

S
ec

on
ds

Ideal

Figure 5.10: Scaling Performance for Convolutional Neural Network

68

25 50 100 200 400

Factor Rank

0
25
50
75

100
125
150
175

S
ec

on
ds

Sparkler
Spartan

Figure 5.11: Netflix Matrix Factorization

dataset for evaluation: this consists of 100 million ratings across 500k users and 17k movies. Ma-

trix factorization is a popular and effective mechanism for learning predictions on large datasets

such as this one.

The core of this algorithm consists of mapping over independent tiles (“strata”), and updating

the 2 factor matrices (U and M in the code listing). This operation does not directly correspond

to any of the builtin Spartan operators, but it is relatively straightforward to implement via the

generic shuffle operator and leveraging the updateable array interface provided by the backend.

The implementation is shown in Figure 5.6. We refer readers to the Sparkler paper for details

about the algorithm.

The results for this experiment (run on 10 machines to match the experiments from the

Sparkler paper) are shown in Figure 5.11. Both systems scale reasonably well as the rank of

the factor matrices increases, with Spartan generally running 50% faster. The native Spark

implementation (from the Sparkler paper) is approximately 10 times slower. The Sparkler times

are from the Sparkler paper (the Sparkler cluster machines are somewhat more powerful than

our own).

69

The input to this computation is three arrays: V, M and U.

U and M are factor matrices with shape (#users, rank) and (#movies, rank).

V is a sparse matrix of shape (#users, #movies) in COO format

(it holds three arrays of the form (row, column, value))

#

We iterate over V and update the U and M matrices based on prediction error.

(Array mutation is allowed on backend arrays).

@parakeet.jit

def _sgd_inner(rows, cols, vals, u, m):

for offset, mid, rating in zip(rows, cols, vals):

u_idx = offset

m_idx = mid

guess = np.dot(u[u_idx], m[m_idx].T)

diff = rating - guess

u[u_idx] += u[u_idx] * diff * EPSILON

m[m_idx] += u[u_idx] * diff * EPSILON

def sgd_netflix_mapper(inputs, ex, V, M, U, worklist):

if not ex in worklist: return

v = V.fetch(ex)

u = U.fetch(ex[0]) # size: (ex.shape[0] * r)

m = M.fetch(ex[1]) # size: (ex.shape[1] * r)

_sgd_inner(v.row, v.col, v.data)

U.update(ex[0], u)

M.update(ex[1], m)

return []

def strata_overlap(extents, v):

for ex in extents:

if v.ul[0] <= ex.ul[0] and v.lr[0] > ex.ul[0]: return True

if v.ul[1] <= ex.ul[1] and v.lr[1] > ex.ul[1]: return True

return False

def _compute_strata(V):

strata = []

extents = V.tiles.keys()

random_shuffle(extents)

while extents:

stratum = []

for ex in list(extents):

if not strata_overlap(stratum, ex):

stratum.append(ex)

for ex in stratum: extents.remove(ex)

strata.append(stratum)

return strata

def sgd(V, M, U):

strata = _compute_strata(V)

for i, stratum in enumerate(strata):

worklist = set(stratum)

force(shuffle(V, sgd_netflix_mapper,

V, M, U, worklist))

Listing 5.6: Matrix Factorization Implementation

70

6
Related Work

6.1 Piccolo

Communication-oriented models: Communication-based primitives such as MPI [38] and

Parallel Virtual Machine (PVM [82]) have been popular for constructing distributed programs

for many years. MPI and PVM offer extensive messaging mechanisms including unicast and

broadcast as well as support for creating and managing remote processes in a distributed envi-

ronment. There has been continuous research on developing experimental features for MPI, such

as optimization of collective operations [10], fault-tolerance via machine virtualization [60] and

the use of hybrid checkpoint and logging for recovery [19]. MPI has been used to build very high

performance applications - its support of explicit communication allows considerable flexibility in

71

writing applications to take advantage of a wide variety of network topologies in supercomputing

environments. This flexibility has a cost in the form of complexity - users must explicitly manage

communication and synchronization of state between workers, which can become difficult to do

while attempting to retain efficient and correct execution.

