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Abstract

There are two main topics in this thesis, a corpus-based parser and a study of

sublanguage.

A novel approach to corpus-based parsing is proposed. In this framework, a

probabilistic grammar is constructed whose rules are partial trees froma syntactically-

bracketed corpus. The distinctive feature is that the partial trees are multi-layered.

In other words, only a small number of non-terminals are used to cut the initial trees;

other grammatical nodes are embedded into the partial trees, and hence into the

grammar rules. Good parsing performance was obtained, even with small training

corpora. Several techniques were developed to improve the parser's accuracy, in-

cluding in particular two methods for incorporating lexical information. One method

uses probabilities of binary lexical dependencies; the other directly lexicalizes the

grammar rules. Because the grammar rules are long, the number of rules is huge {

more than thirty thousand from a corpus of one million words. A parsing algorithm

which can e�ciently handle such a large grammar is described. A Japanese parser

based on the same idea was also developed.

Corpus-based sublanguage studies were conducted to relate the notion of sub-

language to lexical and syntactic properties of a text. A statistical method based

on word frequencies was developed to de�ne sublanguages within a collection of

documents; this method was evaluated by identifying the sublanguage of new docu-

ments. Relative frequencies of di�erent syntactic structures were used to assess the

domain dependency of syntactic structure in a multi-domain corpus. Cross-entropy

measurements showed a clear distinction between �ction and non-�ction domains.

Experiments were then performed in which grammars trained on individual do-

mains, or sets of domains, were used to parse texts in the same or other domains.

The results correlate with the measurements of syntactic variation across domains;

in particular, the best performance is achieved using grammars trained on the same

or similar domains.

The parsing and sublanguage techniques were applied to speech recognition. Sub-

language techniques were able to increase recognition accuracy, and some promising

cases were found where the parser was able to correct recognition errors.
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Chapter 1

Overview

1.1 Introduction

Corpus-based language processing plays a major role in current natural language

processing research. The author believes it was initially motivated by the emphasis

on observation rather than introspection. In conventional natural language process-

ing, although some observation was used, e.g. key word in context or KWIC, it was

used as a help for creating knowledge manually. However, the current corpus based

approaches use the data itself to make such kinds of knowledge based on statistics

etc., or in a sense, the data itself is used as the knowledge. For example, grammar

rules or tagging rules are induced from an annotated corpus, and word N-gram,

which is simple statistics of the source data, is used in many applications. Corpus-

based methods are also useful for disambiguation. In the conventional or symbolic

methods, in order to produce unique analyses, we need an enormous amount of real

world knowledge, which, the author believes, there is no means to acquire and for-

mulate at the moment. By corpus-based methods, this problem can be solved by

preferring the analysis which was found in the data more often. Although this can

hardly be perfect, it gives empirically better analyses than, for example, by choosing

based on heuristic rules.

In the course of the investigation of the corpus-based approach in this thesis, some

other merits are found. One of them is that an annotated corpus is very useful for

knowledge acquisition even if the size of the data is not huge. Annotating data is, in

many cases, a costly process. However we found that it is sometimes less expensive

than creating linguistic knowledge itself, e.g. a dictionary or a grammar. Once a

corpus is annotated, then we can acquire knowledge from the data, most importantly,

using di�erent methodologies based on di�erent theoretical frameworks, although the

way of annotation imposes some limitations. For example, in acquiring grammatical

knowledge, one can acquire general CFG rules or lexicalized syntactic knowledge

from the same annotated corpus. The point is that this kind of freedom has not
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existed in the conventional method of manual knowledge creation. Previously, if

one creates a CFG grammar, it is very hard to produce a lexicalized dependency

grammar based on the CFG grammar and vice versa.

Another bene�t of the creation of an annotated corpus is that it provides a

platform to evaluate systems. This fact is actually encouraging researchers to try

di�erent methodologies, because we can compare one system to another.

Also, a similar merit derived from corpus-based approach is that we now have

an objective means to evaluate theories or hypotheses, for example the sublanguage

hypothesis. It has been discussed that languages are di�erent in di�erent domains

or sublanguages. However, because of the lack (or ignorance) of objective assess-

ments, the discussion looked very subjective. So, we did not see clear evidence that

sublanguage does really exist or how these sublanguages are di�erent by objective

measure. It is certainly bene�cial to observe some objective evidence in order to

design domain dependent systems.

1.2 Outline

These are two main topics in the thesis, a corpus-based parser and a study of the

notion of sublanguage using multi-domain corpora. Also, the combination of the

two topics, the parser based on sublanguage, will be described. There are three

chapters, Chapter 2, 3 and 4 for the three topics. As the background of each topic

is di�erent, an introduction and review of related work will be presented separately

in each chapter. Any reader who is interested in one of the �rst two chapters should

not encounter any di�culty by skipping the other part, although for people who are

interested in the parsing experiments based on sublanguage, the author recommends

reading the previous chapters beforehand, in particular Chapter 3.

It should be possible for anyone with su�cient knowledge of natural language

processing and basic knowledge about statistics to work their way through this

thesis, though this may require considerable e�ort for a total novice. There are

several good textbook in natural language processing, for example, [Grishman 86].

Anyone who wants to know the basics of statistics used in this thesis should refer to

[Charniak 93] or [Krenn and Samuelsson 97].

Chapter 2 describes a probabilistic parser whose grammar is obtained from a

syntactically tagged corpus. The distinguishing characteristic of the grammar is

that it has only a small number of non-terminals. Both a two non-terminal gram-

mar and �ve non-terminal grammar will be described. The parser is a bottom-

up chart parser. As the number of grammar rules is enormous, e.g. thirty to

forty thousand, the parsing algorithm has some tricks. A trial of this approach for

Japanese and an application of the parser for continuous speech recognition will be

presented. Some parts of the work reported in this chapter were previously pub-

lished in [Sekine and Grishman 95], [Sekine et al. 97a] and [Sekine et al. 97b]. The

parser and the evaluation program are available as public domain software from

2



[Sekine 96a] and [Sekine and Collins 97]. Also, the work was referenced in a book

[Young and Bloothooft 97] and in a review [Bod and Scha 96].

Chapter 3 describes a study of the sublanguage notion based on corpora. First,

statistical measures are used to �nd sublanguage from newspaper articles. Then

multi-domain corpora are used for a study of sublanguage features in terms of lex-

ical and syntactic characteristics. Finally, an application of sublanguage to con-

tinuous speech recognition will be described. Some parts of the work reported

in this chapter were previously published in [Sekine 94a], [Sekine 94b], [Sekine 95],

[Sekine et al. 95], [Sekine and Grishman 96], [Sekine et al. 97a], [Sekine and Grishman 97]

and [Sekine 97]. Also the work was referenced in a book [McEnery and Wilson 96]

and appeared in a chapter of a book [Jones and Somers 97].

Chapter 4 describes experiments with the parser based on the sublanguage no-

tion. This combines the approaches described in the previous two chapters. Sev-

eral sublanguage grammars are acquired from di�erent domain corpora, and the

performance of parsing texts from di�erent domain with di�erent grammars is ob-

served. Parts of the work reported in this chapter were previously published in

[Sekine and Grishman 97] and [Sekine 97].

Finally, in Chapter 5, closing discussions and possible future work will be pre-

sented.
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Chapter 2

Corpus-based Parser

2.1 Introduction

The availability of large, syntactically-bracketed corpora such as the University of

Pennsylvania Tree Bank (PennTreeBank) [Marcus 96] a�ords us the opportunity

to automatically build or train broad-coverage grammars. Although it is inevitable

that an annotated corpus would contain errors, statistical methods and the size of

the corpus may be able to ameliorate the e�ect of individual errors. Also, because a

large corpus will include examples of many rare constructs, we have the potential of

obtaining broader coverage than we might with a hand-constructed grammar. Fur-

thermore, experiments over the past few years have shown the bene�ts of using prob-

abilistic information in parsing, and the large corpus allows us to train the probabil-

ities of a grammar [Fujisaki 84] [Garside and Leech 85] [Chitrao and Grishman 90]

[Magerman and Weir 92] [Black et al. 93] [Bod 93] [Magerman 95] [Collins 96].

A number of recent parsing experiments have also indicated that grammars

whose production probabilities are dependent on the context can be more e�ective

than context-free grammars in selecting a correct parse. This context sensitivity

can be acquired easily using a large corpus, whereas human ability to compute

such information is obviously limited. There have been several attempts to build

context-dependent grammars based on large corpora [Chitrao and Grishman 90]

[Simmons and Yu 91] [Magerman and Weir 92] [Schabes and Waters 93] [Black et al. 93]

[Bod 93] [Magerman 95].

As is evident from the two lists of citations, there has been considerable research

involving both probabilistic grammar based on syntactically-bracketed corpora and

context-sensitivity. Some of these will be explained in the next section.

In this chapter, a parsing method which involves both probabilistic techniques

based on a syntactically-bracketed corpus and context sensitivity will be presented.

The idea is based on a very simple approach which allows us to create an e�cient

parser and to make use of a very large tree bank. Experiments for English with
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some variations and a trial for Japanese using a similar idea will be reported. Also,

an application of the parser to continuous speech recognition will be described.

2.2 Prior Work

There has been a good deal of work in corpus based approaches to parsing. When

examining these methods, we can distinguish two di�erent kinds of corpus, unan-

notated corpus and annotated corpus. Prior to the University of Pennsylvania Tree

Bank (PennTreeBank), an annotated corpus [Marcus 96], [Marcus 93], the majority

of the research in the �eld had been done using unannotated corpora in combi-

nation with some existing grammar. This was mainly because there had been no

widely-known, publically and easily available syntactically annotated corpora. In

this section, four projects which used unannotated corpora are described.

Since then, there have been several research e�ort which used syntactically an-

notated corpora, like the PennTreeBank (Wall Street Journal or ATIS domain). Six

such projects will be described in this section. Some of them are focused on con-

text sensitivity with di�erent frameworks and some emphasize lexical dependency

relationships. Since the same training data and evaluation data are used in many

projects, we can compare the performance among them.

The approaches to corpus-based parsers described in this section are summa-

rized in Table 2.1. Each project is represented by the �rst author and the year of

Researcher annotated context sensitive lexical

Fujisaki (84) No No No

Chitrao (90) No/Yes(small) Yes No

Magerman (91) Use a parser Yes No

Pereira (92) Partially No No

Bod (92) Yes Yes (Global) No

Briscoe (93) Yes (hand) Yes (LR) No

Black (93) Yes Yes Yes

Magerman (95) Yes (WSJ) Yes Yes

Rayner (96) Yes Yes (Global) No

Collins (96) Yes (WSJ) Limited Yes

Sekine Yes (WSJ) Yes (Global) No/Yes

Table 2.1: Summary of corpus-based parsing approaches

the publication. The �rst column indicates if the training corpus is annotated or

unannotated. `WSJ' means the PennTreeBank, Wall Street Journal section. The

second column indicates if it uses context in the parsing. The use of context di�ers

system by system. `LR' means probabilistic LR parser, which is di�erent from the
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other parsers. `Global' means that these methods try to use global context compared

to the rest of the methods, which use relatively selective information about their con-

text. The third column indicates if it uses lexical information. In the last row, the

method proposed in this thesis is explained. It emphasizes context sensitivity and

tries it with and without lexical information.

2.2.1 Iterative Learning Algorithm

One of the earliest experiments on corpus-based parsing was conducted by Fujisaki

[Fujisaki 84] [Fujisaki et al. 89]. It involved probabilities of pure CFG rules com-

puted from an unannotated corpus using the inside-outside algorithm and unsu-

pervised iterative training. They use a hand crafted grammar as the base of the

experiment. The core idea of the probability estimation is iterative training. The

inside-outside algorithm, which is motivated by the forward-backward algorithm,

was used to reduce the expensive computation. For an explanation of the inside-

outside algorithm, see for example [Charniak 93]; only the iterative training will be

explained here. The algorithm tried to assign a probability for each grammar rule,

say P

i

(r

j

) is the probability of rule r

j

after the i-th iteration. Each grammar rule

has an initial probability P

0

(r). In each iteration, all the sentences in the corpus are

parsed and all possible parse trees are generated. The tree probability is calculated

based on the rule probability in the previous iteration or the initial probabilities.

Then we count up how often rules are used in the entire corpus by accumulating the

tree probabilities in which rule r

j

is used. We denote the count for rule r

j

by C(r

j

).

Then the new rule probabilities are de�ned by the following:

P

i

(r

j

) =

C(r

j

)

P

LHS(r

k

)=LHS(r

j

)

C(r

k

)

(2.1)

The idea is that after each iteration, the probabilities of relatively frequent rules

may increase, whereas the probabilities of less frequent rules may decrease.

This looks appealing, but as was described in [Charniak 93] there is a local min-

imum problem. Charniak reported an experiment with the inside-outside algorithm

using a grammar of all possible �xed length rules. In the experiment, 300 di�erent

randomly-set initial probabilities were assigned for the grammar, and 300 di�erent

�nal sets of probabilities were generated by the algorithm. The result was none of

them were the same. Furthermore, out of the 300 trials, only one of the results was

very similar to the desirable one which was derived by a known CFG, and the other

299 were stuck in non-optimal local minima.

An interesting way to force the initial probabilities into the correct part of the

parameter space was proposed by [Pereira and Schabes 92]. They tried the inside-

outside algorithm with partially annotated corpora. It starts with a grammar in

Chomsky normal form containing all possible productions. They introduced a par-

tially annotated corpus, in other words `seeds', which are known correct relation-

ships. The performance with the seeds was signi�cantly better than that without
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the seeds. This demonstrates the importance of annotated training data.

2.2.2 Context Sensitive Parsing

The previous parsers used the pure context free grammar formalism. The method

described here tried to use context sensitivity in parsing.

Chitrao and Grishman [Chitrao and Grishman 90], [Chitrao 90] used the iter-

ative processing using an unannotated corpus based on a hand crafted grammar.

They used an unannotated corpus just like the Fujisaki's experiment. The specialties

of the method were `�ne grained statistics' and `heuristic penalties'.

`Fine grained statistics' tried to capture some context sensitivities. A rule can

occur several places in several rules, but its appearance at certain locations of a

certain rule may have a greater probability than the other places. The following

example describes the situation:

X -> A B C | D B E

B -> P Q | R S

Suppose in the two grammar rules for B, B -> P Q is more likely in the context A B

C, while B -> R S is more likely in the context of D B E. An ordinary probabilistic

CFG grammar cannot capture this context dependency, but they proposed two

methods to handle the phenomena. One is to rename the di�erent instances of

the same non-terminal so that each renamed non-terminal will now represent each

di�erent context. This seems a good method, but they did not pursue the idea

because of di�culties on implementation. The other idea is to incorporate context

information in the probability. The context dependent probabilities can be computed

by the same iterative algorithm. It led to a more informed probabilistic grammar

and the accuracy was improved by 13% in their experiment.

`Heuristic penalties' aimed to speed up the parser at a little sacri�ce of accuracy.

It penalized shorter hypotheses so that longer but possibly preferable hypotheses can

get more credits in their chart parsing algorithm. By this modi�cation, the parser

lost the characteristic of being best-�rst and this resulted in a slight degradation

of accuracy. However, the number of edges, which is a rough indicator of parsing

speed, was reduced almost 20% by the method.

They also made experiments with a supervised method which will be described

later in this section. Although only 107 annotated sentences are used and the bene�t

of the method is not very clear, the work should be noted as an early trial of the

supervised method.

2.2.3 Towards Supervised Methods

The methods described up to now are unsupervised methods. They use existing

grammars and try to assign probabilities for the rules by iterative approach. Two

approaches which began the trend towards supervised methods are described in this
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subsection. When the two experiments were conducted, large annotated corpora

were not available. The �rst approach used an existing parser to create training

data, and the other also used an existing parser along with human intervention to

choose the appropriate analysis.

Magerman [Magerman and Marcus 91a] proposed a probabilistic parser, Pearl.

It did not use an iterative training process; instead, probabilities were de�ned just

by counting the usage of rules in a corpus. Sentences in ATIS domain corpus

were parsed by the augmented version of the PUNDIT parser and probabilities

are assigned for the un-augmented version of the PUNDIT grammar.

It used contextual information, namely the parts-of-speech of the surrounding

words and rule of the parent node. The tree probability is calculated by the geometric

mean of element tree probabilities instead of the product of the probabilities. It uses

bottom-up chart parsing mechanism, so, it can handle idioms and a word lattice

input, which improves the accuracy. The overall parsing accuracy was measured

on 40 test sentences. It produced a parse tree for 38 input sentences and 35 of

them were equivalent to the correct parse tree produced by the augmented version

of PUNDIT. They concluded that comparable performance was achieved without

the painfully hand-crafted augmentation of the grammar.

Briscoe and Carroll [Briscoe and Carroll 93] created a probabilistic LR parser

with a uni�cation-based grammar. As states of the LR table are related to the

parse context, it becomes a context sensitive probabilistic model if the probability

is calculated directly from the corpus, instead of derived from probabilistic CFG

rules. In the training phase, human intervention was involved to choose the correct

transition in LR table. They counted the frequency with which each transition from

a particular state has been taken and converted these to probabilities such that the

probabilities assigned to all the transitions from a given state sum to one. They

reported results of a pilot study training on 150 noun de�nition from the Longman

Dictionary of Contemporary English and tested on 55 new de�nitions of length less

than 10 words. Out of 55 test sentences, 41 (74.5%) were parsed correctly with the

highest ranked analysis, while in 6 cases, the correct analysis was the second or third

most highly ranked. An interesting work on this line was reported in [Inui et al. 97].

2.2.4 History Based Parsing

All the approaches to grammar learning in this subsection and the subsections which

follow used hand annotated corpora for their training. In other words, these are

completely supervised methods. Some of them use the Wall Street Journal text of

the PennTreeBank which will also be used in the experiments of this thesis.

A group at IBM [Black et al. 93] built a parser which used context information,

including the dominating production and the syntactic and semantic categories of

words in the prior derivation. Namely what it tried to calculate is the probability
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of generating a node based on some information in the parent node.

p(Syn; Sem;R;H

1

;H

2

jSyn

p

; Sem

p

; R

p

; I

pc

;H

1p

;H

2p

) (2.2)

Here, subscript p indicates the parent node, Syn for syntactic category, sem for

semantic category, R for the rule, I for the index as a child of the parent constituent,

H

1

for the primary lexical head andH

2

for the secondary lexical head. So the context

information they used was the information in the parent node. This was estimated

by the combination of the following �ve factors. The third factor was calculated by

decision tree method and the others were computed by n-gram models.

p(SynjR

p

; I

pc

;H

1p

; Syn

p

; Sem

p

) (2.3)

p(SemjSyn;R

p

; I

pc

;H

1p

;H

2p

; Syn

p

; Sem

p

) (2.4)

p(RjSyn; Sem;R

p

; I

pc

;H

1p

;H

2p

; Syn

p

; Sem

p

) (2.5)

p(H

1

jR;Syn; Sem;R

p

; I

pc

;H

1p

;H

2p

) (2.6)

p(H

2

jH

1

; R; Syn; Sem;R

p

; I

pc

; Syn

p

) (2.7)

The base grammar used in the experiment was a broad-coverage, feature-based

uni�cation grammar. It is a context free grammar with about 672 rules with 21

features. The experiment used 9,000 sentences, which is in a limited vocabulary of

about 3,000 words for training. The parsing result was evaluated on 1,600 sentences.

The History based grammar outperformed their probabilistic CFG, increasing the

parsing accuracy rate from 60% to 75%, a 37% reduction in error. This is an

interesting attempt to incorporate context in parsing. Another interesting point

of the algorithm is that it combines grammatical clues and lexical clues into one

mechanism by the probabilistic model and decision tree metric. The decision tree

is a general tool in the sense that it can be trained so that it utilizes the most

useful feature among several di�erent kinds of features. (A good explanation of the

decision tree method can be found in [Russell and Norvig 95].)

2.2.5 Decision Tree Parsing

Magerman, who was a member of the project explained in the previous subsec-

tion, tried to make more extensive use of the decision tree [Magerman 95]. It used

Wall Street Journal of the PennTreeBank in the experiment. The parser had three

decision tree models which take context into account. The three models are a part-

of-speech tagging model, a node-expansion model, and a node-labeling model. The

system creates a parse tree in a bottom-up and left-to-right fashion. At each node,

it produced probabilities of the tag, the label, and the relation of the node to its

upper constituent. The relation is one of the following �ve values:

� right - the node is the �rst child of a constituent
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� left - the node is the last child of a constituent

� up - the node is neither the �rst or the last child of a constituent

� unary - the node is a child of a unary constituent

� root - the node is the root of the tree

An example of the tree representation is shown in Figure 2.1. The order of con-

struction is indicated in the �gure. The decisions were made based on lexical and
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Figure 2.1: Example of sentence representation

contextual information of the parent and the child of the node. The number of fea-

tures is large and hence problematic to utilize, but this problem was solved using the

decision tree method which �nds only the useful features. It searches for the parse

tree with the highest probability, which is the product of the probabilities of each

of the actions made in constructing the parse. The performance of the parser was

outstanding. Its precision and recall for the sentences shorter than 40 words were

86.3% and 85.8%, respectively. This was the �rst parser to approach the current

state-of-the-art performance on the task of parsing Wall Street Journal sentences.
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2.2.6 Data Oriented Parsing

Bod [Bod 92] [Bod 95] [Bod and Scha 96] explored the idea of Data Oriented Pars-

ing. In this framework, all possible tree fragments in a hand annotated corpus are

regarded as rules of a probabilistic grammar. For an input sentence, the entire tree

is constructed as a combination of the fragments so that the product of the prob-

abilities is maximum. So it used global context information if it is possible. In

order to deal with the combinational explosion of the number of derivations, they

introduced the Monte Carlo Parsing algorithm, which estimates the most proba-

ble parse by sampling random derivations. It is an approximation but the error

can be made arbitrarily small. They conducted an experiment using a set of 600

trees from the PennTreeBank ATIS corpus. From 500 training trees, they obtained

roughly 350,000 distinct subtrees. The parsing result was evaluated on the remain-

ing 100 trees. The input was parts-of-speech sequences, not sentences. Accuracy

was reported in three categories as shown in Table 2.2.

� Parse accuracy: percentage of the selected parses that are identical to the

corresponding test set parse

� Sentence accuracy: percentage of the selected parses in which no brackets

cross the brackets in the corresponding test set

� Bracketing accuracy: percentage of the brackets of the selected parses that do

not cross the brackets in the corresponding test set parse

� Coverage: percentage of the test sentences for which a parse was found

Parse accuracy 64%

Sentence accuracy 75%

Bracketing accuracy 94.8%

Coverage 98%

Table 2.2: Result of DOP

This algorithm takes context dependency into account. However, as they extracted

all possible tree fragments, the number of possible derivations becomes enormous,

so some technique to overcome the problem is needed [Sima'an 97].

2.2.7 Parsing by Lexical Dependency

This is another state-of-the-art parser, proposed by Collins [Collins 96]. It used

an annotated corpus, Wall Street Journal of the PennTreeBank, like the method

by Magerman. The di�erence is that this method heavily relies on the lexical in-

formation or lexical dependencies rather than context information. The philosophy

11



of this parser is similar to the idea of dependency grammar. A head is de�ned in

every constituent and the dependencies are de�ned between the head and all the

other siblings. Lexical dependency relationships are accumulated from the training

corpus. For an input sentence, it uses the probability of the relationships to make

the most probable complete dependency structure. In order to solve the sparseness

problem, it employs a back-o� strategy using parts-of-speech. It introduced a notion

of BaseNP, which means non-recursive or lowest NP, as a pseudo token. Also, in

order to capture some linguistic characteristics of English, six kinds of feature are

added to the calculation. These are the order of two words, adjacency of the two

words, whether there is a verb between the words, how many commas are between

them, whether there is a comma just after the �rst word, and whether there is a

comma just before the second word. The performance is comparable to the parser

by Magerman. Its best labeled-recall was 85.3% and labeled-precision was 85.7%.