BSP (Bulk Synchronous Parallel) is a high-level communication-oriented model [88]. In this

model, threads execute on different processors with local memory, communicate with each other

using messages, and perform global-barrier synchronization. BSP implementations are typically

realized using MPI [44]. Recently, the BSP model has been adopted in the Pregel framework for

parallelizing work on large graphs [56].

Distributed shared-memory: The complexity of programming for communication-oriented

models drove a wave of research in the area of distributed shared memory (DSM) systems [49,

48, 54, 15]. Most DSM systems aim to provide transparentmemory access, which causes programs

written for DSMs to incur many fine-grained synchronization events and remote memory reads.

While initially promising, DSM research has fallen off as the ratio of network latency to local

CPU performance has widened, making näıve remote accesses and synchronization prohibitively

expensive.

Parallel Global Address Space (PGAS) [33, 62, 90] are a set of language extensions to realize

a distributed shared address space. These extensions try to ameliorate the latency problems

of DSM by allowing users to express affinities of portions of shared memory with a particular

thread, thereby reducing the frequency of remote memory references. They retain the low level

(flat memory) interface common to DSM. As a result, applications written for PGAS systems

still require fine-grained synchronization when operating on non-primitive data-types, or in order

to aggregate several values (for instance, computing the sum of a memory location with multiple

writers).

Tuple spaces, as seen in languages such as Linda [23] and frameworks like JavaSpaces [39]

and GigaSpaces [3], give users access to one or more global tuple-spaces accessible from all

participating threads. Tuple spaces provide atomic primitives for executing tasks and reading and

writing tuples, including a form of “compare-and-swap” to read a matching tuple and remove it

from the space simultaneously. These features make them very useful for coordinating workers in

a distributed environment. Enhancements to the original model have added support for multiple

72

spaces [41], and bulk primitives for copying and moving matching tuples between spaces, enabling

global synchronization [76, 22]. Modern implementations like GigaSpaces [3] have support

for user specified partitioning of data and replication. Tuple-spaces do not have an efficient

mechanism for coordinating multiple updates to a single entry; this limits their usefulness for

update intensive tasks such as PageRank or web crawling.

MapReduce and Dataflow models: In recent years, MapReduce has emerged as a popular

programming model for parallel data processing [36]. There are many recent efforts inspired by

MapReduce ranging from generalizing MapReduce to support the join operation [46], improving

MapReduce’s pipelining performance [32], building high-level languages on top of MapReduce

(e.g. DryadLINQ [92], Hive [85], Pig [65] and Sawzall [69]). FlumeJava [25] provides a set of

collection abstractions and parallel execution primitives which are optimized and compiled down

to a sequence of MapReduce operations.

The programming models of MapReduce [36] and Dryad [46] are instances of stream process-

ing, or data-flow models. Because of MapReduce’s popularity, programmers started using it to

build in-memory iterative applications such as logistic regression and k-means [9], even though

it is not natural fit for these applications. Spark [93] focuses on in-memory datasets and lever-

ages an accumulator-like technique which allows it to provide reasonably high-performance for

this type of iterative application. It retains a dataflow model with immutable collections, which

prevents writing long-running applications such as a web crawler.

The sparse nature of these systems enables them to support a wide variety of datasets and

programming tasks, but they suffer from poor performance for typically “dense” operations

(matrix multiply, etc) [72] and lack efficient or convenient support for operations such as slicing.

Single-machine shared memory models: Many programming models are available for par-

allelizing execution on a single machine. In this setting, there exists a physically-shared memory

among computing cores supporting low-latency memory access and fast synchronization between

threads of computation, which are not available in a distributed environment. Although there are

also popular streaming/data-flow models [79, 84, 21], most parallel models for a single machine

are based on shared-memory. For the GPU platform, there are CUDA [63] and OpenCL [43]. For

multi-core CPUs, Cilk [17] and more recently, Intel’s Thread Building Blocks [73] provide support

for low-overhead thread creation and dispatching of tasks at a fine level. OpenMP [34] is a pop-

73

ular shared-memory model among the scientific computing community: it allows users to target

sections of code for parallel execution and provides synchronization and reduction primitives. Re-

cently, there have been efforts to support OpenMP programs across a cluster of machines [45, 13].

However, based on software distributed shared memory, the resulting implementations suffer from

the same limitations of DSMs and PGAS systems.

Distributed data structures: The goal of distributed data structures is to provide a flexi-

ble and scalable data storage or caching interface. Examples of these include DDS [42], Mem-

cached [68], the recently proposed RamCloud [67], and many key-value stores based on distributed

hash tables [11, 37, 80, 75]. These systems do not seek to provide a computation model, but

rather are targeted towards loosely-coupled distributed applications such as web serving.

6.2 Spartan

The above projects are all related to Spartan (as it uses a Piccolo-style backend). In addition,

the following array oriented systems share similar feature sets.

Parallel vector languages such as ZPL [55], SISAL [58] and NESL [16] share many common

characteristics with Spartan. These languages all expose a form of distributed array or vector

primitive, with a small set of core operators to perform parallel operations. These languages

each have certain limitations not shared by Spartan: ZPL does not allow for arbitrary indexing

of parallel arrays, and does not allow parallelization of indexable arrays. NESL relies on a PRAM

model which assumes that a shared, distributed region of memory can be accessed in a reasonable

amount of time; this is not the case for modern computers and networks. The original SISAL

design assumed a similar memory model, updated versions provide a more explicit tiled model

for arrays [40]. Unlike Spartan’s generic accumulator design, SISAL is limited to a small number

of builtin reduction operators. Both SISAL and ZPL focus on static compilation of an array

program, which makes them unsuitable for the interactive environment which modern array

languages often used in.

SciDB [81] extends a traditional relational database (PostgreSQL) with support for dis-

tributed multi-dimensional arrays. SciDB is designed to enable processing of large dense or sparse

array datasets within a familiar SQL environment. Users can express certain array computations

74

using an extended form of SQL with support for some array slices and filtering operations. As

SciDB is primarily targeted for data retrieval on very large (on-disk) datasets, it is does yet

provide a very efficient backend for distributed in-memory computation, as we have found with

our own testing.

Distributed array backends have been in development for many years: ScaLAPACK[29]

provides distributed implementation of the Lapack [12] linear algebra API, and is still under

development. More recent projects such as Elemental [70] and the Global Arrays Toolkit [61]

export a similar interface but have better performance on modern hardware. These projects are

focused on providing highly optimized implementations of specific operations: they are very fast

for operations that have been built-in, but their low-level nature does not allow for higher-level

optimizations, and their programming model (based on MPI) is difficult to extend.

Specialized array frameworks Dandelion [74] is an extension to the LINQ [59] programming

framework which adds specific support for compiling operations to GPU kernels. Dandelion

retains LINQ’s sparse relational (key-value) focus, and does not support directly support such

as slicing, tiling or filtering for arrays. MadLINQ [72] is an extension to the DryadLINQ [92]

execution engine which adds specific support for dense distributed arrays. This is accomplished

by creating a new Matrix class to represent distributed arrays, and uses a clever lazy evalua-

tion strategy which expands execution graphs on-demand. MadLINQ shows good performance

on matrix multiplication and factorization benchmarks (beating the highly tuned ScaLAPACK

code). Operations in MadLINQ operate on whole tiles at a time; this makes it unsuitable for

performing operations such as slicing or filtering or filtering.

Presto [89] is an extension to the R [83] statistical programming language which adds support

for distributed array processing. Presto builds on top of distributed, updateable tables (similar

to Piccolo), using a parallel foreach operator to exploit multiple machines. Presto has explicit

support for iterative operations via the onchange and update operators. Like MadLINQ, Presto

operates at the tile level and does not sub-tile operations such as slicing or filtering.

75

7
Conclusion

This thesis presented two complementary frameworks, Piccolo and Spartan, which are de-

signed to help users write efficient distributed in-memory applications. The design of both

systems allows them to efficiently execute a wide variety of in-memory applications.

Piccolo provides users with a distributed in-memory table interface for sharing state. A

key feature of Piccolo is its usage of commutative operators to efficiently coordinate updates

to shared data, which provides a general solution to the problem of write-write conflict issues

found in existing distributed shared memory systems. We demonstrate the usefulness of Piccolo

by developing a range of applications, including k-means, n-body simulation, PageRank and a

distributed web crawler.