The interesting comparative experiment reported was that if it ignores the lexical

information but uses only parts-of-speech information, the performance decrease

signi�cantly to 76.1% recall and 76.6% precision.

Recently [Collins 97] reported a new version of the parser. It includes a genera-

tive model of lexicalized context-free grammar and a probabilistic treatment of both

subcategorization and wh-movement. The recall and precision of the new parser

are 88.1% and 87.5%. Also [Ratnaparkhi 97] proposed a parser using similar in-

formation based on maximum entropy model. The parsing strategy is unique and

it can generate multiple trees in linear observed time. The performance is 87.5%

and 86.3% of recall and precision. [Charniak 97] reported a parser based on similar

framework.

2.2.8 Explanation-based Learning

This is an interesting framework for constructing grammars which is closely related

to the framework presented in this thesis.

It is based on Explanation-Based Learning (EBL) �rstly introduced in Arti-

�cial Intelligence, and applied to parsing by [Rayner 88], [Samuelsson 94a] and

[Rayner 96]. The background idea is that grammar rules tend to combine frequently

in some particular ways. Given a su�ciently large parsed corpus, it is possible to

identify the common combinations of grammar rules and chunk them into \macro-

rules". The result is a \specialized" grammar, which has a larger number of rules,

but a simpler structure, allowing it in practice to parse quickly. It gains speed in a

trade-of for the coverage. In [Rayner 96], they reported 3 to 4 times speed up at the

price of about 5% loss of coverage, using 15,000 training data in the Air Travel Plan-

ning (ATIS) domain. Their idea of the macro rules is very similar to the idea of the

small non-terminal grammars described in this thesis. However, their experiments

are done on a small and relatively homogeneous domain. The performance is not

compatible, because they reported only the indirect performance produced by the

parse output. [Samuelsson 94b] proposed entropy thresholds which automatically

12



derive the macro-rules, but no improvement over the previous work was found.

2.2.9 (Lexicalized) Tree Adjoining Grammar

The relevance of this research to this thesis is not the method of grammar acqui-

sition, but its formalism. The formalism of Tree Adjoining Grammar (TAG) and

Lexical Tree Adjoining Grammar (LTAG) were proposed by Joshi and Schabes

[Joshi et al. 75] [Joshi 87]. [Schabes et al. 88] [Schabes 90]. The idea behind TAG

formalism is very similar to the idea of the parser described in this thesis and LTAG

is actually a motivation of the modi�cation towards lexicalized probabilistic parser

explained in Section 2.9. TAG is a generalization of context-free grammar, that

comprises two sets of elemental structures: initial trees and auxiliary trees. (See

Figure 2.2, in which initial and auxiliary trees are labeled using � and �, respec-

tively. Note that these examples are LTAG rules, because each elementary tree has a

lexical item.) An auxiliary tree has a nonterminal node on its frontier that matches

the nonterminal symbol at its root. These elementary structures can be combined

�

�

@

@

�

�

@

@

eat

NP

V NP

VP

S

peanuts

NP

N

people

NP

N

�

�

@

@

roasted

Adj

N

N

(�1) (�2) (�3) (�1)

Figure 2.2: Examples of TAG elementary trees

using two operations, substitution and adjunction. The substitution operation cor-

responds to the rewriting of a symbol in a context-free derivation. For example, one

could expand either NP in �1 by rewriting it as tree �2. The adjunction operation

is a generalization of substitution that permits internal as well as frontier nodes to

be expanded. One can adjoin �1 into �2 at the node N .

A lexicalized tree adjoining (LTAG) grammar is a TAG in which each elementary

structure (initial or auxiliary tree) has a lexical item on its frontier, known as an

anchor. It can be rephrased that each lexical item has associated with it a set of

structures that characterize the contexts within which that item can appear.

Several frameworks of probabilistic LTAGhave been proposed [Resnik 92] [Schabes 92].

However, these seem to have di�culty to de�ne the initial grammar rules. It is

not straightforward to assign probabilities to the rules. The recent work by Joshi

13



[Joshi 94] tries to use n-gram statistics in order to �nd an elemental structure for

each lexical item, which is called supertag. As a supertag contains structural infor-

mation, assigning supertags for all the words in a sentence almost results in a parse

of the sentence. The performance of a trigram supertagger was reported to be 90.0%

on the WSJ corpus. Then a `stapler' combines supertags to yield a parse tree. The

performance was reported in terms of dependencies. Based on using 8,000 WSJ

sentences for training and tested on 7,100 Brown corpus sentences, the accuracy of

dependency relationships was 73.1% recall and 75.3% precision.

2.3 Initial Idea - Parsing by lookup

This section describes the initial idea which leads to the parsing described in this

chapter.

Because of the existence of large syntactically-bracketed corpora and the ad-

vantage of context-sensitive parsing, we can contemplate a super-parsing strategy

- parsing without parsing, or parsing by table look-up. This approach is based on

the assumption that the corpus covers most of the possible syntactic structures for

sentences. In other words, most of the time, you can �nd the structure of any given

sentence in the corpus. If this assumption were correct, we could parse a sentence

just by table look-up

1

. The idea is illustrated in Figure 2.3. The system �rst assigns

parts-of-speech to an input sentence using a tagger, and then just searches for the

same sequence of parts-of-speech in the corpus (or a tree dictionary). The structure

of the matched sequence is the output of the system.

Now we have to see if the assumption is correct. The PennTreeBank is used for

the investigation, which is one of the largest syntactically-bracketed corpora at the

moment. However, it turned out that this strategy does not look practical. Out

of 47,219 sentences in the corpus

2

, only 2,232 sentences (4.7%) have exactly the

same structure as another sentence in the corpus. This suggests that, if we apply

the above strategy, we could �nd a match, and hence be able to produce a parse for

only about 4.7% of the sentences in a new text. In other words, for 95.3% of input

sentence, we can not make any output. A very rough estimation assuming Zipf's

law [Zipf 49] [Zipf 65] in the distribution requires 10

70

to 10

140

sentences in order

to get 80% of coverage.

1

In this approach, ambiguities caused by lexical information, for example, prepositional attach-

ment, are ignored.

2

These are not the entire corpus but the 96% of the corpus which will be used for the grammar

training. Also, minor modi�cations have been made, which will be described later.
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Sales rose 10% to $50 from $55.

POS tagging

NNS VBD CD NN TO $ CD IN $ CD

Parsing by lookup

(S (NP Sales)(VP rose (NP 10 %) (PP ...

?

?

?

?

-�

tree dictionary

NNS VBD CD ... =>

(S (NP NNS)(VP VBD (NP CD ...

NNS VBD RB ... =>

(S (NP NNS)(VP VBD RB ( ...

.

.

.

Figure 2.3: Parsing by table lookup
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2.4 Two non-terminal grammar

2.4.1 Overview

Because of the observation described in the previous section, a compromise has to be

made over the super-parsing idea. Instead of seeking a complete match for the part-

of-speech sequence of an entire sentence, partial sequence matchings based on the

two important non-terminals S (sentence) and NP (noun phrase), were introduced.

The parser tries to �nd a nested set of S and NP fragments in the given sentence

so that the whole sentence is derived from a single S. Then it applies the look-up

strategy for each fragment. In other words, at �rst the system collects, for each

instance of S and NP in the training corpus, its expansion into S's, NP's, and terminal

categories; this is, in e�ect, a production in a grammar with non-terminals S and NP.

It also records the full constituent structure for each instance. In analyzing a new

sentence, it tries to �nd the best segmentation of the input into S's and NP's; it then

outputs the combination of the structures of the chosen segments. To assure that

this strategy is applicable, statistics are collected from the PennTreeBank (Table

2.3). From the table, we can see that there are a considerable number of multiple

Category S NP

Total instances 88,921 351,113

Distinct structures 24,465 9,711

Number of structures which

cover 50% of instances 114 7

percentage of instances covered by

structures of 2 or more occurrences 77.2% 98.1%

percentage of instances

covered by top 10 structures 27.5% 57.9%

Table 2.3: Statistics of S and NP structures

occurrences of structures, unlike the case in the super-parsing strategy where only

4.7% of the instances have multiple occurrences. Also we can observe that a very

small number of structures covers a large number of instances in the corpus. The

most frequent structures for S and NP are shown below. The numbers on the left

indicate their frequency. The de�nitions of the symbols are listed in Appendix A.

6483 (S NP (VP VBX NP)) 36470 (NP DT NNX)

4931 (S -NONE-) 34408 (NP NP (PP IN NP)

4188 (S NP (VP VBX (SBAR S))) 32641 (NP NNPX)

1724 (S NP (VP VBG NP) 27432 (NP NNX)

1549 (S S , CC S) 17731 (NP PRP)
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Although we see that many structures are covered by the data in the corpus, there

could be ambiguities where two or more structures can be created from an identical

part-of-speech sequence. For example, the prepositional attachment problem

3

leads

to such ambiguities. A survey of the PennTreeBank shows that the maximumnumber

of di�erent structures for the same part-of-speech sequence is 7 for S and 12 for NP,

and the percentage of the instances of S and NP with di�erent structures are 7%

and 12%, respectively. This is a little problematic, but by taking the most frequent

structure for each ambiguous sequence, we can keep such mistakes to a minimum.

For example, the prepositional phrase attachment problem is one of the cases of

ambiguity. The parser always prefers noun attachment, because the frequency of

noun attachment is more than that of verb attachment in the corpus. Some of these

ambiguities should be resolved by introducing lexical or semantic information in the

parsing

4

. This will be discussed in Section 2.8.

From these statistics, we can conclude that many structures of S and NP can be

covered by the data in the PennTreeBank. This result supports the idea of parsing

with two non-terminals, S and NP which segment the input, and the structure inside

the segment is basically decided by table look-up. However, because non-terminals

and hence segmentation ambiguities are introduced, the overall process becomes

more like parsing rather than just table look-up.

2.4.2 Grammar

Guided by the considerations in the previous subsection, a grammar can be acquired

from the PennTreeBank. The grammar has symbols S and NP as the only non-

terminals, and the other non-terminals, or grammatical nodes, in the corpus are in

e�ect embedded into the rules. In this thesis, the non-terminals in PennTreeBank

which are not used as non-terminals in the grammar (for example, PP or VP in the two

non-terminal grammar) will be called `grammatical nodes', in order to distinguish

them from non-terminals of the grammar. For example, the following is one of the

extracted rules.

S -> NP VBX JJ CC VBX NP

:structure "(S <1> (VP (VP <2> (ADJ <3>)) <4> (VP <5> <6>)))";

(where S and NP are non-terminals and the other symbols in the rules are terminals {

part-of-speech tags of the PennTreeBank). By this rule, S is replaced by the sequence

NP VBX JJ CC VBX NP, and in addition the rule creates a tree with grammatical

nodes, three VP's and one ADJ. When the parser uses the rule in parsing a sentence,

it will generate the associated structure. For example, Figure 2.4 shows how the

sentence "This apple pie looks good and is a real treat" is parsed. The

�rst three words and the last three words in the sentence are parsed as usual, using

3

Sentence like \I saw a girl with a telescope" has such problem. The prepositional phrase \with

a telescope" can modify \a girl" (noun attachment) or \saw" (verb attachment).

4

For example, sentence \I sold stock on Friday" should more likely be a verb attachment.
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the rules, NP -> DT NN NN (Rule-1) and NP -> DT JJ NN (Rule-2), respectively.

The remainder is parsed by the rule, S -> NP VBX JJ CC VBX NP (Rule-3) alone.

This rule constructs the structures under the root S. In short, the whole tree is

generated based on the three rules, although there are more than three grammatical

nodes or actual non-terminals in the tree.

2.4.3 Minor Modi�cations

Four kinds of minor modi�cation are made to the grammar, in order to improve

its coverage and accuracy. First, the punctuation mark at the end of each sentence

is deleted. This is to keep consistency at the end of sentences, which sometimes

have a period, another symbol or no punctuation in the PennTreeBank. Second,

similar categories, in terms of grammatical behavior, are merged into a single cate-

gory. This reduces the number of grammar rules and increases the coverage of the

grammar. For example, present tense and past tense verbs play a similar role in

determining grammatical structure. Third, sequences of particular categories are

collapsed into single instances of the category. For example, sequences of numbers,

proper nouns or symbols are replaced automatically by a single instance of num-

ber, proper noun or symbol. This modi�cation also works to reduce the number of

grammar rules. Finally, some new categories are introduced. This is because the

PennTreeBank project tried to reduce the number of part-of-speech categories in

order to ease the tagging e�ort. The PennTreeBank manual [Marcus 96] says that

they combined categories, in cases where �ner distinctions can be recovered based

on lexical information. So, by introducing new categories for a set of words which

have di�erent behavior from the other words in the same category, we can expect to

get more information and more accurate parses.

The following is the summary of modi�cations in the grammar:

1. Delete punctuation at the end of sentences

2. Merge Categories

VBX=(VBP, VBZ, VBD), NNPX=(NNP, NNPS), NNX=(NN, NNS)

3. Collapse sequence into single instance

NNP, CD, FW, SYM

4. Introduce new categories

@OF = of;

@SNC = Subordinating conjunction which introduces sentence (although, because,

if, once, that, though, unless, whether, while);

@DLQ = Pre-quanti�er adverbs (about, all, any, approximately, around,

below, even, first, just, next, not, only, over, pretty, second, so, some,

too)
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2.4.4 Tagging

As the �rst step in parsing a sentence, one or more part-of-speech tags are assigned

to each input token, based on the tags assigned to the same token in the training

corpus. This introduces tagging ambiguity. Each tag has a probability which will

be used in the score calculation in parsing. The probability is based on the relative

frequency of the tag assigned to the token in the corpus. The threshold for the

probability is set to 5% in order to make the parser e�cient. Tags with smaller

probability than the threshold are discarded.

P

tag

(tjw) =

Frequency of word w with tag t

Frequency of word w

(2.8)

2.4.5 Score Calculation

The formulae for the probability of an individual rule P

rule

and the score of a parsed

tree S

tree

will be de�ned in this subsection. The probability of a rule, X� > Y ,

where Y is a sequence, is based on the frequency with which X derives Y in the

corpus, and the frequency of the non-terminal, X. The score for a parse tree is the

product of probability of each rule used to build the tree together with square of the

probability of the tag for each word in the sentence. The square factor results in

putting more weight on tag-probability over rule-probability, which produce better

results than assigning equal weights. The best parsed tree has the highest score

among the trees possibly derived from the input.

P

rule

(X� > Y ) =

Frequency with which X is expanded as Y

Frequency of rules where LHS is X

(2.9)

S

tree

(T ) =

Y

R: rules in T

P

rule

(R)

Y

t: tags in T

(P

tag

(tjw))

2

(2.10)

2.4.6 Backup Grammar

Although the parser which will be described in Section 2.7 can handle a large gram-

mar, it is unable to parse some long sentences, because of memory limitations. So

a smaller grammar is prepared, for use in case the larger grammar can't parse a

sentence. The small grammar consists of the rules having frequency more than 2

in the corpus. Because the number of rules is small, parsing is rarely blocked by

memory limitations. The parsed result of this grammar is used only when the larger

grammar does not produce a parse tree. Table 2.4 shows the numbers of rules in

the larger grammar(G-0) and the smaller grammar(G-2). The number of rules in

G-0 is smaller than the number of `distinct structures' shown in Table 2.3, because

if there are several structures associated with one sequence, only the most common

structure is kept.
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Category Grammar-0 Grammar-2

S 23,386 2,478

NP 8,910 2,087

Total 32,296 4,565

Table 2.4: Number of rules

2.4.7 Experiment

For the parsing experiments, the WSJ corpus of the PennTreeBank is divided into

two portions. 96% of it is used for training to extract grammar rules. The remaining

part (1,989 sentences) is used for testing. The parsing results are shown in Table

2.5. Here, \G-0" is the parsed result using the grammar with all the produced rules,

Grammar number of no parse space sentence run time

sentences exhausted length (sec./sent.)

G-0 1989 20 293 19.9 13.6

G-2 1989 172 42 22.2 8.1

Table 2.5: Parsing statistics

\G-2" is the grammar with rules of frequency more than 2. \No parse" means the

parser can't construct S for the input sentence, \space exhausted" means that the

node space of the parser is exhausted in the middle of the parsing on 160MB machine.

\Sentence length" is the average length of parsed sentences, and the run time is the

parse time per sentence in seconds using a SPARC 5. Although the average run time

is quite high, more than half of the sentences can be parsed in less than 3 seconds

while a small number of long sentences take more than 60 seconds. The number of

\no parse" sentences with G-2 is larger than that with G-0. This is because there

are fewer grammar rules in G-2, so some of the sequences have no matching pattern

in the grammar. It is natural that the number of sentences which exhaust memory

is larger for G-0 than for G-2, because of the larger number of rules.

Next, the evaluation using Parseval method on parsed sentences is shown in Table

2.6. \Parseval" is the measurement of parsed result proposed by [Black et al. 91].

The result in the table is the result achieved by the G-0 grammar, supplemented by

the result using the G-2 grammar, if the larger grammar can't generate a parse tree.

These numbers are based only on the sentences which parsed (1,899 out of 1,989

sentences; in other words 90 sentences are left as unable-to-be-parsed sentences even

using the back-up method). Here, \No-crossing" is the number of sentences which

have no crossing brackets between the result and the corresponding tree in the Penn

Tree Bank. \Average crossing" is the average number of crossings per sentence.
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Total sentences 1899

No-crossing 643 (33.9%)

Average crossing 2.64

Parseval (recall) 73.43%

Parseval (precision) 72.61%

Table 2.6: Parsing evaluation

The performance is not as good as some state-of-art parsers described in Sec-

tion 2.2. Note that they used lexical information, while the parser described in

this section uses almost no lexical information. Compared to so-called traditional,

or hand-made grammars, roughly speaking, the performance is similar or better.

For example, Black [Black 93] cited the best non-crossing score using traditional

grammars as 41% and the average of several systems as 22%.

2.5 Five Non-terminal Grammar

In the framework of the parser explained in the previous section, the two non-

terminals were selected based on intuition. These are namely S and NP, which

are generally regarded as the basic units in English. However, it is obvious that

selecting the appropriate non-terminal set is one of the most crucial issues in the

framework. Instead of the ones chosen by intuition, there could be an optimum set

which gives the highest performance. This idea leads to the experiment of changing

the non-terminal set, which will be described in this section.

This change may cause a trade-o� between coverage and accuracy. If we use

a small non-terminal set - the extreme case is only one non-terminal, S - it gener-

ally includes longer context, which would lead to better accuracy, but the coverage

becomes very low. As is pointed out in Section 2.3, the coverage is 4.7% if only

one non-terminal top-S is used. On the other hand, if we increase the number of

non-terminals - the extreme case is to pick up all grammatical nodes de�ned in

the PennTreeBank as non-terminals - then the coverage may be better, because the

length of each rule becomes shorter. But accuracy may become lower, because we

will lose context information.

In this section, experiments varying the non-terminal set in order to �nd an

optimal set will be reported.

2.5.1 New Non-terminals

Two types of new non-terminals will be introduced.

One type is simply the grammatical nodes de�ned in the PennTreeBank. As

described in Appendix A, there are 24 non-terminals in the PennTreeBank. In-
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troducing some of these non-terminals may widen the coverage, but may lose the

e�ect of context sensitivity, at the same time. In the experiment described here, �ve

new non-terminals are individually added to the two basic non-terminals, S and NP.

These �ve new non-terminals are VP, PP, ADJP, ADVP and SBAR. These are chosen

because these are the major non-terminals in terms of frequency. For the sake of the

explanation, names are given to the grammars, like 3-NT-(added-NT). For example,

3-NT-vp is the name of the grammar in which there are three non-terminals, S, NP

and VP.

Also, for comparison, a grammar with all 24 non-terminals is created. It will be

called all-NT.

The other type of new non-terminals are subclass of the current non-terminals.

The idea is to categorize S and NP into di�erent categories so that each split has

di�erent behavior. For example, in the PennTreeBank, S is used to label the top

node of many sentences as well as portions of a sentence, such as a subordinate

clause, a to in�nitive or a quotation. It is conceivable that separating these types of

S can achieve better performance, because the context of these may be di�erent. In

consequence, for instance, the new grammar would reject or assign low probability to

a sentence like

�

which I like. In contrast, in the 2 non-terminal grammar (2NT),

it might have high probability, because a rule \S -> WDT NP VBP" is a frequent

construction in the corpus.

In the experiment, SS and TOINF are introduced for the non-terminal S. TOINF is

introduced for the to-in�nitive sentences. The PennTreeBank uses S for to-in�nitive

clauses, but obviously, these are di�erent in behavior compared to the other S's.

Also, SS is introduced for S other than top-S and TOINF. This aims to separate S's

between S's for the entire sentence and the others.

With the similar idea, NPL is introduced. It is separated from NP by the following

method. If the subtree of a NP does not contain NP among its descendents (not just

as immediate children but as any descendents, as well), then it is de�ned as NPL,

otherwise leave it as NP. (L stands for \lowest") The rationale of this is that simple

noun phrases and complex noun phrases have di�erent contexts in English. For

example, the subject position prefers a simple noun phrase, and a noun phrase

modi�ed by a sentence clause may also be short. Note that because the grammar

is a probabilistic grammar, it involves likelihoods rather than just restrictions. So

it might be very important if split non-terminals have di�erent probabilities for

the rules. For example, assume there are rules S -> A with 0.01 probability, and

SS -> A with 0.00001 probability. In the old grammar the rule for these grammar

rules might be S -> A with 0.005 probability. This does not represent the real

phenomena, which can be captured by the new grammar.

2.5.2 Experiment

Table 2.7 shows the parsing results using several di�erent types of grammar. The

second column shows the name which will be used to refer to this grammar in this

23



chapter. The third column shows the accuracy results, bracket recall and precision.

The fourth column shows the number of �tted sentences which can not have a

complete parse tree because of the memory limitation (160MB) or the grammar

coverage. When this happens we generate a �tted parse tree by concatenating the

most probable partial trees in order to make S at the top node. The issue of �tted

parsing will be fully described in the next subsection. The quality of such parse

trees is generally worse than a complete tree. The grammars are trained on the

PennTreeBank sections 02 - 21, and tested on section 23. The accuracy measure

is slightly di�erent from the accuracy measure used in the previous section. In the

previous section, the Parseval method [Black et al. 91] was used. In that measure,

multiple layers of unary trees are collapsed to a single layer of unary tree. Also, the

labeling is not considered in the matching

5

. However, the metric used in this section

is the simple labeled bracketing precision and recall [Sekine and Collins 97]. From

the experiments, the labeled bracketing metric generated about 1% to 3% worse

result compared to the Parseval method.