Spartan addresses the difficulty of writing raw Piccolo programs. Spartan implements a

76

distributed version of the NumPy array language. Spartan combines a number of techniques,

including lazy evaluation, high-level operators and expression graph optimizations to compile

high-level array language code to an extended Piccolo backend. We evaluated Spartan on a

number of common array language applications such as k-means, linear regression, PageRank

and matrix factorization, and show that it obtains good performance while allowing users to

write simple, high-level array code.

77

Bibliography

[1] Apache hadoop. http://hadoop.apache.org.

[2] GHC optimisations. http://www.haskell.org/haskellwiki/GHC_optimisations.

[3] Gigaspaces: Xap in-memory computing. http://www.gigaspaces.com/.

[4] Julia language. http://julialang.org/.

[5] Matlab K-means with Simple Patches.

http://www.cc.gatech.edu/grads/d/dkuang3/software/kmeans3.html.

[6] Matrix multiplication using mpi. http://www.cs.umanitoba.ca/˜comp4510/examples.html.

[7] Netflix prize.

[8] numexpr: Fast numerical array expression evaluator for python and numpy.

https://github.com/pydata/numexpr.

[9] Mahout: Scalable machine learning and data mining, 2012. http://mahout.apache.org/.

[10] Almási, G., Heidelberger, P., Archer, C. J., Martorell, X., Erway, C. C., Moreira, J. E.,

Steinmacher-Burow, B., and Zheng, Y. Optimization of MPI collective communication on BlueGene/L

systems. In Proceedings of the 19th annual international conference on Supercomputing (New York, NY,

USA, 2005), ICS ’05, ACM, pp. 253–262.

[11] Andersen, D. G., Franklin, J., Kaminsky, M., Phanishayee, A., Tan, L., and Vasudevan, V. FAWN:

a fast array of wimpy nodes. In SOSP (2009), J. N. Matthews and T. E. Anderson, Eds., ACM, pp. 1–14.

[12] Anderson, E., Bai, Z., Dongarra, J., Greenbaum, A., McKenney, A., Du Croz, J., Hammerling, S.,

Demmel, J., Bischof, C., and Sorensen, D. Lapack: A portable linear algebra library for

high-performance computers. In Proceedings of the 1990 ACM/IEEE conference on Supercomputing

(1990), IEEE Computer Society Press, pp. 2–11.

[13] Basumallik, A., Min, S.-J., and Eigenmann, R. Programming distributed memory sytems using

OpenMP. Parallel and Distributed Processing Symposium, International 0 (2007), 207.

[14] Beazley, D. M. Automated scientific software scripting with SWIG. Future Gener. Comput. Syst. 19

(July 2003), 599–609.

78

http://hadoop.apache.org
http://www.haskell.org/haskellwiki/GHC_optimisations
http://www.gigaspaces.com/
http://julialang.org/
http://www.cc.gatech.edu/grads/d/dkuang3/software/kmeans3.html
http://www.cs.umanitoba.ca/~comp4510/examples.html
https://github.com/pydata/numexpr
http://mahout.apache.org/

[15] Bershad, B. N., Zekauskas, M. J., and Sawdon, W. The Midway Distributed Shared Memory System.

In Proceedings of the 38th IEEE Computer Society International Conference (1993).

[16] Blelloch, G. E. NESL: A nested data-parallel language.(version 3.1). Tech. rep., DTIC Document, 1995.

[17] Blumofe, R. D., Joerg, C. F., Kuszmaul, B. C., Leiserson, C. E., Randall, K. H., and Zhou, Y.

Cilk: an efficient multithreaded runtime system. In PPOPP ’95: Proceedings of the fifth ACM SIGPLAN

symposium on Principles and practice of parallel programming (New York, NY, USA, 1995), ACM,

pp. 207–216.

[18] Boldi, P., and Vigna, S. The WebGraph framework I: Compression techniques. In Proc. of the

Thirteenth International World Wide Web Conference (WWW 2004) (Manhattan, USA, 2004), ACM

Press, pp. 595–601.

[19] Bosilca, G., Bouteiller, A., Cappello, F., Djilali, S., Fedak, G., Germain, C., Herault, T.,

Lemarinier, P., Lodygensky, O., Magniette, F., Neri, V., and Selikhov, A. Mpich-v: toward a

scalable fault tolerant mpi for volatile nodes. In Proceedings of the 2002 ACM/IEEE conference on

Supercomputing (Los Alamitos, CA, USA, 2002), Supercomputing ’02, IEEE Computer Society Press,

pp. 1–18.

[20] Brin, S., and Page, L. The anatomy of a large-scale hypertextual web search engine. Computer Networks

and ISDN Systems 30, 1-7 (1998), 107 – 117. Proceedings of the Seventh International World Wide Web

Conference.

[21] Buck, I., Foley, T., Horn, D., Sugerman, J., Fatahalian, K., Houston, M., and Hanrahan, P. Brook

for GPUs: stream computing on graphics hardware. In ACM SIGGRAPH 2004 Papers (2004), ACM,

p. 786.

[22] Butcher, P., Wood, A., and Atkins, M. Global synchronisation in linda. Concurrency: Practice and

Experience 6, 6 (1994), 505–516.

[23] Carriero, N., and Gelernter, D. Linda in context. Commun. ACM 32, 4 (1989), 444–458.

[24] Chamberlain, B. L., Callahan, D., and Zima, H. P. Parallel programmability and the chapel language.

International Journal of High Performance Computing Applications 21, 3 (2007), 291–312.

[25] Chambers, C., Raniwala, A., Perry, F., Adams, S., Henry, R. R., Bradshaw, R., and Weizenbaum,

N. Flumejava: Easy, efficient data-parallel pipelines. In PLDI - ACM SIGPLAN 2010 (2010).

[26] Chandy, K. M., and Lamport, L. Distributed snapshots: determining global states of distributed systems.

ACM Transactions on Computer Systems (TOCS) 3 (1985), 63–75.

[27] Chandy, K. M., and Lamport, L. Distributed snapshots: determining global states of distributed systems.

ACM Transactions on Computer Systems (TOCS) 3, 1 (1985), 63–75.

[28] Charles, P., Grothoff, C., Saraswat, V., Donawa, C., Kielstra, A., Ebcioglu, K., Von Praun, C.,

and Sarkar, V. X10: an object-oriented approach to non-uniform cluster computing. Acm Sigplan Notices

40, 10 (2005), 519–538.

79

[29] Choi, J., Dongarra, J. J., Pozo, R., and Walker, D. W. Scalapack: A scalable linear algebra library for

distributed memory concurrent computers. In Frontiers of Massively Parallel Computation, 1992., Fourth

Symposium on the (1992), IEEE, pp. 120–127.

[30] Clint Whaley, R., Petitet, A., and Dongarra, J. J. Automated empirical optimizations of software

and the atlas project. Parallel Computing 27, 1 (2001), 3–35.

[31] Coates, A., Huval, B., Wang, T., Wu, D., Catanzaro, B., and Andrew, N. Deep learning with cots

hpc systems. In Proceedings of the 30th International Conference on Machine Learning (ICML-13) (2013),

pp. 1337–1345.

[32] Condie, T., Conway, N., Alvaro, P., and Hellerstein, J. MapReduce online. In NSDI (2010).

[33] Consortium, U. UPC language specifications, v1.2. Tech. rep., Lawrence Berkeley National Lab, 2005.

[34] Dagum, L., and Menon, R. Open MP: An Industry-Standard API for Shared-Memory Programming.

IEEE Computational Science and Engineering 5, 1 (1998), 46–55.

[35] Daily, J., and Lewis, R. R. Using the global arrays toolkit to reimplement numpy for distributed

computation. In Proceedings of the 10th Python in Science Conference (2011).

[36] Dean, J., and Ghemawat, S. Mapreduce: Simplified data processing on large clusters. In Symposium on

Operating System Design and Implementation (OSDI) (2004).

[37] DeCandia, G., Hastorun, D., Jampani, M., Kakulapati, G., Lakshman, A., Pilchin, A.,

Sivasubramanian, S., Vosshall, P., and Vogels, W. Dynamo: Amazon’s highly available key-value

store. In ACM Symposium on Operating Systems Principles (Oct. 2007), pp. 205–220.

[38] Forum, M. MPI 2.0 standard, 1997.