Non-terminal Name Accuracy Number of

(recall/precision) �tted sentence

all grammatical nodes all-NT 62.60 63.88 1137

S, NP 2-NT 71.89 72.92 123

S, NP, VP 3-NT-vp 70.51 72.94 241

S, NP, PP 3-NT-pp 68.64 69.53 574

S, NP, ADJP 3-NT-adjp 71.27 72.78 205

S, NP, ADVP 3-NT-advp 70.83 71.85 343

S, NP, SBAR 3-NT-sbar 70.92 73.03 192

S, NP, VP, PP 4-NT 67.04 68.44 706

S, NP, SS, 3-NT-ss 72.13 72.58 158

S, NP, NPL 3-NT-npl 74.20 73.51 15

S, NP, TOINF 3-NT-toinf 73.27 74.15 101

S, NP, SS, NPL, TOINF 5-NT 74.84 73.42 15

Table 2.7: Results on di�erent non-terminal set

From the table, we can observe that the performance of the small non-terminal

grammars is better than all-NL grammar. It is around 10% better in recall and

precision, or 25% reduction in the error. This is a signi�cant improvement.

Regarding the grammars with the new additional non-terminals, the results show

that the introducing the additional non-terminals makes the accuracy worse (3-NT-

vp etc.). This mightmean the gain achieved by improving the coverage is outweighed

5

Parseval is designed in order to compare di�erent types of parsing output. The main objective

of Parseval is to establish a standard metric for comparing di�erent parsers based on di�erent

theories.
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by the loss of context sensitivity and increased number of �tted sentences. It is also

related to the size of training corpus, which will be discussed later.

Regarding the grammars with the split non-terminals, the table shows signi�cant

improvements. The grammar with three new split non-terminal (5-NT) gets 3%

improvement in recall and about 1% in precision over the baseline two non-terminal

grammar. At this range, 3% improvement is very important because the amount of

possible improvement becomes relatively small. This result proves the assumption

that these non-terminals are contextually di�erent. In particular, the number of

�tted sentences in 3NT-ss and 3NT-toinf are almost the same as that in 2NT,

indicating that the main improvements might come from context information. In

3NT-npl and 5NT, the number of �tted sentences are reduced, so it is not easy to

determine if the improvement was due to the context information or the reduction

in �tted sentences.

It is possible to extend the idea to other possible splits. Ultimately, there are a

large number of possible splits and it is impossible to try all these grammars. We

might need to use our intuition as a guidance to determine what splits might be

useful.

Regarding the search space in the parsing, it can be seen from the table that

introducing the split non-terminals, in particular NPL, reduces the search space,

because the number of �tted sentences decreased signi�cantly. The 5-NT grammar

generates only 15 �tted sentences in contrast to 123 in the 2-NT grammar. This

certainly helps to improve the accuracy, because the quality of a �tted parse is

generally worse than completely parsed ones. Investigations in this area have to be

done in future.

2.5.3 Fitted Parsing

A technique `Fitted Parsing' was employed for these experiments. Fitted parsing is

used when the parser can't produce a complete tree, because of memory limitation or

lack of appropriate grammar rules. Fitted parsing combines partial trees or chunks

so that the analysis of the entire sentence will be the list of chunks. Note that there

could be a lot of possible combinations, but it chooses the most probable one for

the output. The probability of an analysis is de�ned by the product of probabilities

of all chunks. The categories of the chunks are limited to S and punctuation marks

in the experiments. It is possible to add costs to the number of chunks in order to

prefer a small number of large chunks rather than a large number of small chunks.

However, this seems not necessary to improve the accuracy according to several

trials. The details of the experiments are omitted here.
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2.6 Size of Training Corpus

In this section, the issue of training corpus size will be discussed. This issue is

very often discussed in corpus based methods, or data oriented learning in general

[Russell and Norvig 95]. In order to assess the ability of the system, it is important

to know the relationship between the training corpus size and the performance, or

how much data is needed to achieve su�cient performance. Also, in this parsing

framework, it is interesting to investigate the relationships depending on its grammar

types (see Section 2.5 about the grammar types). If a grammar has a smaller number

of non-terminals, it is likely to have a coverage problem at small training sizes, but

once there is enough training data, then the accuracy may become better. On the

other hand, if a grammar has a larger number of non-terminals, it is likely that there

is less coverage problem even with the small training data, but the absolute accuracy

may be worse with large training data compared to a grammar with a small number

of non-terminals. Also, the relationship between the number of �tted sentences and

the size of training corpus will be presented.

2.6.1 Experiment

In this experiment, the size of the training corpus ranges from206 sentences to 47,219

sentences, approximately dividing the largest training corpus by two recursively.

Then we conduct experiments using four types of grammar. In other words, four

types of grammar are generated from a training corpus of eight di�erent sizes. So,

32 parsing results are compared in terms of the training corpus size and the grammar

type. The four grammar types are as follows.

� 2-NT (S and NP)

� 5-NT (S, SS, NP, NPL and TOINF)

� 4-NT (S, NP, VP and PP)

� all-NT

Before describing the experiments, several interesting statistics will be shown

which were discovered during the preparation of the experiments.

Table 2.8 shows the average number of grammar rule instances generated per

sentence in the largest training corpus. In other words, these numbers indicate how

many grammar rules are needed in order to create a tree for a sentence. Comparing

the number for 2-NT and all-NT, we �nd that about 55% of the grammatical nodes

are S or NP, and 45% of the grammatical nodes are nodes other than S and NP, which

are embedded in the long grammar rules in the 2-NT grammar. The number of

instances in 2-NT is relatively larger than expected.

Figure 2.5 shows the relationship between the training size and the distinct num-

ber of grammar rules (number of types). From the �gure, we can observe that even
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Grammar Average number of

type grammar rule instance

per a sentence

2-NT 10.3

5-NT 10.3

4-NT 16.4

all-NT 18.6

Table 2.8: Grammar types and number of instances per sentence

with 40,000 sentences, the curves are not saturating, although a very slight slowing

down can be seen. This is not a good sign for the strategy, because it indicates

that the coverage may not be saturated even if we increase the training corpus. The

rate of growth ranges from about 0.21 rule per sentence (all-NT grammar) to 0.75

rules per sentence (5-NT grammar). So we may �nd a new rule in about �ve new

sentences (all-NT grammar), or in almost every new sentence (5-NT grammar),
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Figure 2.5: Corpus size and number of grammar

Now, the results of the parsing experiment using 32 di�erent grammars are

shown. Section 01 to 21 of PennTreeBank are used as the training and section

00 is uses as the testing. Figures 2.6 and 2.7 show the relationship between the size

of training corpus and accuracy measures (recall and precision, respectively). Again,

the labeled bracketing metric was used. All the curves generally show improvement

in performance which saturates at certain levels. For example, the graphs of 2-NT

grammar and 5-NT grammar are increasing at the small corpus size and reach the
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Figure 2.6: Size and recall
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Figure 2.7: Size and precision
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saturation points at around 6,000 sentences; the curves after this point are almost

at. The degradation of all-NT grammar is due to the memory size problem. 160MB

machines are used in the experiment, but as the grammar has many short rules, they

can �t many parts of a sentence. Then the number of active nodes in the chart parser

grows rapidly, and the number of incomplete sentences also increases. Consequently,

a lot of sentences can not have a complete tree for the entire sentences. Those

sentences will be helped by the �tted parsing technique described in the previous

subsection. For example, the number of sentences which use �tted parsing technique

is 1,137 out of 1,921 test sentences with the largest all-NT grammar (Table 2.9).

This issue will be discussed later.

Looking at Figure 2.6 and 2.7, it is surprising that the accuracy saturates at

around 6,000 sentences with 2-NT and 5-NT grammars. This number is much

smaller than common expectations. For all-NT and 4-NT grammars, the saturation

point is much smaller, although the absolute accuracy is lower than that of the best

two grammars. This is a very interesting and encouraging result for the corpus-based

framework, because we don't need a very large training corpus in order to create a

fairly good grammar. In particular, this can support the idea of domain dependent

grammars. As the syntactic phenomena may di�er in di�erent domain, we may have

to prepare corpus for each domain. The fact that a technique needs a small training

corpus is critical in order to apply the technique to di�erent domains. The issue of

domain and the parser will be discussed in Chapter 4. Also the result that we don't

need a large corpus supports the idea of applying the framework to other languages.

Creating a large tree bank is not so easy; it is crucial that this approach needs only

a small corpus in a new language. An application of the framework to Japanese will

be reported in Section 2.10.

Table 2.9 shows the number of �tted parsing sentences for each of the 32 di�erent

grammars. For each grammar type, there is a minimum point of the number of �tted

parsing sentences. This phenomena is caused by the combination of two sources of

parse failure. These are the memory limitation and the grammar coverage. When

the training data becomes larger, more grammar rules are extracted, and the parser

creates more active nodes. Then there will be more sentences which can't complete

a parse tree for a �xed memory size. On the other hand, when the training data

is small, there is the coverage problem. As the grammar rules are extracted from

a corpus, we may not have enough grammar rules to make a complete tree for an

unseen sentence, even if the complete tree is not the correct tree. This is more

likely to happen in the grammar with smaller training data, because the chance of

having the rules needed to create a complete tree becomes smaller. This causes an

increase in �tted sentences in the range of small training size. Figure 2.8 suggests

how these causes combine to a�ect the number of �tted parsing sentences. Memory

limitation causes �tted parsing at large training data (the right triangle), while

grammar coverage causes the problem at small training data (the left triangle).

The combination of these two triangles creates a minimum point somewhere in the
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Size 39832 19840 9673 5376 2397 1261 681 404 206

2-NT 123 53 32 53 115 301 620 1008 1632

5-NT 15 8 30 81 238 466 619 921 1715

4-NT 706 614 361 237 94 76 118 240 656

all-NT 1137 1013 804 632 308 137 119 157 437

Table 2.9: Training size and number of �tted parses

middle, which can be seen from Table 2.9.
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Figure 2.8: Image of two reasons for �tted parsing

2.7 Parsing Algorithm

In this section, the parsing algorithm is described. It is not easy to handle such a

large grammar, i.e. a grammar with thirty or forty thousand rules. For example, a

simple LR parser might need a huge table, while a simple chart parser might need

a large number of active edges. A chart parser which can handle the large grammar

was developed. There are three key techniques to overcome the di�culties. These

are grammar factoring, best �rst search and Viterbi search algorithm. In this section

the parsing algorithm, including these three key techniques, will be described.
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2.7.1 Grammar Factoring

The �rst key technique is grammar factoring. The grammar rules are factored with

common pre�xes and can be represented in the form of a �nite state automaton.

In the system, it is implemented by a trie structure. Each arc is labeled with a

grammar symbol of the right-hand side of grammar rules. Information about each

grammar rule, including the left-hand-side symbol, score and structure, is stored at

the node where the rule is completed. This could be a list if there is more than one

rule for an identical sequence of symbols.

Now, an example of a grammar automaton is shown. The automaton shown in

Figure 2.10 is generated by the grammar in Figure 2.9. Here, the number at the

end of each rule indicates the score of the rule. In the �gure of the automaton, the

S -> A B C : 30

S -> A B C D : 25

S -> A B F : 20

NP -> A B C : 40

NP -> A E : 25

Figure 2.9: Example of grammar rules

information in each node is the left-hand side symbol and score of each rule. For

example, rule S -> A B C D is stored at the right-end node in the �gure, which you

can reach by the transitions A B C and D. Note that for the sequence of symbols A

B C, there are two rules, for S and NP.

In practice, as the grammar has thousands of rules which start from the same

terminal, for instance, DT, a simple chart parser has to have the same number of

active edges when it �nds a determiner in an input sentence. So usually, it needs

an enormous number of active edges to parse even a short sentence. However, since

active edges indicate grammar rules which can be extended after that point, we

can replace the thousands of active edges by a single pointer to the corresponding

node in the grammar automaton. Because a node in the automaton has arcs to all

the possible successors, it is equivalent to having a number of active edges in a

conventional chart parser.

Actually scores are stored slightly di�erently in the �nite state automaton, in

order to make search more e�cient. This is related to the best-�rst-search algorithm

explained in the next subsection, but the implementation is done at nodes in the �nite

state automaton.

Each node in the automaton has a partial grammar score so that the sum of

the scores through the path of a grammar rule will be the score for the rule. This

partial score is the minimum possible score for the rules following the node. Figure

2.11 shows the modi�ed �nite state automaton for the rules shown in Figure 2.9.

In the �gure, numbers in the upper half of nodes are partial scores for the purpose
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Figure 2.10: Automaton for the grammar rules

of the grammar score calculation. There is grammar information in the lower half,

only when a grammar rule is completed at that node just as in the basic automaton.

In addition to left-hand-side symbol of the rules, it has an additional score for the

grammar rule which is completed at the node. The sum of the partial scores through

the path of a rule is the score of the rule. For example, the score for rule S -> A B

C is calculated as 20 + 0 + 0+ 5+ 5 = 30. These partial scores are used in the best

�rst search technique.

2.7.2 Best First Search

The second technique is the best �rst search. The parser has a heap, which keeps

the active nodes to be expanded. The active nodes are stored in the order of their

scores. So the top of the heap is the active node with the best score and which is the

one to be expanded next. When a top-S is generated for the entire sentence, the

parsing stops after checking if no other active node is capable to make a better tree.

This best �rst search technique decreases the number of active nodes compared with

that of a left-to-right style chart parser. The partial score in the grammar automaton

explained in the previous subsection is used to have a better estimate of the score

for each active node.
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Figure 2.11: Modi�ed automaton for the grammar rules

2.7.3 Viterbi Search

The third technique is the Viterbi search. Because we are looking for the best

solution for each input sentence, we need only one complete category for each span.

In other word, for each span, the only best candidate for each category has to be

kept and the worse candidates of the same category can be discarded, as these will

never be a part of the best solution.

This is a very e�cient algorithm, if you are looking for only the best solution,

because the parser creates fewer inactive nodes, and in consequence fewer active

nodes.

2.7.4 Algorithm

In this subsection, the parsing algorithm is presented. The skeleton of the algorithm

will be formally described at the end of this subsection; minor details are omitted.

Brief explanations about heap operation and dictionary operation are presented.

The heap operations can be implemented by a binary tree so that the score of

a node is always smaller than that of its children. The time complexity of heap

operations is logarithmic in the number of data in the heap. (The reader who is

interested may �nd details in [Cormen et.al 90]). There are four functions for the

heap operations:

extract_heap() : extract the best score ANode from heap

store_heap(p) : store ANode p into heap
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not_empty_heap() : return 1 if heap is NOT empty

best_score_in_heap() : return the best score of ANode in heap

The words in the dictionary have part-of-speech and score information which will

be used in the probability calculation along with grammar rule scores. The dictio-

nary look-up is simpli�ed in the algorithm, but in practice there are complicated

issues like capitalized words, numbers, or unknown words.

In the algorithm, there are two structures, ANode and Node. ANode roughly

corresponds to a set of active edges, and Node corresponds to an inactive edge

in the standard chart parser algorithm. Both ANode and Node have their scores

which are calculated based on the word scores and grammar scores underlying the

node. In addition, ANode has a pointer to the grammar automaton which represents

the portion of grammar rules already consumed. Node has its grammatical symbol

and pointers to its child nodes. There is a variable to keep the best score for the

entire sentence already discovered ($best score). The score is basically minus the

logarithm of the probability, so the smaller the score, the better the probability.

Also there are variables, $p and $q for ANode, and $n and $m for Node structures.

A function score() is used, which returns the score of the argument.

34



=========== Parsing Algorithm ================================

BEGIN

$best_score := VERY_BIG;

FOR all words in the sentence DO

store_heap(ANode for each dictionary entry);

END;

WHILE not_empty_heap() and best_score_in_heap()<$best_score DO

$p := extract_heap();

IF there is a complete grammar rule at $p and score($p) +

grammar score < score(Node at the same span and with the

same category) THEN

create new Node $n for $p;

IF $n is a `S' covering the entire sentence and

score($n) < $best_score THEN

$best_score := the score;

ELSE

store_heap(Anode for $n);

FOR Anode $q which is finishing at the previous word to

the span of $n and there is a rule which follows $n DO

store_heap(Anode combining $q and $n);

ENDFOR;

ENDIF;

ENDIF;

FOR Node $m to which there is a grammar rule from $p DO

store_heap(ANode combining $p and $m);

ENDFOR;

ENDWHILE;

END;
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2.8 Integrating Lexical Dependency

So far, almost no lexical information was used. However, it is clear that lexical infor-

mation is very important for parsing. For example, most prepositional attachment

ambiguities can not be solved without lexical information

6

. Consider the following

example:

<Input> I sold stock on Friday.

<1> (S (NPL I) (VP sold (NP (NPL stock) (PP on (NPL Friday)))))

<2> (S (NPL I) (VP sold (NPL stock) (PP on (NPL Friday))))

It shows two analyses using the �ve non-terminal grammar. In the analysis in parse-

1, the prepositional phrase `on Friday' modi�es `stock' and these make a noun

phrase. In the other analysis, the prepositional phrase modi�es `sold'. Obviously

the second analysis is generally appropriate. However, the parser creates the �rst

analysis, because the combined probability of parse-1 is greater than that of parse-2,

when only syntactical probabilities are used. Roughly speaking, in the prepositional

attachment ambiguity, the prepositional phrase modi�es the noun phrase more often

than the verb. However, as is clear from the example, it depends on the words or

lexical relationships. One idea for solving the problem is to use the frequency of

the word pairs or dependencies in order to solve the ambiguity. For example, in the

training corpus of the PennTreeBank, there are 11 instances of on modifying sold,

but only 2 instances of on modifying stock. So this could be a clue to produce the

correct answer for the ambiguity.

This is the motivation of the experiment described in this section. It might

be more useful if we extend `word pair' to `word triplet', e.g. sold-on-Friday

versus stock-on-Friday. Also it is possible to include information about the parent

category etc., but as the initial trial, information on word pairs (lexical dependency)

will be incorporated into the parser.

2.8.1 Model

The lexical dependencies are accumulated from the PennTreeBank. Since we will

inevitably encounter a data sparse problem when we try to extract lexical informa-

tion from the corpus, an interpolation model is used for smoothing. Namely, the

probability of lexical dependency is calculated by Formula 2.11. Here, C(w) is the

count of word w appearing as a head in the corpus, Pos(w) is the part-of-speech of

word w and C(a; b; d) is the number of appearances of the dependency relationship

where a is the head and b is the argument and the dependency direction d, which is

either left or right. The weight for each element is tuned to produce optimal result.

6

Note that some of the ambiguities can not be solved even with lexical information; discourse

or sublanguage information is needed.
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P

lex

(w; v; d) = 0:97

C(w; v; d)

C(w)

+0:01

C(Pos(w); v; d)

C(Pos(w))

+0:01

C(w;Pos(v); d)

C(w)

+ 0:01 (2.11)

This probability is combined with the tree probability based on syntactic prob-

abilities and lexical probabilities, explained in 2.4. Then the formula for the tree

probability is

P

tree

(T ) = P

syntax

(T )

Y

d:dependencies in T

P

lex

(d) (2.12)

2.8.2 Finding the Head of a Constituent

In order to acquire lexical dependency relationships, we have to identify the head

of constituents. The head is going to be the head of all dependencies to the other ele-

ments in the constituent. It is de�ned by heuristic rules introduced by [Magerman 95]

and [Collins 96]. For example, in order to �nd the head of a prepositional phrase,

the elements in the phrase are scanned from left to right, and the �rst preposition

encountered in the scan is the head of the phrase. In some constituents, the scan

may be from right to left, while in the other constituents, it is from left to right.

The search is conducted using several categories; i.e. if there is no preposition, then

foreign words or prepositional phrases are searched. If no item in the table is found,

then the left or right-most item will be the head of the constituent. Appendix B

shows the rules. This table is created based on the previous work by [Magerman 95]

and [Collins 96].

2.8.3 Acquire Data from Corpus

From 96% of the PennTreeBank corpus (section 00, 01 and 03-24), 1,034,914 depen-

dency relationships for 32,012 distinct head words are extracted. The dependency

direction, i.e. if the argument is to the left or right of the head, is also recorded.

Table 2.10 shows examples of dependencies for a singular noun `impact' as a head.

Only the dependencies with frequency greater than 1 are shown.

2.8.4 Experiment

An experiment was conducted on sentences in section 2 of the PennTreeBank, and

the sentences are limited to those shorter than 40. A �ve non-terminal grammar

is used as the basis. All the other parts of the PennTreeBank are used for the

grammar acquisition and the lexical dependency extraction. The result is compared
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Arg. on Left Freq. big 2

the 49 its 2

a 18 lasting 2

an 11 less 2

any 11 market 2

The 9 minor 2

much 6 pro�t 2

negative 6 ultimate 2

and 5 Arg. on Right Freq.

\ 4 on 58

adverse 4 of 40

�nancial 4 , 4

little 4 " 3

signi�cant 4 from 3

long-term 3 as 2

, 2

Table 2.10: Examples of dependencies for `impact'

with the result without lexical dependency. Table 2.11 shows the recall and precision

Experiment Recall Precision

Without lexical dependency 80.12 78.30

With lexical dependency 82.01 79.77

Table 2.11: Experiment about lexical dependency

of the parsing experiments based on the Parseval metric. We can see that the lexical

dependency information improves about 2% in recall and 1.5% in precision. This is

an encouraging result for pursuing this line of the experiment.

2.8.5 Future Direction

This is currently a very active research area in corpus based parsing. Recently,

in [Collins 97] [Charniak 97] [Ratnaparkhi 97], very good parsing performances are

reported using lexical dependencies on statistical parsers. The dependency infor-

mation they used is relatively richer than that used in this experiment. One of the

future directions is to implement the lexical dependency techniques described in

these papers.
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2.9 Lexicalized Grammar

This is another direction for improving the parser using lexical information. The

idea was motivated by LTAG, which was explained in Section 2.2. The framework

explained in this subsection tries to include lexical items directly into the current

grammar rules, just like the modi�cation from TAG to LTAG. For example, the

following was found in the �ve non-terminal grammar. A very frequent rule S ->

NP VBX SS, has two structures, (S NP (VP VBX (SBAR SS))) and (S NP (VP VBX

SS)). Here the structure means a partial tree which should be created from the rule.

In this case, there are two structures, because these two kinds of partial trees are

found in the training corpus, both of which are actually frequent. The frequency of

the �rst structure (let's call it `structure-1') is 864 and the frequency of the second

structure (`structure-2') is 138. An example sentence for structure-1 is He said

he is right and an example sentence for structure-2 is She helped students do

better on the test. For more investigation, instances which create the grammar

were accumulated and the words used at the terminal slot (VBX) were analyzed.

Table 2.12 shows the six most frequent verbs for each structure. It is surprising

WORD Structure-1 Structure-2

said 642 1

says 114 0

say 40 0

reported 5 0

think 5 0

thinks 5 0

helped 0 11

saw 0 7

expects 0 7

is 1 6

make 0 5

sent 0 5

TOTAL 864 138

Table 2.12: Frequency of verbs in two structures

that, in structure-1, most of the verbs are `say' verbs (796 out of 864; 92%) and the

frequencies of these verbs in structure-2 are almost zero. So, it suggests that instead

of having a grammar rule S -> NP VBX SS for structure-1, it might be a good idea

to have a rule like S -> NP `say-verb' SS. There are two rationales for believing

that this might improve the parsing accuracy. One is for the sentences with a `say'

verb. These sentences will be assigned that structure more certainly, and they will be

assigned more accurate probabilities. The other is for the sentences with a non-`say'
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verb. Because now structure-2 becomes the majority (only 68 instances for non-`say'

verb in structure-1, compared to 138 instances for structure-2) and should receive

more credit for the sentences with the verbs other than `say' verbs. The parser

should choose structure-2 as the output structure for the sequence. Consequently,

these lexicalized rules should improve the parsing accuracy.