[39] Freeman, E., Arnold, K., and Hupfer, S. JavaSpaces Principles, Patterns, and Practice.

Addison-Wesley Longman Ltd., Essex, UK, UK, 1999.

[40] Gaudiot, J.-L., Bohm, W., Najjar, W., DeBoni, T., Feo, J., and Miller, P. The sisal model of

functional programming and its implementation. In Parallel Algorithms/Architecture Synthesis, 1997.

Proceedings. Second Aizu International Symposium (1997), IEEE, pp. 112–123.

[41] Gelernter, D. Multiple tuple spaces in Linda. Springer, 1989.

[42] Gribble, S. D., Brewer, E. A., Hellerstein, J. M., and Culler, D. Scalable, distributed data

structures for internet service construction. In OSDI’00: Proceedings of the 4th conference on Symposium

on Operating System Design & Implementation (Berkeley, CA, USA, 2000), USENIX Association,

pp. 22–22.

[43] Group, K. O. W. The OpenCL specification. Tech. rep., 2009.

[44] Hill, J., McColl, W., Stefanescu, D., Goudreau, M., Lang, K., Rao, S., Suel, T., Tsantilas, T.,

and Bisseling, H. Bsplib: The bsp programming library. Parallel Computing 24 (1998).

[45] Hoeflinger, J. P. Extending OpenMP to clusters. Tech. rep., Intel, 2009.

80

[46] Isard, M., Budiu, M., Yu, Y., Birrell, A., and Fetterly, D. Dryad: Distributed data-parallel programs

from sequential building blocks. In European Conference on Computer Systems (EuroSys) (2007).

[47] Isard, M., Prabhakaran, V., Currey, J., Wieder, U., Talwar, K., and Goldberg, A. Quincy: Fair

scheduling for distributed computing clusters. In SOSP (2010).

[48] Johnson, K. L., Kaashoek, M. F., and Wallach, D. A. CRL: High-performance all-software distributed

shared memory. In SOSP (1995).

[49] Keleher, P., Cox, A. L., and Zwaenepoel, W. Lazy release consistency for software distributed shared

memory. In In Proceedings of the 19th Annual International Symposium on Computer Architecture (1992).

[50] Krizhevsky, A., Sutskever, I., and Hinton, G. Imagenet classification with deep convolutional neural

networks. In Advances in Neural Information Processing Systems 25 (2012), pp. 1106–1114.

[51] Lamport, L. How to make a multiprocessor that correctly executes multiprocess programs. IEEE

Transactions on Computers 28, 9 (1979).

[52] Le Cun, B. B., Denker, J., Henderson, D., Howard, R., Hubbard, W., and Jackel, L. Handwritten

digit recognition with a back-propagation network. In Advances in neural information processing systems

(1990), Citeseer.

[53] Li, B., Tata, S., and Sismanis, Y. Sparkler: Supporting large-scale matrix factorization. In Proceedings of

the 16th International Conference on Extending Database Technology (2013), ACM, pp. 625–636.

[54] Li, K., and Hudak, P. Memory coherence in shared virtual memory systems. ACM Transactions on

Computer Systems (TOCS) 7 (1989), 321–359.

[55] Lin, C., and Snyder, L. ZPL: An array sublanguage. In Languages and Compilers for Parallel

Computing. Springer, 1994, pp. 96–114.

[56] Malewicz, G., Austern, M. H., Bik, A. J., Dehnert, J. C., Horn, I., Leiser, N., and Czajkowski, G.

Pregel: a system for large-scale graph processing. In SIGMOD ’10: Proceedings of the 2010 international

conference on Management of data (New York, NY, USA, 2010), ACM, pp. 135–146.

[57] MathWorks. MATLAB software.

[58] McGraw, J., Skedzielewski, S., Allan, S., Oldehoeft, R., Glauert, J., Kirkham, C., Noyce, B.,

and Thomas, R. SISAL: streams and iteration in a single assignment language. Language Reference

Manual. 1985.

[59] Meijer, E., Beckman, B., and Bierman, G. Linq: reconciling object, relations and xml in the. net

framework. In Proceedings of the 2006 ACM SIGMOD international conference on Management of data

(2006), ACM, pp. 706–706.

[60] Nagarajan, A. B., Mueller, F., Engelmann, C., and Scott, S. L. Proactive fault tolerance for hpc

with xen virtualization. In Proceedings of the 21st annual international conference on Supercomputing

(New York, NY, USA, 2007), ICS ’07, ACM, pp. 23–32.

81

[61] Nieplocha, J., Harrison, R. J., and Littlefield, R. J. Global arrays: A nonuniform memory access

programming model for high-performance computers. The Journal of Supercomputing 10, 2 (1996),

169–189.

[62] Numrich, R. W., and Reid, J. Co-array Fortran for parallel programming. SIGPLAN Fortran Forum 17

(August 1998), 1–31.

[63] Nvidia. Cuda programming guide, 2007.

[64] Oliphant, T., et al. Numpy, a python library for numerical computations.

[65] Olson, C., Reed, B., Srivastava, U., Kumar, R., and Tomkins, A. Pig Latin: A not-so-foreign language

for data processing. In ACM SIGMOD (2008).

[66] Olston, C., Reed, B., Srivastava, U., Kumar, R., and Tomkins, A. Pig latin: a not-so-foreign language

for data processing. In Proceedings of the 2008 ACM SIGMOD international conference on Management

of data (2008), ACM, pp. 1099–1110.

[67] Ousterhout, J., Agrawal, P., Erickson, D., Kozyrakis, C., Leverich, J., Mazieres, D., Mitra, S.,

Narayanan, A., Parulkar, G., Rosenblum, M., Rumberl, S., Stratmann, E., and Stutsman, R. The

case for RAMclouds: Scalable high-performance storage entirely in DRAM. In Operating system review

(Dec. 2009).

[68] Phillips, L., and Fitzpatrick, B. Livejournal’s backend and memcached: Past, present, and future. In

LISA (2004), USENIX.

[69] Pike, R., Dorward, S., Griesemer, R., and Quinlan, S. Interpreting the data: Parallel analysis with

Sawzall. In Scientific Programming (2005).

[70] Poulson, J., Marker, B., van de Geijn, R. A., Hammond, J. R., and Romero, N. A. Elemental: A new

framework for distributed memory dense matrix computations. ACM Trans. Math. Softw. 39, 2 (feb 2013),

13:1–13:24.

[71] Power, R., and Li, J. Piccolo: Building fast, distributed programs with partitioned tables. In OSDI

(2010), pp. 293–306.

[72] Qian, Z., Chen, X., Kang, N., Chen, M., Yu, Y., Moscibroda, T., and Zhang, Z. MadLINQ:

large-scale distributed matrix computation for the cloud. In Proceedings of the 7th ACM european

conference on Computer Systems (New York, NY, USA, 2012), EuroSys ’12, ACM, pp. 197–210.

[73] Reinders, J. Intel threading building blocks: outfitting C++ for multi-core processor parallelism. O’Reilly

Media, Inc., 2007.

[74] Rossbach, C. J., Yu, Y., Currey, J., Martin, J.-P., and Fetterly, D. Dandelion: a compiler and

runtime for heterogeneous systems. In Proceedings of the Twenty-Fourth ACM Symposium on Operating

Systems Principles (2013), ACM, pp. 49–68.

[75] Rowstron, A., and Druschel, P. Pastry: Scalable, distributed object location and routing for large-scale

peer-to-peer systems. In 18th IFIP/ACM International Conference on Distributed Systems Platforms

(Nov. 2001).

82

[76] Rowstron, A. I., and Wood, A. Bonita: A set of tuple space primitives for distributed coordination. In

System Sciences, 1997, Proceedings of the Thirtieth Hawaii International Conference on (1997), vol. 1,

IEEE, pp. 379–388.

[77] Rubinsteyn, A. Runtime Compilation of Array-Oriented Python Programs. PhD thesis, New York

University, 2013.

[78] Singh, J. P., Weber, W.-D., and Gupta, A. SPLASH: Stanford parallel applications for shared-memory.

Tech. rep., Stanford University, 1991.

[79] Stephens, R. A survey of stream processing, 1995.