This framework could capture the structural preference which may not be cap-

tured by the lexical dependency strategy explained in the previous subsection. This

method not just simply combines context sensitivity and lexical information but also

includes lexical context sensitivity, as well.

2.9.1 Experiment

There is one important parameter in the lexicalized experiment, which is the fre-

quency threshold. For example, it is possible to lexicalize all grammar rules, but

then this may cause coverage problems. In the extreme case, if we make all rules

lexicalized, then a sentence can be parsed only when the sequence of words is ex-

actly matched by a combination of some rules. Also low frequency rules might be

harmful, because of their peculiarity.

One of the strategies for avoiding these problem is to lexicalize rules with more

than a certain frequency; in other words, we should set a frequency threshold to the

lexicalized rules. Then the remaining instances which have the same structure are

gathered and create a non-lexicalized grammar rule as a back-o�. The probability

of a rule is computed simply based on the frequency of the tree. In other words, any

portion of the PennTreeBank is counted as an example of only one of these rules.

Threshold Number of Recall Precision Fitted

lexicalized rules sentences

2 29018 76.21 74.33 22

3 15304 76.18 74.42 25

5 7626 76.19 74.50 29

10 3149 76.12 74.37 29

15 1841 76.05 74.42 28

20 1243 75.87 74.29 30

1 0 74.84 73.42 15

Table 2.13: Results of lexicalized experiments

Six thresholds were selected and the results of the experiments are shown in

Table 2.13. In this experiment, the labeled bracket recall/precision metric is used.

From the table, we can see that there is more than 1% improvement in recall and

precision from lexicalized rules.

Also, we can notice that there is a curve in the accuracy in Table 2.13. In terms of
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the average of the recall and precision, the best result is obtained with a threshold of

5. If we set the threshold higher or lower, the result gets worse. This is the expected

result, explained at the beginning of this subsection.

2.9.2 Future Direction

Actually, in structure-1, about 95% of the verbs are a kind of reporting verb (vari-

ations of `say', `report', `announce', `predict', `suggest', `claim' and so on). So one

plausible idea is to build word clusters each of which has similar behavior. In order

to build the cluster, there are two possibilities. One is to use an existing dictionary.

For example, the COMLEX dictionary [Grishman et al. 94] has the class of \report-

verb". We can use the verbs in this class for this particular instance. The other

possibility is to use automatic clustering based on the data itself. This remains as

future work.

2.10 Japanese Parser

It would be interesting to see if the same technique works in other languages. In

particular, because it is reasonable to assume that the technique is more useful in

strict-word-order-languages, like English, we want to investigate if it can work for

free-word-order-languages, like Japanese or Thai. It has been well discussed that,

in Japanese, lexical relationships are the most crucial information for analyzing

syntactic structures, and there are probabilistic corpus based parser which use lexical

information (for example, [Fujio and Matsumoto 97] [Shirai et al. 97]). However,

there are several cases where context plays an important role, e.g sent-1 and sent-2

as follows:

sent-1) KARE-HA HASHITTEIRU.

he -subj running

(He is running.)

sent-2) KARE-HA HASHITTEIRU INU-WO MITA.

he -subj running dog -obj saw

(He saw a running dog.)

In the �rst sentence, the subject KARE depends on HASHITTEIRU, however, in the

second sentence, it depends on MITA. The di�erence is caused by the additional two

words. In this section, a trial of acquiring a Japanese grammar which uses context

information will be presented.

2.10.1 Corpus

In this experiment, a Japanese annotated corpus developed at Kyoto University

[Kurohashi and Nagao 97] is used. It has part-of-speech (POS) tagging and de-

pendency information. They used an automatic part-of-speech tagger, JUMAN
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[Matsumoto et al. 97] and a dependency analyzer, KN Parser [Kurohashi 96] to

build initial structures and then trained annotators corrected the results. The size

of the corpus is about 10,000 sentences, which is about a �fth of PennTreeBank at

the moment. Their target size is 200,000. Each segment (BUNSETSU) is identi�ed

along with its dependency information. It consists of the ID number of the target

segment and the type of the dependency relation. There are three dependency types

represented by letters, `D' for normal dependency, `P' for parallel and `A' for ap-

positive. We will use binary notation for dependency relations. (See Figure 2.13

for an example of the binary notation.) In the notation, a dependency relation can

be found by the following procedure. Climb up the tree until it becomes the left

child of a node for the �rst time. The head of the segment is the right-most leaf

(segment) of the right child. The last segment of a sentence is never a dependent of

any segment. It is always the head of the sentence.

Now, the evaluation metric of parsing in this experiment is de�ned. Since de-

pendency is regarded as one of the best notations for expressing Japanese syntactic

structures and also the corpus used it, the purpose of our experiment shall be to

�nd the correct dependency relation (or target) for each fragment. The type of

dependency is ignored in this experiment. There are two evaluation metrics. One

is `dependency accuracy'. It is the percentage of segments which are assigned the

correct dependency targets. The other is `sentence accuracy'. It is the percentage of

sentences which are assigned the correct dependency relations for the entire sentence.

2.10.2 Simple (Stupid?) Idea

In this section, a simple but maybe stupid idea will be proposed. The emphasis is

on utilizing the context information. It ignores all the content information of each

segment and regards all segments as uniform. In other words, when we try to parse a

sentence, we will use only the information of sentence length. For an input sentence

of length N, we just search for the most frequent dependency pattern of length N in

the training corpus. Here, dependency pattern means the set of dependency relations

in the entire sentence.

This is a very simple algorithm to run. However, obviously it may not work,

because sentences are ambiguous when given only that information. In order to see

if this strategy works, the corpus was investigated in terms of dependency patterns

and sentence length. Table 2.14 shows dependency patterns of length less than �ve

and their frequencies in the entire corpus. Each dependency pattern is shown in the

binary tree representation and each segment is shown by `#'. For example, the second

instance ((# (# #))) means that both the �rst and the second segments depends

on the third segment, while the third instance (((# #) #)) means the �rst segment

depends on the second and the second segment depends on the third segment. It

is clear that the simple strategy does not work well even for those short sentences

because of the ambiguities. For example, for the sentences of the length three, if the

system always returns (# (# #)) pattern, the sentence accuracy would be about
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Dependency pattern Frequency

(# #) 276

(# (# #)) 252

((# #) #) 242

((# #) (# #)) 200

(# ((# #) #)) 139

(((# #) #) #) 120

(# (# (# #))) 106

((# (# #)) #) 42

Table 2.14: Examples of dependency patterns

51% and dependency accuracy would be about 75.5%. For the sentences of the

length four, if we take this simple strategy, sentence accuracy would be about 32%

and dependency accuracy would be about 67%.

2.10.3 Cleverer Idea

So the ambiguity explained in the previous section has to be resolved. An obvious

method is to introduce some information about each segment so that a sentence

should not be represented by its length (N), but by a sequence of categories. It is

well known that in Japanese, the last word of a segment contains signi�cant infor-

mation for identifying the correct dependency relation of that segment. For example,

if we know that a segment ends with FUKUJOSHI-NO, a post-position semantically

similar to `of' in English, then it is likely that it depends on the next word. (Actu-

ally a survey in the later section shows that 95% of NO segments depend on the next

segment in the corpus.) Also we found some interesting examples. In Japanese,

KAKUJOSHI-HA and WO are very common post-positions, so we investigated the sen-

tences of length three whose �rst segment ends with HA and second segment ends

with WO. There are 12 instances of such sentences in the corpus and all 12 have

the dependency structure (# (# #)); none of these has the structure ((# #) #).

This is a good result for designing our parser. Remember, in the previous strategy,

sentences of length three have �fty-�fty distribution between the two structures.

However, now it can �nd a unique and complete solution, if a sentence is a type of

\HA - WO - any".

In short, this is a cleverer idea for parsing. We should include some information

about each segment. But now, how we can de�ne the appropriate level of information

in order to maximize the performance? It is clear that if we include too much

information, we may face the coverage problem, because the �ner the information
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becomes, the less the chance that we can �nd a sequence matching an input sentence

in the training data. For example, if we include all lexical information, the parser

can produce an answer only when there is an exactly identical sentence in the corpus.

On the other hand, if we have too little information, just like the simple strategy, we

might have more ambiguity and then the accuracy becomes worse. The situation is

illustrated in Figure 2.12.

�ne

vague

Level

(literal)

(POS)

(POS cluster)

(uniform)

Accuracy

better

worse

Coverage

less

more

?

6

?

6

?

6

Figure 2.12: Trade-o� between accuracy and coverage

The following scenario was tried to �nd the appropriate level of information. The

basic idea is to start with a large number of initial categories, or parts-of-speech,

then cluster or rede�ne these categories to maximize the performance of the parser.

This procedure was not fully automatic: several steps involved human intervention

and human intuition.

1. Decide on terminal units and non-terminals

A segment (BUNSETSU) is used as a unit of analysis (terminal), as it is well

known that the segment is a unit of syntactic structure and it is not that

di�cult to detect the correct segments automatically.

Based on the experiments with the English parser, it is very important to

de�ne appropriate non-terminals. From these experiments, noun phrase and

sentence group were considered to be the candidates for nonterminals. How-

ever, in Japanese, most noun phrases are enclosed in a segment, only the inner

sentence is used as a non-terminal besides the top sentence category. It will be
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called VP. and actually three types of VP are introduced, as will be explained

later.

2. Choose initial categories

Now, the set of initial categories for segments is de�ned. The categories are

borrowed from the parts-of-speech de�ned in JUMAN or some lexical infor-

mation of the last word of segments. The last word in each segment is used

because it is understood as a good indicator of dependency relations. Note

that the last word excludes symbols (i.e. comma (TOUTEN), bracket (KAKKO),

quote (KAGI-KAKKO) or some other symbols); in such cases, the previous word

is used for the moment. In a later stage, comma is taken into consideration for

some cases as it provides useful information for parsing. The de�nition of the

category (let's call it `POS') came from the major classi�cation de�nition in

JUMAN for 13 categories, minor classi�cation or a set of minor classi�cations

for 6 categories, and 13 lexicalized categories and 2 other kinds of categories.

These decisions were made by intuition and also by looking at the frequency

of each category in the corpus.

3. Cluster categories

Length three sentences in the training corpus were used for deciding on the

category clusters. Iterative clustering by exhaustive search at each iteration

was conducted. At each iteration, it selects the pair of categories which, when

merged, maximize the estimated performance. This process was repeated until

the performance starts declining. Here, the performance was measured by the

score derived by the following method. It counts up the number of instances of

the most common pattern for each sequence. For example, in a sequence A B

C (A, B and C are categories), let's assume there are 8 instances of (A (B C))

and 2 instances of ((A B) C). Then the system adds the number of instances

of (A (B C)) to the score. Notice that, in this example, we will eventually get

8 and lose 2 in the evaluation. The idea behind this is the probabilistic parser,

which selects the most common patterns for a sequence. Assume one instance

is removed from the corpus and the remainder are used for training, then the

removed instance is parsed using the most common pattern in the training.

The score approximately estimates the accuracy of that parse. If there is only

one instance for a particular sequence, we give 0.5 accuracy, because we can't

judge it without training data, because it can't be its own training data. This

is a coverage problem. Using 490 sentences of length 3 in the corpus, the

method mentioned above gave a score of 355.5 for the initial category set.

However, when a new category is created by combining KAKUJOSHI-GA and

FUKUJOSHI-HA, the score became 365, mainly because of increasing coverage.

This pair produced the greatest increase among all the category pairs. After

repeating this process 10 times

7

, a score of 425 was achieved, which is locally

7

Here, some human judgmentwas used, too. Some best pairs were not used if these are regarded
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maximal. Note this may not be the global maximum because we used the

iterative hill climbing technique.

4. Identify POS which depend on the next segment

By the method above, good performance can be obtained for the sentences of

length three, but it might not be optimal for the longer sentences. There is the

coverage problem, because the longer the sentences, the less training data we

have. For each POS, its frequency and the percentage of segments which de-

pend on the next segment are computed. We found that several POS's almost

always depend on the next segment. For example, the POS and the percentage

of depending next segment are SHIJISHI, 92%, SETSUZOKUJOSHI-NO, 95%, and

RENTAISHI 96%. As these are very likely to depend on the next segment, if an

input sentence for the parser has one of the three categories, then the parser

automatically makes it depend on the next segment. The combined segment

has the category of the last segment (e.g. SETSUZOKUJOSHI-NO JOSHI-HA =>

JOSHI-HA).

Also, there are several POS's whose frequency is very low. In such cases, hav-

ing the POS in the grammar might become very harmful. The rule generated

with a rare POS may work very strongly for a sentence with that POS, and it

might be the case that the parser always generates structure using such rules.

In order to avoid the problem, such POS's were eliminated. In parsing, if the

input has such a POS, the parser makes the segment automatically depend

on the next segment. Then the combined category has the category of the

last segment of the sequence. Accordingly both methods help to increased the

coverage and improved the accuracy.

5. Rede�ne categories by human intuition

At this point, there are about 15 POS clusters. When looking at the result, our

intuition is that all the categories of JOSHI have to be separated. In Japanese,

JOSHI is a key element in parsing and di�erent JOSHI's have di�erent behavior.

For example, FUKUJOSHI-HA and KAKUJOSHI-GA behave in a similar manner

in short sentences, but in terms of dependency, a segment with HA is likely

to depend on a segment at longer distance than that for GA. So, all JOSHI

categories are separated.

Also, two sub-categories are added to the verb class, which are RENTAI (forms

modifying nouns) and RENYOU (forms modifying verbs or adjectives), as the

behaviors of these segments are di�erent from each other and di�erent from

the rest of verb class. A clustering analysis is performed on the verb categories

so that they are divided into several clusters based on their behavior. Two

types of information were used in this analysis, distance to the dependency

target and class of the target category. Three clusters are achieved, which

as accidental
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roughly represent RENTAI (DOUSHI-TA), RENYOU (DOUSHI-TE) and the others

(DOUSHI-HOKA). As was explained before, the nonterminal VP is also divided

into three non-terminals based on the type of verb.

Comma TOUTEN is important information for parsing. All categories except

KAKUJOSHI categories are divided into two categories, with and without comma.

This modi�cation improved the performance of the parsing.

6. 34 POS

Some other minor modi�cations were performed, and �nally, there were 34

POS categories. Each class will be represented by the representative POS in

the category.

KAKUJOSHI-KARA FUKUJOSHI-HA SAHEN-MEISHI

KAKUJOSHI-GA FUKUJOSHI-HA-TOUTEN SAHEN-MEISHI-TOUTEN

KAKUJOSHI-DE FUKUJOSHI-HOKA MEISHI-HOKA

KAKUJOSHI-TO FUKUJOSHI-HOKA-TOUTEN MEISHI-HOKA-TOUTEN

KAKUJOSHI-NI DOUSHI-TA FUKUSHI

KAKUJOSHI-NO DOUSHI-TA-TOUTEN FUKUSHI-TOUTEN

KAKUJOSHI-HE DOUSHI-TE HANTEISHI

KAKUJOSHI-MADE DOUSHI-TE-TOUTEN HANTEISHI-TOUTEN

KAKUJOSHI-YORI DOUSHI-HOKA SETSUZOKUSHI

KAKUJOSHI-YO DOUSHI-HOKA-TOUTEN SETSUZOKUSHI-TOUTEN

KAKUJOSHI-WO KEIYOUSHI

SETSUZOKUSHI-NO KEIYOUSHI-TOUTEN

2.10.4 Grammar and Parser

In this subsection, examples of the acquired grammar rules and a parse tree will

be shown. In order to simplify the explanation, probabilities are omitted. Three

examples of the grammar rules are:

Rule-1) S -> VP-1

Rule-2) VP-1 -> VP-1 JOSHI-WO JOSHI-HA DOUSHI-TA

:struct "((# #)(# #))"

Rule-3) VP-1 -> KEIYOUSHI JOSHI-GA DOUSHI-TA

:struct "((# #) #)"

As was mentioned in the introduction, the idea of the grammar is context sensi-

tivity. For example, by Rule-2, a combination of three dependencies (elementary

binary trees) are generated at once. The �rst element, VP-1 (inner sentence; ending

with a base form verb), depends on the second element, JOSHI-WO. The second el-

ement, JOSHI-WO depends on the last element, DOUSHI-TA. Also, the third element,

JOSHI-HA depends on the last element. Using these three rules, Rule-1, 2 and 3, the

tree shown in Figure 2.13 can be generated.
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Figure 2.13: Example tree

The parser tries to �nd a combination of fragments where the top node S spans

the entire input and the product of the probabilities of all the rules becomes maximal.

In parsing, the same parsing engine used in the English version was used. Only a

few modi�cations were needed: deleting the English speci�c morphological analysis

and modifying the display component to print Japanese characters.

2.10.5 Experiment

The experiment was conducted using about 9500 sentences for training and the

remaining 1246 sentences for the test. In this experiment, the input consisted of

hand tagged POS segments. The number of rules we acquired from the training

corpus are shown in Table 2.15. Here, S rules are the rules whose LHS are S, top

node sentence. Also, VP-1 for verbs (base form and TA), VP-2 for verbs (modifying

YOUGEN, TE and conditional) and VP-3 for other verbs. On average, a sentence is

parsed in 0.07 second in real time on a SPARC station-20 and the process size is

64MB.

The performance is compared with the `default strategy'. In that strategy, all

segments except the last segment depend on the next segment. This is a simple but

fairly good strategy as many segments in Japanese are very likely to depend on the

next segment. (The result of the experiment shows that two thirds of the segments

in the corpus depend on the next segment.) The dependency accuracy classi�ed by
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Rules type instance

S 1849 9479

VP-1 6484 15143

VP-2 1827 5658

VP-3 827 1206

Total 10987 31486

Table 2.15: Number of rules

sentence length is shown in Table 2.16. The average accuracy of the parser was

Length Freq default parser Length Freq default parser

2 (40) 100.00 100.00 18 (23) 62.40 62.66

3 (49) 69.39 89.80 19 (20) 59.17 62.78

4 (72) 64.81 86.11 20 (10) 63.68 65.79

5 (107) 65.42 77.57 21 (14) 64.64 69.29

6 (88) 65.68 78.18 22 (11) 63.20 67.53

7 (102) 64.38 73.86 23 (9) 62.12 62.63

8 (80) 64.82 70.36 24 (8) 60.87 62.50

9 (99) 64.02 71.46 25 (8) 63.02 64.06

10 (123) 65.13 71.18 26 (3) 65.33 58.67

11 (83) 63.73 65.54 27 (3) 71.79 64.10

12 (60) 64.09 70.45 28 (5) 64.44 68.15

13 (49) 64.29 70.07 29 (1) 64.29 50.00

14 (52) 62.87 67.31 31 (1) 53.33 56.67

15 (52) 64.84 69.92 37 (1) 69.44 63.89

16 (37) 62.52 67.93 38 (1) 62.16 59.46

17 (28) 63.17 66.52 41 (1) 62.50 57.50

64.09 69.64

Table 2.16: Dependency accuracy

69.64% which is about 5.5% better than that of the default strategy. From the table,

we can observe that the result is relatively better for short sentences. The accuracy

for the sentences of length less than 10, which is the average length, is 75.39%,

whereas the accuracy for the sentences of length longer than 9 is 67.36%. Comparing

the result with that of the default strategy, the di�erence are larger in short sentence.

The issue of coverage might cause this tendency. In the training corpus, there are a

plenty of short sentences and it might be reasonable to assume that the variation of

dependency structures for short sentences is largely covered. However, because the

number of long sentences is smaller and the number of variations for long sentences

is larger, the variations for long sentences are less covered by the training corpus.
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Also, for parsing long sentences, because the rules acquired from short sentences

have high probabilities, the rules acquired from long sentences may be blocked by

these rules.

The sentence accuracy is shown in Table 2.17. Obviously getting all the depen-

Strategy Number of sent. Longest sent.

default 79/1246(6.34%) 6

parser 242/1246(19.42%) 15

Table 2.17: Sentence accuracy

dencies correct is a very di�cult task, but the result of the parser (19.42%) is quite

good. About one out of �ve sentences gets the correct dependency relations for

the entire sentence, while the default strategy gets only 6.34%. Most of them are

generated when it �nds exactly the same pattern in the training corpus. Although

more investigation is needed, this result suggests that if we have more data we may

be able to achieve better performance, because there might be more of a chance

to �nd the exact match in the training corpus. This assumption is supported by

another observation. The dependency accuracy of about 90% was achieved for the

sentences in the training corpus. This shows both the potential and the limitation

of the method. When 90% was achieved, each sentence in this test set has the ex-

act match in the training corpus. So, if we have a very large training corpus, the

dependency accuracy could be improved from 69.64% to close to 90%, because it

is much more likely to �nd the exact match in the training corpus. Note that we

may not be able to achieve 90% even with an unlimited size corpus, because of

increasing ambiguities. The limitation, the other side of the coin, is that even if we

have a corpus of unlimited size, the dependency accuracy may have a ceiling of 90%.

The remaining 10% was caused by ambiguities which can not be solved by syntactic

context information. Also, the combining of rules using probabilities may be harm-

ful to the goal of producing correct analyses for long sentences. A combination of

short but quite common subsequences could have a better probability than a rare

frequency, long and exact match sequence. Some techniques which are not used in

the current parser are needed. One of them and the most important issue might be

lexical information. It will be discussed in the next subsection.

2.10.6 Discussion

Although the parser shows good performance, in particular for short sentences, it

is obvious that there is room to improve. First, let's start by considering what was

achieved. The input in our algorithm is a POS sequence, and does not contain any

lexical information. In other words, it is like a trial of parsing for the following

sequence (Here, PP means a post position, verb-noun means a verb of a noun
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modi�cation form, and verb-base is a base form verb.):

JOSHI-HA KEIYOUSHI-TOUTEN SETSUZOKUJOSHI-NO JOSHI-WO KEIYOUSHI

PP(HA) Adj-comma of PP(WO) Adj

DOUSHI-TE SETSUZOKUJOSHI-NO JOSHI-TO JOSHI-DE DOUSHI-TA

verb-noun of PP(TO) PP(DE) verb-base

The author believes that unless we have very good luck, we cannot parse the sentence

correctly. A test was conducted by four linguists or computational linguists, two of

them made 6 correct relations, one made 7 correct relations and the other made 8

correct relations among the 9 dependency relations. However, once we know the

sentence is

8

:

[MURAYAMA SHUNOU HA] [YOUKA,] [CHOUTOUHA NO]

["SHINTOU JUNBIKAI" WO] [HOSSOKUSASETA] [SHAKAITOU NO]

[YAMAHANA KAICHOU TO] [SHUNOUKANTEI DE] [KAIDAN SHITA]

all of the examinees can solve all the dependency relations. This indicates that lexical

information is crucial in order to �nd the correct analysis. It is a future work to

include this information in the parser.

2.11 Application to Speech Recognition

In this section, an application of the parser to continuous speech recognition will

be described. The input for a continuous speech recognition system is speech, like

reading newspaper articles or radio broadcast news. The system tries to output a

transcription of the input. The techniques used in these system can be divided into

two categories; acoustics and language modeling. An acoustic component takes the

speech as its input and usually outputs the graph of candidate words (lattice) to

a language component along with scores. The language component calculates the

likelihood (score) of each word sequence and decides on the most plausible output

based on acoustic and language scores. Acoustic techniques are irrelevant to this

thesis; only the language component will be discussed. The most popular technique

for the language model is the n-gram model. It assigns a score to a word based on

the previous n � 1 words. Most of the current systems use n = 3. The idea behind

this is that we can guess the likelihood of words based on the previous two words.

For example, the word `right' is more likely than `write' if the previous two words

are `you are'.

However, this technique has an apparent limitation. It cannot take longer depen-

dency or syntax into account. Consider if the previous example is in the following

context (note that to �nd a comma is not easy in the speech recognition task):

8

The sentence is a bit modi�ed to make it short
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I have not seen an author as brilliant as you are

[right/write] to our magazine please

Here, we need syntactic knowledge to know that `write' is more appropriate than

`right'. This is the motivation for the experiments in this section.

2.11.1 Structure

SRI's speech recognition system was used as the source of transcription hypotheses

[Sankar et al. 96]. The scheme of the experiment is shown in Figure 2.14. The n-

best sentences, the most likely top n candidate sentences for an utterance, is the

input data for the parser. The parser assigns its own score for each sentence. The

scores produced by SRI's acoustic and language models are linearly combined with

the parsing score. Then the hypothesis with the highest total score is selected as the

�nal output.

SRI Speech

Recognizer

- -

N-best

Parser

C

C

C

C

C

CW

�

�

�

�

�

��

Acoustic &

n-gram scores

parsing score

Combine scores

?

Best hypothesis

Figure 2.14: Structure of the system

2.11.2 Binary Comparison

First, in order to assess the ability of the parsing technique in speech recognition,

a `binary comparison' experiment was conducted. From the N-best sentences, the

best candidate based on SRI's acoustic and language model scores (which will be

called `SRI-best'), and the correct sentence (`correct') are manually extracted. Both

of the sentences for each utterance are parsed and the scores are compared. The
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di�erence in the parsing score is compared with the di�erence in the trigram score as

shown in Table 2.18. Table 2.19 shows the breakdown of the numbers based on cross

comparison. In the tables, only those sentences where the correct sentence is in SRI

's N-best and the correct sentence is not SRI's best sentence are reported. The hope

is that the parser will consistently prefer the correct sentence over SRI's best, and

indeed in 60% of the cases the correct sentence had the better parsing score. Some

Parser favors correct 39 (60%)

favors SRI-best 26 (40%)

trigram favors correct 25 (38%)

favors SRI-best 40 (62%)

Table 2.18: Binary comparison between parser and trigram

trigram favors trigram favors total

correct sent. SRI-best

Parser favors correct 16 23 39

Parser favors SRI-best 9 17 26

total 25 40 65

Table 2.19: Break down of the comparison

sentence pairs along the scores are listed in Appendix C. In the remainder of this

subsection, the category of the result will be indicated by using the position in Table

2.19 (i.e. top-right or bottom-left). In the bottom-left category | examples which

are not desirable for the parsing model | some bugs in the grammar were found,

as well as some inevitable cases. In these cases, local evidence is more important

than wide syntactic context. For example, in the third pair of sentences in Appendix

C, the parser prefers the parent company shareholders rather than the parent

company's shareholders. This is because the part-of-speech sequence DT NN NN

NNS is more likely than DT NN NN POS NNS (here, DT=determiner, NN=singular noun,

NNS=plural noun and POS=possessive). However, if you look at the words, the

correct sentence is at least as plausible as the other hypothesis (as the trigram

model predicted). Several instances of this kind can be found in the bottom-left

category.

By looking at the 23 instances in the top-right category | where the parser

predicted correctly while the trigram model did not | a number of encouraging

examples can be found. Six examples are listed in Appendix C. For example, in the

�rst sentence, starting with macdonnell, SRI's best candidate has no verb, yet the

trigram score for the candidate is better than that for the correct sentence. In the
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second sentence they say..., there are too many verbs in SRI's best candidate.

This is exactly the result to be expected by introducing a parser. In other words, in

some cases, wide context is more important for picking the correct words than local

(trigram) context .

The other categories (16 top-left and 17 bottom-right in the table) are harmless;

adding parsing score to trigram score in these cases does not a�ect the ranking of

the two sentences. Many such cases are to be expected because syntactic context

often includes local evidence.

Outside of this table, an interesting example was found. It concerns out-of-

vocabulary (OOV) words (in particular, proper nouns). An example is shown in Ap-

pendix C under \other" category. It contains an OOV sequence of long proper nouns

(\noriyuki matsushima"), but as these nouns are not in the vocabulary, the speech

system produced an unusual sequence of words (\nora you keep matsui shima").

The trigram score for the correct hypothesis can not be calculated, but the parser

assigned a much better score to the correct sentence. So, it may be interesting for

future work to use the parsing technique in order to identify these mistakes on OOV

words.

2.11.3 Evaluation

Although some promising evidence was found in the binary comparison experiment,

no improvement in speech evaluation was found when the parsing scores were lin-

early combined with the other sentence scores. This is understandable, because now

there are 19 competitors (20-best was used) rather than a single competitor in the

binary experiment; there could be some other hypothesis which is syntactically more

plausible but includes more word errors.

It is a future work to conclude the usefulness of the parsing technique to this

application. Research to �nd a method which utilizes the technique should be con-

ducted.
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Chapter 3

Sublanguage

3.1 Introduction

There have been a number of theoretical studies devoted to the notion of sublan-

guage. Most of them claim that the notion is important in processing natural lan-

guage text, owning to lexical, syntactic or semantic restrictions, etc. A number of

these studies have analyzed actual texts to try to verify the claim [Kittredge 82]

[Grishman and Kittredge 86] [Slocum 86] [Biber 93]. Some of these studies and the

de�nition of `sublanguage' will be discussed in Section 3.2.

Several successful natural language processing systems have explicitly or implic-

itly addressed the sublanguage restrictions. For example, TAUM-METEO [Isabelle 84]

is a machine translation system in which only sentences in the weather forecast do-

main are dealt with. It works remarkably well and has been used commercially.

It is believed that the system was successful because of the limitation of the task,

including the size of vocabulary and grammar. This is the bene�t of the sublanguage

notion and we would like to generalize the success of TAUM-METEO. However, it

might be unrealistic to build such system for each domain by hand. One way to

solve the problem is to �nd the means for automatic or semi-automatic linguistic

knowledge acquisition from a limited domain.

Owing to the appearance of large machine-readable corpora, there are now new

opportunities to address the issue. Section 3.4 reviews one such corpus, the Brown

corpus. The explosion of large corpora has lead to a owering of research on linguis-

tic knowledge acquisition from corpora [CL Special Issue I 93] [CL Special Issue II 93]

; some were introduced in the previous chapter. Among them, several studies have

mentioned the importance of the sublanguage notion, for example [Grishman and Sterling 92]

[Sekine 92]. Although these are still small experiments in terms of coverage, they

addressed an important problem of knowledge acquisition for sublanguage. The

experiments reported in this chapter encourage the idea and the author believes

pursuing this line of research could lead to a breakthrough for future NLP systems.
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There are several other problems concerning the notion of sublanguage. One of

them is the automatic de�nition and dynamic identi�cation of the sublanguage of

a text. In conventional sublanguage NLP systems, the domain of the system was

de�ned manually. For example, the sublanguages of \weather forecasts", \medical

reports" or \computer manuals" are, in a sense, arti�cially or intuitively de�ned by

humans. This is actually one method to de�ne the sublanguage of the text, and it

often work well. However, it is not always possible and sometimes it may be wrong.

For example, in a large vocabulary speech recognition system, which may have to

handle a variety of sublanguages, it is impossible to tune it to each sublanguage in

advance. Also, even if we take a human-de�ned domain as a sublanguage, the domain

might contain a mixture of linguistic phenomena. For example, the \computer

manual" domain could range from an \introduction of word processor for novices" to

a \UNIX reference manual". In short, it might be a good idea to de�ne sublanguage

so that it will maximize the performance of particular application. Furthermore,

even if we can de�ne sublanguage for a system, we have to have a means to identify

the sublanguage to which the text belongs. Section 3.3 shows experiments along

these lines.

Another interesting problem of sublanguage is syntactic variation. Because of

the unavailability of syntactically annotated corpora until recently, there had been

little research on this issue. In those days, some easily detectable syntactic features

were used in the investigations, e.g. relative clause frequency, active-passive ratio

etc, but there was not a global and objective measure. Syntactic variations are very

important, since they can a�ect the performance of a parser, the most important

component in most NLP systems. If syntactic variations are very wide across sub-

languages, we may have to prepare di�erent grammars for di�erent sublanguages.

Section 3.5 and 3.6 demonstrate some syntactic variations among di�erent domains.

The results motivated the experiments described in the next chapter.

Finally, applications of the sublanguage notion will be described in Section 3.7

and in the next chapter. In Section 3.7, a topic coherence model for continuous speech

recognition (CSR) systems will be presented. Most of the current CSR systems

employ the trigram model as their language model, which only depends on the

previous two words to assign probabilities to the current word candidates. Obviously,

this model is not su�cient, because a text has a coherency of word usage based on

the topic of the text. The topic is sometimes important for choosing the correct

word from multiple candidates. The experiment reported in that section shows that

the idea is actually useful and it improved the accuracy of a large vocabulary CSR

system.

3.2 Related Work

The studies in this �eld can be divided into two categories. One is `qualitative

study' of sublanguage. Many such studies have been motivated by linguistic sur-
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veys or studies of texts in a few domains based on human introspection. This type

of study started early on. However, because of the availability of corpora and im-

proving computer power, `quantitative study' has emerged. It tries to measure the

features of sublanguage by quantitative means. Some studies were motivated by

some application systems, e.g. text categorization, text clustering or information

extraction. A few studies of each category are summarized in this section. The �rst

two subsections are related to the `qualitative studies', although the notion `inductive

de�nition' explained in Section 3.2.1 is closely related to the `quantitative studies'

explained in Section 3.2.3.

3.2.1 De�nition of Sublanguage

The de�nition of sublanguage has been well discussed in the last decades. We

can �nd two kinds of de�nitions, although the di�erence has not received serious

attention. One de�nition is inferable from Harris [Harris 68]:

Certain proper subsets of the sentences of a language may be closed

under some or all of the operations de�ned in the language, and thus

constitute a sublanguage of it.

From this de�nition, we can infer that a sublanguage can be de�ned empirically

by observing language behavior. The other type of de�nition is exempli�ed by the

following citation from Bross, Shapio and Anderson [Bross et al. 72]:

Informally, we can de�ne a sublanguage as the language used by a

particular community of speakers, say, those concerned with a particular

subject matter or those engaged in a specialized occupation.

Let us call the former de�nition an `inductive de�nition', since a sublanguage

can be de�ned by observation of data. The latter de�nition, on the other hand, will

be called a `deductive de�nition', since it is based on the principle that a particular

community of speakers would de�ne a sublanguage.

Many practical projects have been using the deductive de�nition intentionally

or unintentionally. For example, the TAUM project took two subject domains for

their MT applications; one is weather forecasts and the other is aircraft maintenance

manuals. This is a deductive de�nition of sublanguage, because they took a particu-

lar subject as their target. However, the deductive de�nition is not always possible

and sometimes it may be wrong, as was discussed earlier. The inductive de�nition

is related to quantitative analyses, since it is empirical. This will be described later.

3.2.2 Qualitative Analyses of Sublanguage

Lehrberger [Lehrberger 82] summarized qualitatively the characteristics of sublan-

guage into six categories. This analysis is also interesting in terms of quantitative
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analyses. Since qualitative analyses and quantitative analyses are just like two sides

of a coin, many of the characteristics in this analysis are actually the topics of quan-

titative analyses.

1. Limited subject matter

In the deductive de�nition of sublanguage, this is a motivation rather than a

characteristic. Limited subject matter leads to the characteristics enumerated

in the following. An interesting question is how many sublanguages exist in a

given language. This may be impossible to answer, because there are an almost

in�nite number of subject matters and some of them can not be determined a

priori but emerge gradually through the use of a language in various �elds, for

example, \the language of sports-casting" or \the language in private e-mail

exchanges on a particular topic".

2. Lexical, syntactic and semantic restrictions

Lexical restrictions can be easily found by the observation of a sublanguage

text. For example, in instructions for aircraft maintenance, there are 571 id-

ioms, 443 of which are `technical' idioms speci�c to the subject matter, like

`aspect ratio' or `nose gear'. Also, in the corpus there are words which charac-

terize the subject domain, like `aileron', `motor' etc, and other general words

do not occur at all, like `hope', `think', `I' or `me'.

In the aircraft maintenance instructions, the following types of sentences never

occur; direct questions, tag questions, sentences with simple past tense, or

exclamatory sentences.

An example of a lexical semantic restriction is that, in aeronautics, the noun

dope refers to a chemical compound used to coat fabrics employed in the

construction of aircraft, whereas in pharmacology it may refer to narcotics.

Also there are limitations of polysemy and case frame of verbs.

3. `Deviant' rules of grammar

This refers to rules describing sentences which, though quite normal in a given

sublanguage, are considered ungrammatical in the standard language. It also

refers to rules describing cooccurrence restrictions within a sublanguage that

do not exist in the standard language.

4. High frequency of certain constructions

Imperative sentences abound in a maintenance manual, because it is mainly

concerned with instructing the users in the performance of certain actions.
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In the aircraft maintenance instructions, there are many adjectives which

never occur in predicate position. Examples of these are `actual', `chief',

`nickel-cadmium' and `piston-type'. Also, the corpus contains many long

strings of nouns or nouns and adjectives, like `external hydraulic power ground

test quick-disconnect �ttings' or `fan nozzle discharge static pressure water

manometer'.

5. Text structure

For example, aircraft maintenance instructions are divided into numbered sec-

tions each of which deals with a speci�c part of the aircraft. This is important

because these section divisions could resolve a polysemy of a word. For ex-

ample, `capacity' refers to volume in the hydraulic system and to farad in the

electrical system or electronic equipment.

6. Use of special symbols

English texts in various �elds share the alphabet a,b,c, ..., x, y, z, but `9'

occurs in those dealing with mathematical logic, and `�' in phonology texts.

3.2.3 Quantitative Analysis of Sublanguage

Two studies in the �eld will be summarized in this subsection. There are many

other such studies, for example in [Kittredge 82] [Grishman and Kittredge 86].

Slocum [Slocum 86] reported the experiments which tried to identify sublan-

guages on syntactic grounds. Four texts were prepared; two were extracted from

operating and maintenance manuals, and the other two were sales brochures. These

were parsed by their METAL parser. For each grammatical category, the follow-

ing information was recorded: the number of applications of rules attempted by

the parser, number of rules successfully applied and number of appearances of the

phrase-type in S. Then, observing the data, they found two subclasses of texts, as

desired, corresponding to the two categories. The brochure texts exhibited more

syntactic phenomena than manual texts, although manual texts were not simply a

subset of the other. The experiments suggest the possibilities of sublanguage iden-

ti�cation and further the possibilities of sublanguage speci�c processing in order to

maximize the performance of systems.

Biber [Biber 93] referred to the sublanguages as `registers'. First, he compared

the part-of-speech tags of grammatically ambiguous words between two di�erent

registers: �ction and exposition. Some examples are shown in Table 3.1. Similarly,

comparison of probabilities for tagged sequences and percentages for prepositional

phrases attached as noun modi�ers and verb modi�ers were reported to support the

claim of di�erent features between di�erent registers.
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word tag Fiction (%) Exposition (%)

admitted past tense 77 24

passives 17 67

perfects 6 0

adjectives 0 9

trust noun 18 85

verb 82 15

until preposition 19 38

subordinator 81 62

Table 3.1: Comparison of tagging of words

Next, multidimensional di�erences among registers were observed in English.

The study shows that there are systematic patterns (dimensions) of variation among

registers. Each dimension comprised a set of linguistic features that co-occur fre-

quently in texts. The dimensions were identi�ed from quantitative analysis of the

distribution of 67 linguistic features in corpora. Five major dimensions were identi-

�ed by a factor analysis and interpreted as 1) Informational versus Involved produc-

tion, 2) Narrative versus Non-narrative concerns, 3) Elaborated versus Situation-

Dependent references, 4) Overt Expression of Persuasion, and 5) Abstract versus

Non-abstract Style. In the plot of nine spoken and written registers in a two dimen-

sional graph of 1) and 3), reasonable results were found. For example, `Academic

prose' was the extreme of informational and elaborated, whereas conversation was

the extreme of involved and situated.

Experiments of automatic classi�cation of new texts into the registers, based on

a discriminant analysis using the �ve dimensions were reported. These were quite

successful; the accuracy ranges from 62% to 93% depending on the conditions of the

experiments.

3.3 Experiment with Perplexity

In this section, experiments of sublanguage de�nition and identi�cation will be re-

ported. As was discussed in the introduction section, it might be useful if we have

some objective means to de�ne sublanguage in order to make the sublanguage de�-

nition process automatic and to make the result better for some applications. Here,

a method to �nd sublanguage clusters using perplexity is proposed. The result is

evaluated by the experiment of sublanguage identi�cation.
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3.3.1 Overview

The experiments in this section can be divided into two parts: the de�nition of

sublanguage and the identi�cation of a new text to the sublanguage.

In the both experiments, a newspaper corpus (7.5MB of San Jose Mercury, 2147

articles) is used. Each article in the corpus is regarded as a unit of data, and a

sublanguage will be formed by gathering similar units in term of word appearance.

This is almost identical to the text clustering technique, which has been well studied

in the �eld of information retrieval [Willett 88]. However the aim of the text clus-

tering in information retrieval is slightly di�erent from that in this thesis. They try

to make text clusters which are useful for human information retrieval purposes, so

the linguistic features of the clusters are not so important. In contrast, the purpose

here is to �nd a sublanguage which is useful for NLP systems, so the linguistic fea-

tures of clusters should receive more attention, although as an initial experiment,

the evaluation was done on word frequency only.

3.3.2 Perplexity and Expected Perplexity

One of the problems in making clusters is how to de�ne the number and size of

clusters. The number of clusters can range from 1, with all the articles in the single

cluster, to the total number of articles, with each cluster containing just one article.

The problem here is that there is no objective means to decide the number and the

size. This problem is the crucial issue for automatic sublanguage de�nition, because

otherwise we need manual intervention or arti�cial thresholds. In order to explore

this problem, the following statistics are proposed.

Perplexity, more precisely `uni-gram perplexity' (PP ) is a notion from Informa-

tion Theory (see [Charniak 93] or [Krenn and Samuelsson 97]). It can be formally

de�ned based on unigram Entropy H:

H = �

X

w

p(w)log

2

(p(w)) (3.1)

PP = 2

H

(3.2)

Here p(w) is the probability of a token w in the source. This probability may be

estimated by dividing the number of instances of the token by the number of tokens

in the text. This is just an estimate, because the probability of a word in a language

can be only `estimated' from observation. From this estimated probability, we can

get estimated entropy and perplexity. Roughly speaking, perplexity indicates the

amount of information in the source. Under the condition that the sizes of two texts

are the same in terms of number of tokens, then we can roughly say that the text

with larger perplexity has the greater variety of tokens.

We can also calculate perplexity for a set of texts, treating the set as a single

text. If two texts have a large number of overlapping tokens, which means the two

texts are similar in terms of word distribution, the perplexity for the combined text
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will be smaller than that of a text which has tokens chosen at random from the entire

corpus. In short, if the perplexity for a text set is small in comparison to perplexity

for a random text, we may say that the set has a sublanguage tendency.

In order to observe perplexities of texts, clusters are made based on similarities

of articles. Clusters are grown from one initial article by adding similar articles in

the order of their similarity to the initial article

1

. The de�nition for the similarity

measure between article A

i

and A

j

is the following:

Similarity(A

i

; A

j

) =

1

jA

i

jjA

j

j

X

fwjw2A

i

^w2A

j

g

1

logDF (w)

(3.3)

Here, jAj is the number of distinct words in article A, DF (w) is the document

frequency, or the number of articles which contain word w. It uses the several

thresholds. A cut o� for document frequency 200 (tokens which have document

frequencies more than 200 are not taken into account), minimum 2 occurrences in

the article (only the tokens which occur 2 or more times in the article are considered),

and minimum 2 tokens overlap (relationship would be established if the two article

have 2 or more tokens overlapping). Those numbers were empirically determined.

Each cluster grows in this way around each article in the corpus.

In order to make objective measurements, we want to compare these estimated

perplexity values with the perplexity of random text. Because the estimated per-

plexity depends on the size of the sample text, we need to compare the cluster to

a text of the same size obtained by selecting tokens at random from the entire cor-

pus. The expected perplexity used in the experiment is the average of three of these

`random text' trials.

3.3.3 Observations on the Graph

Figure 3.1 shows four examples of the relationship between number of tokens in a

cluster and the ratio of its perplexity to the random expected perplexity. The data

points in the graph starting from the left to right indicate the data for the �rst article,

the �rst article and the closest article combined, and so on. As the number of tokens

becomes larger, the ratio moves toward 1.0, because the cluster is approaching the

set of all articles combined. However, in all of the four examples, there is a minimum

point at a small number of tokens. This could happen if the combining texts have

a larger number of overlapping words than expected. Now, this minimum point

suggests one of the de�nitions of sublanguage in terms of word distribution. This

phenomena is observed not only for the four examples shown, but also for many

of the other clusters. Observation of these articles shows a promising pattern. For

example, in Example 2, all 9 articles from the beginning until the minimumpoint are

obituaries, while the next three are real estate articles. In Example 1, the �rst article

and 54% of articles up to the minimum point are college basketball articles. The

1

This method is di�erent from any of the standard clustering methods explained in Section 3.5

62



0 20000 40000

Number of Tokens

0.0

0.2

0.4

0.6

0.8

1.0

Ratio

�

�

�

�

�

�

�

���

��

��

�

�

�

�

�
�
�

�

�

�

�

�
�

�

�
�

�

�
�
�

�
�
�
�

�
�

�
�

�

�
�

�
�

�

�
��

�

�
�
�

�

�
�
�
�

�

��

�
�

�
�

�

�

�

�
�

�

�
�

�
�

�
���

�

�

�

�

�

�

�
�

�

�
��

�

��

�

�

��

�
�
�

�

�
�
��
�
�

�

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

..

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

..

.

.

.

.

.

.

.

.

.

.

..

.

.

.

.

..

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

..

.

..

.

.

.

.

.

.

.

.

.

.

.

.

.

..

..
....
....
...
....
.

.
.

..
..

.

.

.

.

.

.

..

.

.

.

.

.

.

.

.

.

.

.

.

.

.

..

.
.
.
..

.

.

.

.

.

...
..
..
.....
...
..
.
...
...
..
..

..

.

.

.
..
.
.
.
.
..
.
.
.
.
.
.....
....
.
...
.
.
......
.......
......
.....
...
.
.
.
.
.
.
..
....
.......
...
.................
.
.....
.....
...
.
.
.
.
.
.
.
......
......
.
..
..
.
...

.

.
.

.

....
...
.
..
...
...
..
.
..
.
.
.
...
.........

.
...
..
..
..
..
..
..........
.
..
..
..
..
..
.......
....
...
..
...
....
.....
...........
......
....
.....
..
...
.....
.
..
..
.
.
.
.

.
...
...
..
..
..
....
.
.

.
.
.
.
.

.
.
.
.

.