[80] Stoica, I., Morris, R., Liben-Nowell, D., Karger, D. R., Kaashoek, M. F., Dabek, F., and

Balakrishnan, H. Chord: A scalable peer-to-peer lookup protocol for Internet applications. IEEE/ACM

Transactions on Networking (2002), 149–160.

[81] Stonebraker, M., Brown, P., Poliakov, A., and Raman, S. The architecture of SciDB. In Scientific

and Statistical Database Management (2011), Springer, pp. 1–16.

[82] Sunderam, V. PVM: A framework for parallel distributed computing. Concurrency: Practice and

Experience (1990), 315–339.

[83] Team, R. D. R: A language and environment for statistical computing.

[84] Thies, W., Karczmarek, M., and Amarasinghe, S. StreamIt: A language for streaming applications. In

Compiler Construction (2002), Springer, pp. 49–84.

[85] Thusoo, A., Sarma, J. S., Jain, N., Shao, Z., Chakka, P., Anthony, S., Liu, H., Wyckoff, P., and

Murthy, R. Hive: a warehousing solution over a map-reduce framework. Proc. VLDB Endow. 2 (August

2009), 1626–1629.

[86] tsang Lee, H., Leonard, D., Wang, X., and Loguinov, D. Irlbot: Scaling to 6 billion pages and beyond.

In WWW Conference (2008).

[87] Twitter. Scalding: A scala api for cascading.

[88] Valiant, L. A bridging model for parallel computation. Communications of the ACM 33 (1990).

[89] Venkataraman, S., Bodzsar, E., Roy, I., AuYoung, A., and Schreiber, R. S. Presto: distributed

machine learning and graph processing with sparse matrices. In Proceedings of the 8th ACM European

Conference on Computer Systems (New York, NY, USA, 2013), EuroSys ’13, ACM, pp. 197–210.

[90] Yelick, K., Semenzato, L., Pike, G., Miyamoto, C., Liblit, B., Krishnamurthy, A., Graham, P.

H. S., Gay, D., Colella, P., and Aiken, A. Titanium: A high-performance Java dialect. Concurrency:

Practice and Experience 10, 11 (1998).

[91] Yu, Y., Gunda, P. K., and Isard, M. Distributed aggregation for data-parallel computing: Interfaces and

implementations. In ACM Symposium on Operating Systems Principles (SOSP) (2009).

83

[92] Yu, Y., Isard, M., Fetterly, D., Budiu, M., Erlingsson, U., Gunda, P. K., and Currey, J.

DryadLINQ: A system for general-purpose distributed data-parallel computing using a high-level language.

In Symposium on Operating System Design and Implementation (OSDI) (2008).

[93] Zaharia, M., Chowdhury, M., Franklin, M. J., Shenker, S., and Stoica, I. Spark: cluster computing

with working sets. In Proceedings of the 2nd USENIX conference on Hot topics in cloud computing (2010),

pp. 10–10.

84

	Abstract
	List of Figures
	List of Tables
	List of Listings
	Introduction
	Piccolo
	Spartan
	Contributions

	Piccolo Design
	Overview
	Programming Model
	Program structure
	Controller Interface
	Table interface and semantics
	Expressing locality preferences
	User-assisted checkpoint and restore
	Putting it together: PageRank

	System Design
	Load-balanced Task Scheduling
	Fault Tolerance

	Implementation

	Piccolo Evaluation
	Applications
	Distributed Web Crawler
	k-means
	n-body
	Matrix Multiplication

	Overview
	Test Setup
	Scaling Performance
	EC2
	Comparison with Other Frameworks
	Work Stealing and Slow Machines
	Checkpointing
	Distributed Crawler

	Spartan Design
	Overview
	Motivation
	Array Language Features
	Challenges
	Overall Approach
	Detailed Design
	Distributed Arrays
	Programming Model
	Lazy Evaluation
	High-level Operators
	Optimization
	Backend
	Implementing High-level Operators

	Implementation

	Spartan Evaluation
	Test Setup
	Micro-benchmarks
	Effect of Optimizations
	Applications
	Linear Regression
	Black-Scholes
	k-means
	Price-change Calculation
	PageRank
	Convolutional Neural Network
	Matrix Factorization

	Related Work
	Piccolo
	Spartan

	Conclusion
	Bibliography