.....
.....
.........
....
.
.
......
..
...
................
.
.
.
.
.
..
.
.
.
..
.
.
..
......
.....
.
...
..
...
......
.....
...
...
....
..
..
...
..
....
..
...
..
................
..
....
..
...
...........
..
..
..
...
..
....
....
....
.....
........
..............
...
....
.....
.
..
....
.....
...........
........
.....
..
..
..
.

�

�

�

�

�
�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�
�

��

�

�

�

�

�

�

�
�
�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

��

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�
�
�

�

�

�

��
�
�

�
�

�

�

�
��

�

�

�

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

..

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

..

.

.

.

.

.

.

.

.

.

.

.

.

.

.

..

.

.

.

.

.

.

.

.

.

.

.

.

..
...
.
..
.

.
.
.
.
.
.
.
.

.
.
.
..
..
.
.
..

.

.

.

.

.

..

.

.

.

.

..

.

.

.

.

..

.

.

.

.

.

.

.

.

.

.

.

.

.

..

.

.

.

.

.

.

.

.

.

..

.

.

.

.

.

..
.

.

.

.

.

..

.
.
..

..

.

.

.

.

.

.

.

..

.

.

.

.

.

.

.

.

.

..

.
.
.

.

.
..
.
.

.
.

..

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

..

.

.

.

.

.

.

.

.
.
..

.

.

.

.

.

.

..

.

.

.

.

.

.

.

.

..

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

..

.

.

.

.

.

.

.

..
.

.

.

.
.
.
.

.

.
.
.
.
.
.

.

.

.

.
.
.......
....
..
..
..
..
..
.............
.
.
..
..

.

.

.

.

.

.

...
.
...
.
.
.
.

..
.
.
.
.

...
.
.
..
..
.
.
.
..
.
.
.
.
.
.
.
..
.
.
.
.
.
.
.
..
....
.....
.....
..
..
....
.
.

.

.

..
.
.
..
.

.

.

.

.

..
.
.
..
.
..
.
..
..
.
.
.
..

.

.

.

..

..
.
..
..
..
..
..
..
..
.
..
.
.
.
.
.
.

.

.

.

.
.
.
.
..
.
.
.
..
.
.
.
.

.

.

.

.
.

.

.

.
.
.

.

.
.
...
.
..
.
..
.
..
.
...
.
.
.
.
.

.

.

.

.
..
.
.
.
..
..
..
..
..
...
.
.
.
.
..
..
.
..
.
.
.
..
..
.
..
.
..
...
.
......
...
...
.
..
..
..
.
..
..
..
.
..
.
...
.

.

.

.

.

.
.
.
..
.
.
.
..
..
.
....
..
...
...
..
..
..
..
..
.
..
..
.
...
.
.
..
..
.
..
.
.....
..
....
....
...
...
....
....
..
....
............
...
....
..
.
.
.
.

.
....
....
.....
......
..........
.....
.......
.
....
.......
...
....
.
..
..
.
.
...
...........
....
...
....
....
....
...
....
.

�

�

�

�

�

�

�

�

�

�

�

�
�

�

�
�

�

�

�

�

�

�

��

�
�

�

��

�

�

�

�

�

�
�

�
���

�

�

�

�

�

�

�
�

�

�

�

�

�

�
�

�

�

��

�

�

�

�

�

�

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

..

.
.
.
.
..

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

..

.

.

.

.

.

.

.

.

.

.

.

.

.

..

.

.

.

.

.

.

.

.

.

.

.

.

.

.

...
..
..
.
..
.
.
.
..

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

..

.
.
..
.

.

.

.

.

.

.

.

.

.

..

.

.

.

.

.

.

..
...
.

.

.

.

.

.

.

.

.

.

.

..

.

.

.

.

.

........
.
.

..

.

.

.

...
.
..
..
.
..
..
...
..
...
..
...
..
..
...
..
.....
..
..
.

.

.

.

.

.

.

.

..
.
..
..
.
....
.....
............
....
..
..
..
..
...
..
.............
.

.

.

.

.

.

..

.
.
....
.
.
.
..
.
.
.
.
.
.
.

.
..

.

.

.

...
..
...
...
..
.
..
..
.....
.......................

.

.

.

.

.

.

...
..
..
..
...
...
..
..

.

.

.

.

.

..

.
.
.
.
..
..
..
..
.
..
..
...
..
.
.
.
.
..
.
............
.
..
.
...
.
.

.

.
.
.
..
.
.
.
.
..
.
.
.
.
.
..
.
..
.
.
.
..
.
.
..
.
.
....
....
..............
..
...
..
...
..
...
..
...
...
...
.
.
.
.
.
.
.
.
..
.
.............
..
..
...
..
....
..
.
..
..
..
...
..
...
..
...
..
....
.
..
..
.
..
.
..
..
..
.
..
.
.
.
.
..
.
.
.
..
.
.
.
...
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
...
..
..
..
..
..
..
..
..
..
.

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

��

�

�

�

�

.

.

.

.

.

.

.

.

.

.

.

..

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

..

.

.

.

.

.

.

.

.

.

.

.

.

.

.

..

.

.

.

.

.

..

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

..

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

..

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

..

.

.

.

.

.

.

.

.

.

.

.

.

.

.

..

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

..

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

..

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

...
.
..
..
.
..
.
..
..
..

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

..

.

.

..
.
.
.
.
..
.
..
.
.
..
.
............
.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

..
...
...
...
...
..
..
..
..
.
..
..
..
..
.
..
...
.............

� Example 1

� Example 2

� Example 3

� Example 4

Figure 3.1: Ratio of perplexities

rest are either high-school and professional basketball (24% and 8%, respectively),

hockey (8%) or football (4%) articles. On the other hand, only 16% of the next

25 articles and 6% of the rest of the articles up to the 185th are college basketball

articles. These examples intuitively support the claim that the minimum point of

each line at the graph would be an objective indicator of a sublanguage.

3.3.4 Sublanguage Clusters

Let's take the articles from the beginning until the minimumpoint as a sublanguage.

These sublanguages are used in the experiment in the next subsection. As there are

2147 articles in the corpus and each cluster grows up from a single article, the same

number of clusters exist (these are not disjoint and some of them are identical). The

number of articles in a cluster ranges from one to 31, and the average number is

4.26 articles.

3.3.5 Sublanguage Identi�cation for a New Text

In the experiment of sublanguage identi�cation, 244 test articles are taken from the

San Jose Mercury corpus. These are not used for sublanguage de�nition using the

method described above. In this subsection, the method for identifying the closest

cluster for each test article will be described.

For each test article, similarity measures are calculated for all the clusters to

�nd the closest one. Basically, the similarity measure is the same as the one in the

previous experiment. The similarity between a test article and a cluster is set equal
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to the maximum similarity between the test article and any of the articles in the

cluster. If there is a tie, the cluster which contains the smallest number of articles is

chosen. This calculation is not expensive, because only a limited number of words

are taken into account in the calculation, based on the document frequency cut o�

(50 in the experiment). The number of tokens to be examined in the calculation

is normally much smaller than the number of tokens in the test articles. Also, the

number of clusters to be examined for each word is less than the document frequency

cut o�. So this calculation is almost linear in the number of words in the test article,

provided that there is enough space to store the word indices.

In this experiment, the parameters for similarity calculation were set slightly

di�erently from the ones in the de�nition experiment. The document frequency

cut o� is 50 instead of 200 in the sublanguage de�nition experiment, minimum

occurrence in an article is 1 and minimum token overlap is set to 3, based on

empirical adjustments.

3.3.6 Result of Identi�cation

In this subsection, the experiment of sublanguage identi�cation is described. The

evaluation measure is based on how many tokens in the test article also exist in

the closest cluster, i.e. the number of tokens which overlap between the test article

and the closest cluster. A straightforward measurement is its coverage, which is how

many tokens are overlapping as compared to the number of tokens in the test article.

This �gure could be useful, but it is di�cult to make a comparative observation

because of lack of the normalization. The number of overlapping tokens is compared

with the expected number of overlapping tokens. The expected number is computed

by taking two sets randomly which have the same number of tokens as the test article

and the selected cluster, then calculating the average number of overlapping tokens

between them. This expected number (E) can be calculated by Formula 3.4.

E =

X

w

N

t

� f

w

N

(1� (1�

N

c

N

)

f

w

) (3.4)

Here, N

t

is the number of tokens in the test article, N

c

is the number of tokens in

the cluster, N is the number of tokens in the entire corpus, and f

w

is the frequency

of word w in the corpus. In the equation, the �rst factor is the expected frequency

of word w in the article, the second factor is the probability that word w appears

at least once in the cluster. The expected number of overlapping tokens can be

classi�ed into certain frequency ranges. Formula 3.5 de�nes E(r), the expected

number of overlapping tokens in the range of r, using n

t

(r), which is the number of

tokens of the frequency range in the test article.

E(r) = n

t

(r) �

P

w in r

N

t

�f

w

N

(1� (1�

N

c

N

)

f

w

)

P

w in r

N

t

�f

w

N

(3.5)
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High frequency words like \the" or \of" are relatively common regardless of the

topic or sublanguage. On the other hand, low frequency words, which are often

highly related to the topic, are expected to co-occur together in the same articles.

So, we can anticipate in this evaluation that low frequency words overlap between

test articles and the closest clusters more often than expected values. (Note that,

because words with document frequency of less than 50 are used in the similarity

calculation, those words must be specially considered in the evaluation.) To observe

such details, the result is classi�ed based on document frequency of words in the

entire corpus. Table 3.2 shows an example of the results. In this example, the

number of tokens in the article is 129 and the number of tokens in the cluster is

1265 and the cluster consists of 5 articles. The �rst column shows the number of

Document Number Overlap Coverage Ratio

Frequency of words words (%)

1-49 20 6 (1.0) 30.0 6.01

50-99 11 5 (2.1) 45.5 2.40

100-199 25 15 (8.2) 60.0 1.82

200-299 10 9 (5.7) 90.0 1.57

300-499 10 7 (7.5) 70.0 0.94

500-999 12 12 (11.7) 100.0 1.03

1000- 41 41 (41.0) 100.0 1.00

Total 129 95 (67.6) 73.6 1.23

Table 3.2: An example of the result

tokens in the test article. The second column shows information about overlapping

tokens. For example, 95 tokens out of 129 in the entire article are overlapping with

the closest cluster. In the document frequency range from 100 to 199, 15 tokens

are overlapping, while 8.2 tokens are expected to be overlapped. The third column

shows the coverage of overlapping tokens in the test article. The overall coverage

was 73.6% in this sample. The �gure in the fourth column indicates that tokens in

the article are overlapping 1.23 times the expected value. Also 6.01 and 2.40 times

the expected number of overlapping tokens are found in the article in document

frequency ranges from 1 to 49 and from 50 to 99, respectively. As mentioned before,

the result for words whose document frequency ranges between 1 to 49 can not be

evaluated directly by the �gure. As the method to �nd the closest cluster is basically

to �nd the closest article, so the words in the closest article are used in the cluster

search. The number of tokens overlapping between the test article and the closest

article in document frequency 1 to 50, i.e. number of tokens used in the similarity

calculation, is 3 for this sample (not shown in the table). This means that out of

6 overlapping tokens between the test article and the closest cluster, 3 tokens are

found in the closest article and the other 3 tokens are found in the rest of the articles
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in the cluster. The additional 3 tokens as well as some of the overlapping tokens in

the other ranges are the bene�t of the clustering.

The average of the coverage and the ratio throughout the 236 test articles are

shown in Table 3.3. Note that, 8 articles can't �nd their closest clusters because

of the thresholds. The second column of the table shows the percentage of over-

Document Coverage Ratio

Frequency (%)

1 - 49 16.7 7.98

50 - 99 26.4 1.94

100 - 199 34.5 1.90

200 - 299 45.9 1.03

300 - 499 57.7 1.19

500 - 999 76.6 1.00

1000 - 95.8 0.98

Total 51.1 1.18

Table 3.3: Average coverage and ratio

lapping tokens in the test articles, and the third column shows the average ratio of

overlapping tokens to expected overlapping tokens. The table shows the success of

the experiment. For example, tokens of document frequency range from 50 to 99

are found with 1.94 times the expected value in the closest cluster. Also the ratio

in range from 100 to 199 is 1.90, which is well above 1.0. These results can be

explained by saying that lower frequency words co-occur together more than the

random expectation. On the other hand, ratio at higher frequency is about 1.0.

It means the number of these words are almost same as the random expectation.

This is understandable, because many high frequency words are closed class words

and these words can occur regardless the topic. Actually, a close observation shows

that almost all of the words of document frequency more than 1000 are closed class

words, like \the", \of" or \it" and occur in many of the articles. There are only

68 words which have frequencies over 1000. (The total number of distinct words is

39217 and the total number of articles is 2147).

3.4 Brown Corpus

In the experiments in the remainder of the chapter and in the next chapter, the Brown

corpus [Francis and Kucera 64/79] will be used. A brief review of the Brown corpus

will be presented in this section. It is a syntactically tagged corpus consisting of

several domains. One of the important features is that the way of tagging is uniform

throughout the corpus. This is the crucial feature for the purpose of the sublanguage
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studies because otherwise the di�erent sublanguages could not be easily compared.

Actually, the PennTreeBank version of the Brown corpus [Marcus 93] is used in the

experiments.

The following description is quoted from the manual.

This Standard Corpus of Present-Day Americana English consists of

1,014,312 words of running text of edited English prose printed in the

United States during the calendar year 1961. So far as it has been possi-

ble to determine, the writers were native speakers of American English.

Although all of the material �rst appeared in print in the year 1961,

some of it was undoubtedly written earlier. However, no material known

to be a second edition or reprint of earlier text has been included. The

Corpus is divided into 500 samples of 2000+ words each. Each sample

begins at the beginning of a sentence but not necessarily of a paragraph

or other larger division, and each ends at the �rst sentence- ending after

2000 words. (In a few cases the count erroneously extended over this

limit.) The samples represent a wide range of styles and varieties of

prose. Verse was not included on the ground that it presents special

linguistic problems di�erent from those of prose. (Short verse passages

quoted in prose samples are kept, however.) Drama was excluded as

being the imaginative recreation of spoken discourse, rather than true

written discourse. Fiction was included, but no samples were admitted

which consisted of more than 50% dialogue. Samples were chosen for

their representative quality rather than for any subjectively determined

excellence.

The corpus consists of 15 domains as summarized in Figure 3.2 and fully shown

in Appendix D. Each sample consists of about the same size of text in terms of the

number of words (2000 words), although a part of the data is discarded because of

format errors.

The top level sections shown in Figure 3.2 are used as the de�nition of domains.

Each domain will be represented by the letter used for the section in the Brown

corpus (e.g. A to R). It remains to be seen if the sections are su�ciently uniform and

the best for the purpose of the sublanguage experiments. Remember the discussion

in the introduction of this chapter. Some sections contain several di�erent topics

(see Appendix D); for example section A ranges from political or society reportage to

cultural articles and section J is also comprised of several di�erent �elds. However,

as an initial experiment, the sections \as is" are used for the experiments.

There are 24 parts-of-speech and 14 non-terminal symbols in the original Pen-

nTreeBank corpus. Besides the PennTreeBank classes, some new parts-of-speech

and non-terminal symbols are introduced as was mentioned in the previous chapter.
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I. Informative Prose (374 samples)

A. Press: Reportage (44)

B. Press: Editorial (27)

C. Press: Reviews (17)

D. Religion (17)

E. Skills and Hobbies (36)

F. Popular Lore (48)

G. Belles Letters, Bibliography, Memories, etc (75)

H. Miscellaneous (30)

J. Learned (80)

II. Imaginative Prose (126 Samples)

K. General Fiction (29)

L. Mystery and Detective Fiction (24)

M. Science Fiction ( 6)

N. Adventure and Western Fiction (29)

P. Romance and Love Story (29)

R. Humor ( 9)

Figure 3.2: Categories of the Brown corpus

3.5 Comparison of Structure Distributions

In this and the next section, the characteristics of sublanguage in terms of syntactic

structure are studied using the Brown corpus. In this section, a global analysis

which compares distributions of syntactic structures across domains is reported. In

the next section, a trial to �nd sublanguage speci�c structures is described.

3.5.1 Extract Subtrees

In order to represent the syntactic structure of each domain, the distribution of

partial trees is used. A partial tree is a tree with a depth of one, in other words,

a partial tree has only a root node and immediate leaves. For example, from the

following parsed tree, 7 partial trees can be extracted. In each bracket, the �rst

symbol is the root of a tree and the rest are children of the root.

(S (NP DT NN NN) (VP (VP VBZ (ADJ JJ)) CC (VP VBZ (NP DT JJ NN))))

(S NP VP)

(NP DT NN NN)

(VP VP CC VP)

(VP VBZ ADJ)

(ADJ JJ)
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(VP VBZ NP)

(NP DT JJ NN)

Partial trees are extracted from each section of the Brown corpus and the distribu-

tion of partial trees is computed based on its frequency divided by the total number

of partial trees in each section. For example, the following are the top eight most

frequent partial trees in domain A (Press: Reportage). The �gure at right is the

percentage of the partial tree in the section. There are several syntactic categories

de�ned in the previous chapter.

(PP IN NP) 8.40 %

(NP NNPX) 5.42 %

(S S) 5.06 %

(S NP) 4.28 %

(NP DT NNX) 3.81 %

(PP OF NP) 3.54 %

(NP NNX) 2.84 %

(NP PRP) 2.79 %

Also, for the purpose of comparison, the distribution of lexical items is computed

for each domain. For the lexicon, the same words with di�erent parts-of-speech are

distinguished. For example, \�le (Noun)" and \�le (Verb)" are di�erent lexical

items.

3.5.2 Compute Cross Entropy

`Cross Entropy' is a measure of how well a probabilistic model represents a test set.

Let P

T

(i) be the probability of item i in the test set, P

M

(i) be the probability of

i in the model, then the cross entropy of the test set to the model, CE(T;M ), is

calculated by Formula 3.6.

CE(T;M ) = �

X

i

P

T

(i) log P

M

(i) (3.6)

The smaller the value, the more accurately the model represents the test set. If the

model is identical to the test set, the value is equal to the entropy of the set itself

(see [Charniak 93] for details).

For each pair of the distributions, cross entropy is computed by taking the distri-

bution as the probability. Figure 3.3 shows the cross entropy of syntactic structure

across domains. For example, 5.554 at column H and row B shows that the cross

entropy of modeling by the distribution on H data and testing on B data is 5.55. As

was explained in the previous section, the lower the cross entropy, the better the

model is representing the distribution of the test data. So, the cross entropy to itself

is always the best among the tests. Figure 3.4 shows the cross entropy of the lexicon

across domains. These matrices themselves are not easy to observe. In the next

subsection, analyses of these matrices using a clustering technique are described.

69



T\M A B C D E F G H J K L M N P R

A 5.13 5.35 5.37 5.41 5.41 5.37 5.42 5.52 5.45 5.51 5.52 5.46 5.53 5.55 5.43

B 5.47 5.19 5.47 5.43 5.50 5.46 5.49 5.55 5.51 5.55 5.58 5.47 5.60 5.60 5.44

C 5.51 5.49 5.16 5.48 5.55 5.52 5.53 5.65 5.59 5.57 5.65 5.48 5.65 5.63 5.49

D 5.48 5.39 5.42 5.12 5.45 5.39 5.45 5.58 5.48 5.49 5.52 5.39 5.54 5.54 5.38

E 5.50 5.48 5.51 5.47 5.20 5.44 5.53 5.62 5.48 5.58 5.59 5.51 5.58 5.61 5.50

F 5.31 5.29 5.32 5.26 5.29 5.10 5.30 5.48 5.31 5.36 5.37 5.32 5.38 5.40 5.30

G 5.34 5.30 5.31 5.27 5.34 5.29 5.12 5.47 5.36 5.35 5.41 5.31 5.41 5.37 5.31

H 5.56 5.44 5.57 5.56 5.58 5.61 5.62 5.09 5.53 5.82 5.88 5.69 5.89 5.89 5.67

J 5.39 5.37 5.40 5.35 5.35 5.34 5.40 5.46 5.15 5.52 5.57 5.48 5.58 5.59 5.45

K 5.32 5.25 5.26 5.24 5.31 5.25 5.27 5.55 5.41 4.95 5.14 5.13 5.15 5.17 5.13

L 5.32 5.26 5.32 5.27 5.32 5.23 5.30 5.64 5.45 5.12 4.91 5.13 5.09 5.13 5.11

M 5.59 5.47 5.47 5.42 5.55 5.52 5.55 5.75 5.74 5.41 5.39 4.98 5.41 5.36 5.31

N 5.29 5.25 5.29 5.26 5.28 5.22 5.28 5.61 5.43 5.10 5.06 5.11 4.89 5.12 5.10

P 5.43 5.36 5.40 5.35 5.40 5.36 5.33 5.68 5.55 5.23 5.21 5.18 5.21 5.00 5.22

R 5.57 5.46 5.50 5.43 5.56 5.49 5.59 5.79 5.69 5.43 5.41 5.34 5.44 5.47 5.07

Figure 3.3: Cross entropy of syntactic structure across domains

T\M A B C D E F G H J K L M N P R

A 7.42 8.32 8.44 8.57 8.68 8.57 8.73 8.57 7.85 8.69 8.78 8.38 8.84 8.84 8.47

B 8.19 7.19 8.17 8.16 8.37 8.33 8.38 8.29 8.50 8.44 8.56 8.11 8.57 8.59 8.20

C 8.59 8.40 7.24 8.43 8.62 8.57 8.65 8.68 8.80 8.61 8.73 8.28 8.81 8.78 8.30

D 8.27 7.97 8.06 6.85 8.23 8.11 8.04 8.21 8.36 8.27 8.44 7.90 8.40 8.32 7.99

E 8.65 8.45 8.48 8.44 7.34 8.50 8.67 8.54 8.70 8.72 8.80 8.36 8.77 8.77 8.41

F 8.42 8.27 8.27 8.24 8.36 7.32 8.36 8.53 8.60 8.45 8.56 8.14 8.55 8.53 8.18

G 8.33 8.11 8.13 7.96 8.28 8.15 7.27 8.35 8.40 8.30 8.42 8.08 8.43 8.38 8.09

H 8.20 8.06 8.30 8.24 8.26 8.36 8.43 6.97 8.17 8.73 8.79 8.26 8.85 8.87 8.40

J 8.42 8.22 8.24 8.23 8.32 8.37 8.42 8.15 8.25 8.61 8.68 8.23 8.74 8.82 8.35

K 8.32 8.18 8.17 8.23 8.45 8.31 8.35 8.76 8.68 7.00 7.89 7.76 7.94 7.96 7.88

L 8.37 8.23 8.25 8.34 8.51 8.37 8.42 8.82 8.80 7.85 6.85 7.75 7.91 7.95 7.91

M 8.58 8.36 8.34 8.26 8.68 8.53 8.76 8.81 8.98 8.17 8.18 6.67 8.16 8.26 7.98

N 8.50 8.38 8.40 8.39 8.57 8.39 8.57 8.89 8.98 7.95 7.96 7.80 6.98 8.00 7.97

P 8.39 8.26 8.24 8.21 8.47 8.31 8.36 8.90 8.90 7.84 7.86 7.77 7.92 6.88 7.89

R 8.58 8.35 8.26 8.27 8.59 8.44 8.63 8.80 8.96 8.21 8.27 7.90 8.31 8.31 6.87

Figure 3.4: Cross entropy of lexicon across domains
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3.5.3 Clustering

First, a brief introduction of the standard clustering techniques using a distance ma-

trix is mentioned [Gnanadesikan 77]. Given a set of items and a distance between

each pair of items (not necessarily Euclidean distance), similar items are clustered

based on the distance. Because there is no unique de�nition of grouping, the method

of clustering is rather heuristic and several di�erent methods have been proposed.

The methods are largely divided into non-overlapping clustering methods and over-

lapping clustering methods. By non-overlapping methods, an item can belong to

only one cluster, and by overlapping methods, an item can belong to several clusters.

Also, there are several methods used to de�ne distance between two clusters. Three

major methods are 1) shortest distance, which takes the shortest distance among

distance combinations between elements as the distance of the clusters, 2) average

distance and 3) longest distance. The de�nition for 2) and 3) are analogue to the

de�nition for 1). Here, non-overlapping clustering with average-distance clustering

method is used.

Clustering makes it easier to understand the cross entropy data shown in the

previous subsection. (Figures 3.3 and 3.4). The distance between two domains is

calculated as the average of the two cross-entropies in both directions. Figure 3.5

shows the clustering result based on syntactic structure (Figure 3.3). Figure 3.6

shows the clustering result based on lexical data (Figure 3.4). From the results,

A D F G K L N P R M J E B C H

5.082 | | | | | |--- | | | | | | | |

5.126 | | | | |--- | | | | | | | |

5.167 | | | | |--------- | | | | | | |

5.262 | | | | |------------ | | | | | |

5.265 | | | | |--------------- | | | | |

5.301 | | |--- | | | | | |

5.302 | | |------ | | | | |

5.329 | | |------------------------ | | | |

5.334 | |--- | | | |

5.340 |--- | | | |

5.372 |--------------------------------- | | |

5.379 |------------------------------------ | |

5.420 |--------------------------------------- |

5.499 |------------------------------------------

|

Figure 3.5: Clustering result based on grammar distances

we can clearly see that domains K, L, N and P are very close to each other. These

are namely, \General Fiction", \Mystery and Detective Fiction", \Adventure and
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A B D G K L P N M R H J F C E

7.873 | | | | |--- | | | | | | | | |

7.903 | | | | |------ | | | | | | | |

7.941 | | | | |--------- | | | | | | |

7.944 | | | | | |--- | | | | |

7.972 | | | | |------------ | | | | |

8.009 | | |--- | | | | | |

8.069 | |--- | | | | | |

8.085 | |--------- | | | | |

8.163 | | |--- | | |

8.178 | |--------------------------- | | |

8.180 | |--------------------------------- | |

8.249 | |------------------------------------ |

8.258 |--- |

8.340 |------------------------------------------

|

Figure 3.6: Clustering result based on lexical distances

Western Fiction" and \Romance and Love Story". This is intuitively true.

It is also interesting that the clustering results based on syntactic structure and

lexical information are slightly di�erent. For example, A (Press reportage) and E

(Skills and hobbies) are far apart in lexical data, however on a syntactic basis, they

are somewhat closer to each other. This is also intuitively understandable.

Lexical knowledge is very often used in text categorization. That is justi�able,

because the purpose of most text categorization is to classify text in order to �nd

semantically similar texts. However the purpose here is to improve the accuracy

of natural language processing based on sublanguage knowledge. So, the fact that

the two results are slightly di�erent may suggest that the traditional technique of

text categorization may not be the best method for the purpose. This is a very

interesting and important result.

Other similarity results were obtained from some simple statistics. Table 3.4

shows some statistics for each domain; the items are numbered to correspond to the

column in the table.

1. Number of sentences

2. Number of tokens

3. Average sentence length in tokens

4. Number of lexical items

5. Average frequency of a lexical item
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6. Number of partial trees extracted in the experiment

7. Average number of partial trees per token

8. Number of distinct partial trees

Domain (1) (2) (3) (4) (5) (6) (7) (8)

A 4224 82943 19.64 13368 6.20 75677 0.91 3838

B 2706 51547 19.05 9396 5.49 48741 0.95 3007

C 1563 34246 21.91 8272 4.14 30628 0.89 2523

D 2393 33284 13.91 6188 5.38 31334 0.94 2393

E 3687 66277 17.98 11241 5.90 62046 0.94 3579

F 4442 89792 20.21 13813 6.50 85526 0.95 3999

G 6497 143611 22.10 17616 8.15 137394 0.96 5527

H 2476 58209 23.51 7656 7.60 53825 0.92 2982

J 6951 152909 22.00 16078 9.51 139177 0.91 5588

K 3661 54587 14.91 8886 6.14 54747 1.00 3151

L 3231 43872 13.58 6551 6.70 46107 1.05 2452

M 755 11324 15.00 3072 3.69 11074 0.98 1127

P 3625 54298 14.98 7998 6.79 56620 1.04 2995

R 898 17372 19.35 4751 3.66 16687 0.96 1627

Table 3.4: Some statistics across domain

From the table, we can clearly distinguish �ction domains (K to R) from non-�ction

domains (A to J) based on `Average length of sentence' (3) and `Average number

of partial trees per token' (6). The average length of sentences is shorter in �ction

domains compared to that in non-�ction domains, although domain R (Humor) has

relatively longer sentences. The average number of partial trees per token is larger

in �ction domains than that in non-�ction domains. It's more than one partial tree

per token in most of the �ction domains, which means the structure are deeper,

and less than one partial tree per token in non-�ction domains, which means the

structure are atter. The fact that R (Humor) and M (Science Fiction) are slightly

di�erent from the other �ction domains is true also in the experiments based on the

cross entropy and clustering, shown in Figure 3.3 and Figure 3.4.

3.6 Domain Speci�c Structures

3.6.1 Relatively Frequent Partial Trees

In the previous section, a global comparison based on syntactic structure was re-

ported. It demonstrates a clear distinction between the �ction domains and the
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non-�ction domains. However, it was not clear what kinds of structure character-

ize a particular domain. In this section, a study focused on the characteristics of

each domain is conducted. Domain speci�c syntactic structures (partial trees) are

extracted based on the following two conditions:

1. Relative frequency of a partial tree in a domain is at least 5 times greater than

that in the entire corpus.

2. Its frequency in the domain is more than 5.

The �rst condition identi�es the idiosyncrasy of the partial tree. The second condi-

tion is used in order to delete noise, because low frequency partial trees, many of

which are erroneous or uninteresting, often satisfy the �rst condition.

3.6.2 List of Relatively Frequent Partial Trees

Appendix E shows the lists of relatively frequent partial trees which satisfy the two

conditions mentioned in the previous subsection. Some examples and notes are

added for some interesting results.

It obviously demonstrates that each domain has many idiosyncratic structures.

Many of them are interesting to see and can be explained by our linguistic intu-

ition. This result supports the idea of domain dependent grammar, because these

idiosyncratic structures should be treated only by the grammar in that domain.

Even though the second condition tries to reduce the noise by discarding low

frequency partial trees, several types of noise remain in the list. The main reason

for the noise is the annotator's `propensity'. For example, the manner of annotation

for some identical sequences of parts-of-speech in di�erent domains is sometimes

di�erent. It is not so di�cult to �nd these, because they tend to happen in relatively

common word sequences and we can compare them with the same instances in other

domains.

Also, there are some types of noise which are caused by tagging errors. As in

the process of the annotation, the sentences are tagged �rst by an automatic tagger

and then human operators correct errors. So some consistent mistakes can be found,

which were ignored by the operators. The most typical one is that of a capitalized

word which is tagged as a proper noun, even if it is not. This kind of mistake is

also easy to detect from the list.

Another kind of noise comes from how a sentence is segmented. For example,

a compound sentence like I said ``Yes. I like it.'', usually is cut into two

sentences I said ``Yes. and I like it.''. Although it seems that this type

of segmentation is fairly consistent, it is unavoidable that some peculiarities are

introduced.
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3.7 Application to Speech Recognition

In Section 2.11, an experiment to enhance continuous speech recognition with the

parser was explained. That experiment tried to utilize syntactic information within

a sentence. The experiment in this section is another e�ort to improve the accuracy

of continuous speech recognition using long distance dependency. As was explained

previously, most of the current continuous speech recognition systems use a tri-gram

model as their language model. Here, a longer context, beyond sentence boundaries,

is used. It is based on the notion of sublanguage, or topic coherence properties. The

idea is that if we can �nd the sublanguage or the topic of the speech input, we

can adjust the knowledge of the system to the sublanguage and may improve the

recognition accuracy. In particular, since the usage of words is di�erent in di�erent

sublanguages or domains (Section 3.5), this idea may have great potential.

3.7.1 Similar Approaches

There have been several attempts in the last few years to make use of topic coherence

properties in order to improve recognition accuracy. Table 3.5 shows some of the

recent work which use topic coherence techniques, including cache model and topic

clustering methods. Because the evaluations were made on di�erent test sets and

Site Description Improvement References

(Year) (word error rate)

IBM (91) cache model [Jelinek 91]

CMU (94) trigger model 19.9 ! 17.8 [Rosenfeld 94]

BU (93-94) clustering 11.3 ! 11.2 [Ostendorf et al. 95]

(4 topic LM)

CMU (96) hand clustering 0.1,0.6% improve. [Seymore 97]

(5883 topic) in 2 story

SRI (96) clustering 33.1 ! 33.0 [Weng 97]

(4 topic LM)

CU (96) cache model 27.7 ! 27.5 [Woodland et al. 97]

Sekine sublanguage and 24.6 ! 24.0

cache model 9.7 ! 9.4

Table 3.5: Approaches of topic coherent model in speech recognition

on di�erent conditions, a direct comparison is not possible. In general, we can �nd

improvements using these techniques, although many are relatively small (except

for the CMU experiment (94), which was conducted on unique conditions). We can

summarize the techniques in three categories:
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� Cache

Use informationon previously uttered words to supplement the language model.

It utilizes the property that the same words are repeatedly used in an article.

� Dynamic Topic Adaptation (trigger, sublanguage)

Dynamically consult a database to build a language model for the topic based

on the previous utterances. The data can be structured in advance (trigger

model) or the raw text data can be retrieved and analyzed on demand (sub-

language model), but in either case the set of topics is not de�ned in advance.

� Clustering Language Model

Prepare language models for several topics which are de�ned in advance (au-

tomatically or by hand). Then �nd the topic of the current segment and use

the language model of the topic (or possibly a mix of several language models,

also combined with the general language model).

3.7.2 Overview

In the system, the N-best hypotheses produced by the SRI speech recognition system

are used, along with their acoustic and language model scores. The structure is the

same as the that in the experiment explained in Figure 2.14 in Section 2.11. Note

that none of SRI's language models take long-range dependencies into account. Their

scores are combined with the score produced by the sublanguage component and the

cache model score. Then the hypothesis with the highest combined score is selected

as the output of the system. The relative weights of the eight scores are determined

by an optimization procedure on a training data set.

The basic idea of the sublanguage experiment can be categorized into the `dy-

namic topic adaptation' explained in the previous subsection. It tries to �nd the topic

or sublanguage of the text, using the previously uttered sentences. Then a large cor-

pus is used to make a language model for that speci�c topic and the language model,

essentially unigram statistics, is used to improve the recognition accuracy.

3.7.3 Sublanguage Component

The sublanguage component performs the following four steps:

1. Select keywords from previously uttered sentences

2. Collect similar articles from a large corpus based on the keywords

3. Extract sublanguage words from the similar articles

4. Compute scores of N-best hypotheses based on the sublanguage words

A sublanguage analysis is performed separately for each sentence in an article (after

the �rst sentence). There are several parameters in these processes, and the values
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of the parameters used for this experiment will be summarized at the end of each

process. Generally several parameter values were tried and the values shown in this

paper are the best ones on the training data set.

A large corpus is used in the experiment as the source for similar articles. This

corpus includes 146,000 articles, or 76M tokens, from January 1992 to July 1995 of

North American Business News which consists of Dow Jones Information Services,

New York Times, Reuters North American Business Report, Los Angeles Times,

and Washington Post. This corpus has no overlap with the evaluation data set,

which is drawn from August 1995 North American Business News.

Now, each process of the sublanguage component will be described in detail.

Select Keywords

The keywords which will be used in retrieving similar articles are selected from

previously dictated sentences. The system which will be described here is an incre-

mental adaptation system, which uses only the information the system has acquired

from the previous utterances, which may be incorrect. So it does not know the

correct transcriptions of prior sentences or any information about subsequent sen-

tences in the article. For a comparison, a supervised adaptation experiment was

conducted. In this mode, the correct transcriptions of the previous utterances are

used.

Not all of the words from the prior sentences are used as keywords for retrieving

similar articles. As is the practice in information retrieval, several types of words

were �ltered out. First of all, closed class words and high frequency words are

excluded. Because these types of words appear in most of the documents regardless

of the topic, it is not useful to include these as keywords. On the other hand, very low

frequency words sometimes introduce noise into the retrieval process because of their

peculiarity. Only open-class words of intermediate frequency (actually frequency

from 6 to 100,000 in the corpus of 146,000 articles) are retained as keywords and

used in �nding the similar articles. Also, because the N-best sentences inevitably

contain errors, a threshold is set for the appearance of words in the N-best sentences.

Speci�cally, the requirement was enforced that a word appear in at least 15 times

in the top 20 N-best sentences (as ranked by SRI's score) to qualify as a keyword

for retrieval.

Parameter Value

Maximum frequency of a keyword 100000

Minimum frequency of a keyword 6

N-best for keyword selection 20

Minimum no. of appearances of a word in N-best 15
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Collect Similar Articles

The set of keywords is used in order to retrieve similar articles according to Formulae

3.7 and 3.8. Here Weight(w) is the weight of word w, F

0

(w) is the frequency of

word w in the 20 N-best sentences, M is the total number of tokens in the entire

corpus, F (w) is the frequency of word w in the entire corpus, AScore(a) is article

score of article a, which indicates the similarity between the set of keywords and the

article, and n(a) is the number of tokens in article a.

Weight(w) = F

0

(w) � log(

M

F (w)

) (3.7)

AScore(a) =

P

w2a

Weight(w)

log(n(a))

(3.8)

Each keyword is weighted by the product of two factors. One of them is the frequency

of the word in the 20 N-best sentences, and the other is the log of the inverse

probability of the word in the large corpus. This is a standard metric of information

retrieval based on the assumption that the lower frequency words provide more

information about topics [Sparck-Jones 73]. For each article, article scores (AScore)

for all articles (target) in the large corpus are computed as the sum of the weighted

scores of the selected keywords and are normalized by the log of the size of the

target article. This score indicates the similarity between the set of keywords and

the article. The most similar 50 articles were collected from the corpus. These form

the \sublanguage set", which will be used in analyzing the next sentence in the test

article.

Parameter Value

Number of articles in sublanguage set 50

Extract Sublanguage words

Sublanguage words are extracted from the collected sublanguage articles. This ex-

traction was done in order to �lter out topic-unrelated words. Here, function words

are excluded, as was done in the keyword selection, because function words are

generally common throughout di�erent sublanguages. Next, to �nd strongly topic

related words, words which appear in at least 3 out of the 50 sublanguage articles

were extracted. Also, the document frequency in sublanguage articles has to be at

least 3 times the word frequency in the large corpus:

DF (w)=50

F (w)=M

> 3 (3.9)
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Here, DF (w) is the number of documents in which the word appears. We can

expect that these methods eliminate words less related to the topic, so that only

words strongly related to the topic are extracted as the sublanguage words.

Parameter Value

Minimum number of documents containing the word 3

Threshold ratio of word in the set and in general 3

Compute Scores for N-best Hypotheses

Finally, the scores for the N-best hypotheses generated by the speech recognizer

were computed. The top 100 N-best hypotheses (according to SRI's score) are re-

scored. The sublanguage score assigned to each word is the logarithm of the ratio of

document frequency in the sublanguage articles to the word frequency of the word

in the large corpus. The larger this score for a word, the more strongly the word is

related to the sublanguage found through the prior discourse.

The score for each sentence is calculated by accumulating the score of the selected

words in the hypothesis. Here HScore(h) is the sublanguage score of hypothesis h.

HScore(h) =

X

w : Selected words in h

log(

DF (w)=50

F (w)=M

) (3.10)

This formula can be motivated by the fact that the sublanguage score will be com-

bined linearly with general language model scores, which mainly consist of the log-

arithm of the tri-gram probabilities. The denominator of the log in Formula 3.10 is

the unigram probability of word w. Since it is the denominator of a logarithm, it

works to reduce the e�ect of the general language model which may be embedded in

the trigram language model score. The numerator is a pure sublanguage score and

it works to add the score of the sublanguage model to the other scores.

Parameter Value

N-best to be re-scored 100

3.7.4 Cache model

A cache model was also used in the experiment. Not all the words in the previous

utterance were used as cache words. Rather several types of words were �ltered

out and all of the \selected keywords" as explained in the last section were used

for the cache model. Scores for the words in cache (CScore(w)) are computed in a

similar way to that for sublanguage words. Here, N

0

is the number of tokens in the

previously uttered N-best sentences.

CScore(h) =

X

w : words in cache

log(

F

0

(w)=N

0

F (w)=M

) (3.11)

79



3.7.5 Experiment

There are 4 di�erent conditions in the experiment.

1. Multiple microphone; incremental adaptation (P0)

2. Single microphone; incremental adaptation (C0)

3. Multiple microphone; supervised adaptation (C4A)

4. Single microphone; supervised adaptation (C4B)

`Single microphone' means that the speech was recorded using the close-talking

Sennheiser HMD-410 microphone. `Multiple microphone' means that the recoding

was done using three secondary microphones that were unknown to the systems.

`Incremental adaptation' means that the data used for retrieving similar articles are

derived from the previously recognized sentences. Since the recognizer produces

N-best sentences, the top 20 sentences were used as the basis for the predictions.

`Supervised adaptation' means that the correct transcriptions of the previous sen-

tences are used as the basis for selecting similar articles from the corpus and for the

cache. P0, C0, C4A, C4B are labels to represent each experiment condition.

The parameters of the sublanguage component are tuned and the weight of each

component is decided by the training optimization. The evaluation of the sublan-

guage method is done by comparing the word error rate of the system with sublan-

guage scores to that of the SRI system without sublanguage scores.

The absolute improvement using the sublanguage component over SRI's sys-

tem, for example, on P0 is 0.6%, from 24.6% to 24.0%, as shown in Table 3.6.

The �gures in the table was based on the formal evaluation conducted at NIST

[Speech Workshop 96]. The absolute improvement looks tiny; however, there is a

System P0 C0 C4A C4B

SRI 24.6 % 9.7 % 24.6 % 9.7 %

SRI + SL 24.0 % 9.4 % 24.3 % 9.3 %

Table 3.6: Formal result of speech recognition

limit to the improvement we can obtain, because the N-best sentences don't always

contain the correct candidate. This will be discussed in the next subsection.

3.7.6 Discussion

Inevitably, this evaluation is a�ected by the performance of the base system. In par-

ticular, the number of errors produced by the base system and the minimumnumber

of errors obtainable by choosing the N-best hypothesis with minimum error for each
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sentence, are important. (Let's call the latter error \MNE" for \minimal N-best

errors".) The di�erence between these numbers indicates the possible improvement

which can be achieved by re-scoring the hypotheses. Note that the detailed error

analysis shown in this section is based on uno�cial �gures, which were evaluated

internally and are di�erent from the numbers shown in Table 3.6. Also, for simplic-

ity, only the P0 evaluation result is discussed in this subsection. Table 3.7 shows the

Number of errors Word Error Rate

SRI system 1522 25.37 %

MNE 1147 19.12 %

Possible Improvement 375 6.25 %

Table 3.7: Word errors of the base system and MNE

number of errors and word error rate of the SRI system and MNE. The di�erence of

the two numbers represents the possible improvement by re-scoring the hypotheses.

It is unreasonable to expect the sublanguage model to �x all of the 375 word errors

(non-MNE). For one thing, there are a lot of word errors unrelated to the article

topic, for example function word replacement (\a" replaced by \the"), or deletion

or insertion of topic unrelated words (missing \over"). Also, the word errors in the

�rst sentence of each article are not able to be �xed

2

.

The absolute improvement using the sublanguage component over SRI's system

is about 0.65%, from 25.37% to 24.72% (again as an internal �gure), as shown

in Table 3.8. That is, the number of word errors is reduced from 1522 to 1483.

This means that 10.40% of the possible improvement was achieved (39 out of 375).

Although the absolute improvement looks tiny, the relative improvement excluding

System Word Error Num.of Improvement

Rate Error exclude MNE

SRI 25.37 % 1522

SRI + SL component 24.72 % 1483 10.40 %

Table 3.8: Word error rate and improvement

MNE, 10.40 %, is quite impressive, because, as was explained before, there are some

types of error which can not be corrected by the sublanguage model.

Figure 3.7 shows an example of the actual output of the system. (This is a rela-

tively badly recognized example.) The �rst sentence is the correct transcription, the

2

Note that, in the experiment, a few errors in initial sentences were corrected, because of the

weight optimization based on the eight scores which includes all of the SRI's scores. But this e�ect

is very minor and these improvements are o�set by a similar number of errors introduced for the

same reason.
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second one is SRI's best scored hypothesis, and the third one is the hypothesis with

the highest combined score of SRI and sublanguage/cache models. This sentence

is the 15th in an article on memory chip production. As you can see, a mistake in

SRI's hypothesis, membership instead of memory and chip, was replaced by the cor-

rect words. However, other parts of the sentence, like hyundai corporation and

fujitsu, were not amended. This particular error is one of the MNE, for which

there is no correct candidate in the N-best hypotheses. Another error, million or

day instead of billion, is not a MNE. There exist some hypotheses which have

billion at the right spot, (the 47th candidate is the top candidate which has the

word). The sublanguage model works to replace word day by million, but this was

not the correct word.

1) in recent weeks hyundai corporation and fujitsu limited

announced plans for memory chip plants in oregon at

projected costs of over one billion dollars each

2) in recent weeks CONTINENTAL VERSION SUGGESTS ONLY limited

announced plans for MEMBERSHIP FINANCING FOR IT HAD

projected COST of one DAY each

3) in recent weeks CONTINENTAL VERSION SUGGESTS ONLY limited

announced plans for memory chip plants in WORTHINGTON

PROJECT COST of one MILLION each

1) Correct Transcription, 2) SRI's best, 3) SRI + SL

Figure 3.7: Example of transcription

3.7.7 Future Work on Topic Coherence Model

The results for the word error rate suggest that the sublanguage technique can be

very useful in improving the speech recognition rate. However, the actual improve-

ment in word error rate is relatively small, partially because of factors which could

not be controlled, of which the problem of MNE is the most important. One of

the methods for increasing the possibility of improvement is to make N (of N-best)

larger, thus including more correct hypotheses in the N-best. Although SRI pro-

vides us N-best for up to 2000, parameter optimization showed us that 100 is the

optimal number for this parameter. This result can be explained by the follow-

ing statistics. Table 3.9 describes the number of MNE as a function of N for the

training data set and evaluation data set. Also in brackets, the maximal possible

improvement for each case is shown. According to the table, the number of MNE
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N MNE MNE

for evaluation for training

1 1522 1258

50 1163 (359) 991 (267)

100 1147 (375) 960 (298)

200 1134 (388) 947 (311)

500 1116 (406) 935 (323)

1000 1109 (413) 930 (328)

2000 1107 (415) 929 (329)

Table 3.9: N-best and word error

decreases rapidly for N up to 100; however, after that point, the number decreases

only slightly. For example, in the evaluation data set, increasing N from 500 to 2000

introduces only 9 new possible word error improvements. This small number might

give the component greater opportunity to include errors rather than improvements.

Improvements could be drawn from better adjustment of the parameter set-

tings. There are parameters involved in the similarity calculation, the size of the

sublanguage set, the ratio threshold, etc. To date, the tuning was done by manual

optimization using a relatively small number of trials and a very small training set

(the 20 articles which have N-best transcriptions). It is necessary to use automatic

optimization methods and a substantially larger training set. With regard to the

size of sublanguage set, a constant size may not be optimal. It might be interesting

to use the technique described in Section 3.3. It selects the size of sublanguage

automatically by seeking the minimum ratio of the document set perplexity to the

estimated perplexity of randomly selected document sets of that size. This remains

as a future work.

It might be worthwhile to reconsider how to mix the sublanguage and cache

score with SRI's language model score. SRI provides language model scores for

each sentence hypothesis, not for each word. However, if their language score can

be computed with high con�dence for a particular word, then the model should have

relatively little weight. On the other hand, if the language model has low con�dence

for a word, sublanguage should have a heavy weight. In other words, the combination

of the scores should not be done by a combination at the sentence level, but should

be done at the word level.
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Chapter 4

Sublanguage and Parsing

4.1 Introduction

In this chapter, experiments to observe domain dependency for parsing will be re-

ported. The chart parser explained in Section 2.7 is used and grammars and dictio-

naries are extracted from the Brown corpus. About the Brown corpus, please refer

Section 3.4. Texts from di�erent domains are parsed by di�erent kinds of gram-

mars. Although one may raise some concern about the de�nition of the domain,

which we discussed in the previous chapter, if the parsing results show a tendency

toward improved accuracy when the text is parsed by the grammar from the same

or similar domains, it exhibits the usefulness of the sublanguage notion.

Two experiments will be described. The �rst is an individual experiment, where

texts from 8 domains are parsed with 4 di�erent types of grammars. These are

grammars acquired from the corpora of the same domain, all domains, non-�ction

domains and �ction domains.

The other parsing experiment is an intensive experiment, where we try to �nd

the best suitable grammar for texts in two particular domains. Also we try to see

the relationship to the size of the training corpus. We use the domains of `Press

Reportage' and `Romance and Love Story' in this intensive experiment.

Finally, discussion drawn from the experiments will be presented.

4.2 Individual Experiment

Table 4.1 shows the parsing performance for domains A, B, E, J, K, L, N and P with four

types of grammars. In the table, results are shown in the form of `recall/precision'.

Each grammar is acquired from roughly the same size (21 to 24 samples) of corpus.

All the grammar are 5NT grammar without any lexicalization, see Section 2.5. The

grammar of all domains is created using a corpus of 3 samples each from the 8

domains. The grammar of non-�ction and �ction domains are created from a corpus
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of 6 samples each from 4 domains. Then text of each domain is parsed by the four

types of grammar. There is no overlap between training corpus and test corpus.

Document / Grammar Itself All non-�ction �ction

A. Press: Reportage 66.62/64.14 64.39/61.45 65.57/62.40 62.23/59.32

B. Press: Editorial 67.65/62.55 64.67/61.78 65.73/62.69 63.03/60.36

E. Skills/Hobbies 64.05/60.79 65.25/61.51 65.26/62.18 62.87/59.04

J. Learned 67.80/65.59 65.87/63.90 65.57/64.58 63.04/60.77

K. General �ction 70.99/68.54 71.00/68.04 70.04/66.64 71.79/68.95

L. Mystery/Detective 67.59/65.02 68.08/66.22 67.32/64.31 68.89/66.55

N. Adventure/Western 73.09/71.38 72.97/70.27 70.51/67.90 74.29/72.23

P. Romance/Love story 66.44/65.51 64.52/63.95 62.37/61.55 64.69/64.50

Table 4.1: Parsing accuracy for individual section

We can see that the result is always the best when the grammar acquired from

either the same domain or the same class (�ction or non-�ction) is used. We will

call the division into �ction and non-�ction as `class'. It is interesting to see that

the grammar acquired from all domains is not the best grammar in most of the

tests. (Only for E, is it very close to the best result.) In other words, if the size of

the training corpus is the same, using a training corpus drawn from a wide variety

of domains does not help to achieve better parsing performance. This shows the

domain dependency of parsing.

For non-�ction domain texts (A, B, E and J), the performance of the �ction

grammar is notably worse than that of the same domain grammar or the same class

grammar. In contrast, the performance on some �ction domain texts (K and L) with

the non-�ction grammar is not so di�erent from that of the same domain. Here, we

can see some relationships between these results and the cross entropy observations

described in Section 3.5. The matrix shown in Figure Figure 4.1. is a subset of

the matrix in Figure 3.3. In the matrix, the cross entropies where any of the �ction

domains are models and any of the non-�ction domains are tests (right-top in the

matrix) have much higher �gures than the cross entropies where any of the non-

�ction domains are models and any of the �ction domains are tests (right-top in

the matrix) This means that the �ction domains are less suitable for modeling the

syntactic structure of the non-�ction domains compared to the reverse case. This

observation explains the result of parsing very nicely.

It is not easy to consider why, for some domains, the result is better with the

grammar of the same class rather than the same domain. One rationale we can

think of is based on the comparisons described in Section 3.5. For example, in the

clustering experiment based on syntactic structure shown in Figure 3.5, we have

seen that domains K, L and N are very close and make a cluster at the earliest stage

and domain P is the last one to join the cluster. So it may be plausible to say that
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T\M A B E J K L N P

A 5.132 5.357 5.418 5.452 5.513 5.526 5.538 5.558

B 5.475 5.190 5.500 5.519 5.550 5.587 5.600 5.604

E 5.506 5.483 5.204 5.484 5.587 5.593 5.583 5.617

J 5.395 5.370 5.350 5.158 5.529 5.571 5.583 5.596

K 5.326 5.258 5.317 5.418 4.955 5.145 5.150 5.174

L 5.322 5.269 5.322 5.456 5.122 4.914 5.095 5.132

N 5.299 5.259 5.282 5.431 5.102 5.068 4.899 5.122

P 5.439 5.367 5.405 5.550 5.235 5.213 5.211 5.004

Figure 4.1: Cross entropy of syntactic structure across domains

the grammar of the �ction domains is mainly representing K, L and N, and because

it may contain a wide range of syntactic structures, it produced a good performance

for each of these domains. For domain P, the �ction domain grammar may not �t

well. In other words, this is a small sampling problem. Because only 24 samples or

texts of 48000 words are used, a single domain grammar tends to cover a relatively

small part of the language phenomena. On the other hand, a corpus of very similar

domains could provide wider coverage.

4.3 Intensive Experiment

In this section, several parsing experiments on texts of two domains are reported.

The texts of the two domains are parsed with several grammars, e.g. grammars

acquired from di�erent domains, classes and combined, and also di�erent sizes of

the training corpus. The size of the training corpus is an interesting and important

issue, which was also discussed in Section 2.6. The experiments demonstrated that

the smaller the training corpus, the poorer the parsing performance. However, for

example, we don't know which of the following two types of grammar produce better

performance: a grammar trained on a smaller corpus of the same domain, or a

grammar trained on a larger corpus including di�erent domains.

We can imagine, in a practical situation, that we have a relatively big general

corpus and a small domain corpus. Experiments which simulate such situations were

conducted. That is an all-domain corpus was used as a general training corpus, and

each domain corpus was added to the training corpus; then grammars were extracted

from several combinations of these two kinds of corpora.

Table 4.2 shows the parsing performance on press reportage text using grammars

of di�erent domains. Table 4.3 shows the parsing performance on Romance and

Love Story text using grammars of di�erent combinations. Here \ALL" means the

grammar acquired from the combination of all 8 domain corpora (the 192 sample
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corpus contains all 24 samples of all domains), \FIC" means the �ction domain,

\NNF" means the non-�ction domain, and letters represent single domains. The

number in parentheses indicates the size of the training corpus; more precisely it

is the number of samples in terms of the Brown corpus used for the training. The

size of a speci�c domain corpus is increased by replicating the same corpus, because

of the corpus availability limitation. We can observe an interesting result from

Grammar Recall Precision

A (24) 66.62 64.14

ALL (24) 64.39 61.46

ALL (24) + A (24) 66.73 64.73

ALL (192) 66.74 65.52

ALL (192) + A (24) 66.77 65.61

ALL (192) + A (48) 67.15 65.96

ALL (192) + A (72) 67.08 65.88

ALL (192) + A (120) 67.09 65.82

NNF (24) 65.57 62.40

NNF (24) + A (24) 67.90 65.55

FIC (24) 62.23 59.32

FIC (24) + A (24) 66.35 64.51

Table 4.2: Parsing accuracy for Press Reportage domain

the experiments combining the general corpus and domain corpus. In all cases

except ALL(192), (which already includes the entire domain-speci�c corpus), adding

the domain-speci�c corpus improves the accuracy quite substantially. Figure 4.2

shows the relationship between the degree of combination and parsing accuracy.

The graph draws two lines of the parsing experiment based on the data of ALL(192)

through ALL(192)+A(120) in Table 4.2 and that for P in Table 4.3. In the graph, the

proportion of the domain-speci�c corpus in the training corpus is increasing from left

to right. Note that the rightmost points indicate the parsing accuracy using the same

domain grammar alone, which means the recall of A(24) for the Press Reportage and

the recall of P(24) for the Romance domain. We can see an interesting result from

the experiments of combining the general corpus and domain corpus. There is a

maximum on parsing accuracy in the middle of the mixture in the Press Reportage

domain. Although it is a relatively small improvement, it is worthwhile, because

the results came from the exactly the same knowledge sources, the di�erence is the

mixture. In the Romance and Love Story domain, the pure general domain grammar

has the maximum accuracy, but note that it already includes the entire portion of

the Romance and Love Story domain corpus.

Now the experiments concerning training size are reported. Figure 4.3 and Fig-

ure 4.4 show the graph of recall and precision of the parsing result for the Press
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Grammar Recall Precision

P (24) 66.44 65.51

ALL (24) 64.52 63.84

ALL (24) + P (24) 67.40 66.97

ALL (192) 67.96 69.22

ALL (192) + P (24) 67.48 68.78

ALL (192) + P (48) 67.38 68.52

ALL (192) + P (72) 67.57 68.71

ALL (192) + P (120) 67.38 68.42

NNF (24) 62.37 61.55

NNF (24) + P (24) 67.38 66.44

FIC (24) 64.69 64.50

FIC (24) + P (24) 67.19 66.96

Table 4.3: Parsing accuracy for Romance domain
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Figure 4.2: Degree of combination and the accuracy
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Reportage text (domain A). Also, Figure 4.5 and Figure 4.6 show the graph of recall

and precision of the parsing result for the Romance and Love Story text (domain P).

The same text is parsed with 5 di�erent types of grammars acquired from training

corpora of di�erent sizes. Because of corpus availability, it is impossible to create

single domain grammars based on a large training corpus. The accuracy as a
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Figure 4.3: Size and Recall (Press Report)

function of the size of training corpus is monotonically increasing, with the slope

gradually attening. Note that the small declines of some graphs at large number of

samples are mainly due to the memory limitation for parsing which was explained

in Section 2.5. It is very interesting to see that the saturation point of any line on

the graph is about 10 to 30 samples. That is about 20,000 to 60,000 words, or about

1,000 to 3,000 sentences. In the romance and love story domain, the precision of

the grammar acquired from 8 samples of the same domain is only about 2% lower

than the precision of the grammar trained on 26 samples of the same domain. We

believe that the reason why the performance in this domain saturates with such a

small corpus is that there is relatively little variety in the syntactic structure of this

domain.

The order of the performance is generally the following: the same domain (best),

the same class, all domains, the other class and the other domain (worst). The

performance of the grammars of all domain and the other class are very close in

many cases. In the romance and love story domain (Figure 4.6 and 4.5), the grammar

acquired from the same domain made the solo best performance. The accuracies

based on the grammars of the same domain and based on the other grammars are

quite di�erent. The results for the press reportage (Figure 4.4 and 4.3) are not so

obvious, but the same tendencies can be observed.

In terms of the relationship between the size of training corpus and domain

89



0 20 40 60 80 100

Number of Samples

45

50

55

60

65

70

Precision

~

~

~

~

~

~

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

..

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

..

.

.

.
.
.
.
.
.

.
.
.
.
.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.
.

.

.

.

.

.

.

.

.

.
.

.

.

.

.
..
.
.
..
.
.
..
.
.
..
.
.
..
.
.
.
..
.
.
..
.
.
..
.
.
.
..
.
.
..
.
..
.
.
.

.
.
.
.
.
.
.
.

.

�

�

�

�

�

�

.

.

.

.

.

.
.
.

.

.

.

.
.

.

.

.

.

.

.
.
.
.
.

.

.

.
.
.

.

.

.

.
.

.

.

.

.

.

.
.
.
.

.

.

.

.

.

.

.

.

.

.

....
..
...
..
...
..
..
...
..
...
..
...
..
...
..
...
..
..
.
..
..
..
..
.
..
..
..
..
..
.
..
..
..
..
.
..
..
..
..
..
.
..
..
..
..
.
..
..
..
..
.
..
..
..
..
..
.
..
..
..
..
.
..
..
..
..
..
.
..
..
..
..
.
..
..
..
..
...
....
....
....
....
....
....
....
....
....
....
....
....
....
....
....
....
....
....
....
....
....
....
....
....
....
....
....
........
........
.......
........
........
.......
........
.......
........
........
.......
........
.......
........
...

� �

�

� �

�

......................................
.
.
.
..
.
.
.
..
.
.
.
..
.
.
.
.
..
.
.
.
..
.
.
.
.
..
.
.
.
..
.
.
.
...
..
.
..
..
..
.
..
..
..
.
..
..
.
..
..
..
.
..
..
..
.
..
..
.
..
..
..
.
..
..
..
.
..
..
.
..
..
..
.
..
..
..
.
..
..
..
.
..
..
.
..
..
..
.
..
..
..
.
..
..
.
..
..
..
.
.......................................................................................................................

.........
.........
........
.........
.........
........
.........
.........
........
.........
.........
.....

�

�

�

�

�

�

.

.

..
.
.
..
.
.
.
..
.
.
.
..
.
.
..
.
.
.
..
.
.
..
.
.
.
..
.
.
..
..
.
..
.
.
.
..
.
.
..
.
.
.
..
.
.
..
.
.
..
.
.
.
..
.
.
..
.
.
.
..
...
....
....
....
....
...
....
....
....
....
....
...
....
....
....
....
....
...
....
....
....
....
....
...
....
....
....
....
.....
.........
.........
..........
.........
.........
.........
.........
..........
.........
.........
.........
.........
....
....
....
....
....
....
....
....
....
....
....
....
....
....
....
....
....
....
....
....
....
....
....
....
....
....
....

�

�

�

�

�

�

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

..

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

..

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.
.
.

.

.

.

.

.

.

.

.

.

.

.

.
.
.

.

.

.

.

.

.

.

.

.

.

.

.

.
..

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

...
..
..
..
..
..
..
..
..
..
.
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
.
..
..
..
..
..
..
..
..
..

� ALL

� �ction

� non-�ction

� press report

~ romance/love

Figure 4.4: Size and Precision (Press Report)
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Figure 4.5: Size and Recall (Romance)
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� press report

~ romance/love

Figure 4.6: Size and Precision (Romance)

dependency, the performance of the grammar acquired from 24 samples of the same

domain (`baseline grammar'), and that of the other grammars shall be compared. In

the press reportage domain (Figures 4.4 and 4.3), about three to four times larger

corpus of all domains or non-�ction domains is needed to match the performance of

the baseline grammar. It should be noted that a quarter of the non-�ction domain

corpus and one eighth of the all domain corpus consists of the press report domain

corpus. In other words, the fact that the performance of the baseline grammar is

about the same as that of 92 samples of the non-�ction domains means that in the

latter grammar, the rest of the corpus gives only a little improvement for the parsing

performance. In the romance and love story domain (Figure 4.6 and 4.5), the �ction

domain grammar and all domain grammar quickly catch up to the performance of

the baseline grammar. Less than twice as large a �ction domain corpus is needed to

achieve the performance of the baseline grammar. From these two results and the

evidence from the previous section, we can say that if you have a corpus consisting

of similar domains, it is worthwhile to include the corpus in grammar acquisition,

otherwise it is not so useful. We need to further quantify these relationships between

the syntactic diversity of individual domains and the di�erence between domains.

4.4 Discussion

One of our basic claims from the parsing experiments is the following. When we try

to parse a text in a particular domain, we should prepare a grammar which suits

that domain. This idea naturally contrasts with the idea of robust broad-coverage

parsing [Carroll and Briscoe 96], in which a single grammar should be prepared for

parsing any kind of text. Obviously, the latter idea has the great advantage that you
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do not have to create a number of grammars for di�erent domains nor do you need

to consider which grammar should be used for a given text. On the other hand, it is

plausible that a domain speci�c grammar can produce better results than a domain

independent grammar. Practically, the increasing availability of corpora provides

the possibilities of creating domain dependent grammars. Also, it should be noted

that we don't need a huge corpus to achieve a fairly good quality of parsing.

Undoubtedly the performance depends on the parsing strategy, the corpus and the

evaluation methods. However, the results of the experiments suggest the signi�cance

of the notion of domain in parsing. The results would be useful for deciding what

strategy should be taken in developing a grammar for a `domain dependent' NLP

application system.
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Chapter 5

Conclusion

In this thesis, research on the following topics has been presented.

� A corpus-based probabilistic parser

A novel approach to corpus-based parsing was proposed. It exhibited good

performance and several strategies to improve the parser were tried. A Japanese

parser based on the same idea was developed.

� Sublanguage study

Domain dependency of language, in particular concerning syntactic structure,

was studied. Several statistics and studies of sublanguage were introduced.

� Speech Recognition experiment using parser and sublanguage technique

The parsing and sublanguage techniques were applied to speech recognition.

An experiment using the parser demonstrated some promising examples. The

sublanguage technique improved the speech recognition performance.

� Sublanguage and Parser

Parsing experiments based on the knowledge extracted from di�erent domains

showed the domain dependency of parsing. This empirical result serves as an

important suggestion for future work in domain dependent natural language

processing.

New approaches, challenging applications and empirical studies were reported on

these topics. However, none of the work is by any means completed. We can

commence explorations in several directions from the work done in this thesis. These

future projects were mentioned in each chapter, but here, the author would like to

conclude the thesis by listing his major concerns.

� In order to improve the parsing accuracy, more trials should be conducted.

This includes investigation of new non-terminal categories and back-o� meth-

ods to more general grammar rules.
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� In parsing, a richer lexical dependency model should be incorporated, since

it has been shown that it is useful information for achieving a good parsing

performance.

� A mechanism to reduce the required memory size for the parser should be

considered. In particular, it is necessary to eliminate �tted sentences, because

the quality of �tted sentences are generally worse. A technique like CYK

parsing can be used.

� In sublanguage studies, the relationships between the nature of domain and

the e�ect in processings should be analyzed. For example, how the domain

speci�c structures a�ect parsing performance is one of the interesting topics.

� In the speech recognition experiment, although there were some examples

where the parsing could help to improve the performance, the overall per-

formance was not improved. Means of transferring these successes into better

overall performance need to be discovered.
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Appendix A

Symbol De�nition

De�nition of parts-of-speech Symbols

Categories with `*' mark are new categories which are not de�ned in PennTree-

Bank.

CC Coordinating conjunction

CD Cardinal number

DT Determiner

EX Existential there

FW Foreign word

IN Preposition

JJ Adjective

JJR Adjective, comparative

JJS Adjective, superlative

LS List item marker

MD Modal

NNX Noun*

NN Noun (singular)

NNS Noun (plural)

NNPX Proper noun*

NNP Proper noun (singular)

NNPS Proper noun (plural)

PDT Predeterminer

POS Possessive ending

PRP Personal pronoun

PP$ Possessive pronoun
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RB Adverb

RBR Adverb, comparative

RBS Adverb, superlative

RP Particle

SYM Symbol (mathematical or scienti�c)

TO to

UH Interjection

VB Verb, base form

VBX Verb, present tense, past tense*

VBP Verb, present tense

VBZ Verb, present tense, third singular

VBD Verb, past tense

VBG Verb, gerund/present participle

VBN Verb, past participle

WDT wh-determiner

WP wh-pronoun

WP$ Possessive wh-pronoun

WRB wh-adverb

# Pound sign

$ Dollar sign

, Comma

: Colon, semi-colon

-LRB- Left bracket character

-RRB- Right bracket character

'' Straight double quote

` Left open single quote

`` Left open double quote

' Right close single quote

'' Right close double quote

@OF of*

@SNC subordinate conjunction*

@DLQ quanti�er modi�er*
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De�nition of grammatical node Symbols

ADJP Adjective phrase

ADVP Adverb phrase

CONJP Conjunction phrase

INTJ Interjection

NP Noun phrase

PP Prepositional phrase

PRT Parenthetical

S Simple declarative clause

SBAR Clause introduced by subordinating conjunction

SBARQ Direct question introduced by wh-word/phrase

SINV Declarative sentence with subject-aux inversion

SQ Subconstituent of SBARQ excluding wh-word/phrase

VP Verb phrase

WHADVP Wh-adverb phrase

WHNP Wh-noun phrase

WHPP Wh-prepositional phrase

X Constituent of unknown or uncertain category

SS S but not the top S*

TOINF To in�nitive*

NPL Lowest noun phrase (BaseNP)*
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Appendix B

Table for Finding Head

NT Direction Order of categories to be searched

----- ------------- ------------------------------------------

S right-to-left VP S SS SBAR ADJP UCP SINV SBARQ SQ NP NPL

SS right-to-left VP S SS SBAR ADJP UCP SINV SBARQ SQ NP NPL

ADJP right-to-left QP ADJP $ JJ JJR JJS DT FW CD RB RBR RBS RP

ADVP left-to-right ADVP RB @DLQ RBR RBS FW IN TO CD JJ JJR JJS

CONJP left-to-right CC RB IN

FRAG left-to-right FRAG

INTJ right-to-left INTJ

LST left-to-right LS :

NAC right-to-left NNX NN NNS NNPX NP NPL NNPS NNP NAC

EX $ CD QP PRP VBG JJ JJS JJR ADJP FW

NP right-to-left NP NPL NNX NN NNS NNP NNPS NAC EX $ CD

QP PRP VBG NX DT JJ JJR JJS ADJP FW

RB RBR RBS SYM PRP$

NPL right-to-left NNX NN NNS NNP NNPS NAC EX $ CD QP PRP VBG

NX DT JJ JJR JJS ADJP FW RB RBR RBS SYM PRP$

NX right-to-left NX NNX NN NNS NNP NNPS

PP left-to-right IN @OF TO FW PP

PRN right-to-left S SS NP NPL SINV PP ADVP

PRT left-to-right RP @DLQ

QP right-to-left CD NNX NN NNS JJ JJR JJS RB RBR RBS DT $

RRC left-to-right VP S SS NP NPL ADVP ADJP PP

SBAR right-to-left SBAR @SNC TOINF IN WDT VP WHADVP WHADJP

WHNP WHPP WP RBS DT @DLQ S

SBARQ right-to-left SQ S SS SINV SBARQ FRAG X

SINV right-to-left VP VBZ VBD VBP VB MD SQ S SS SINV ADJP

SQ right-to-left VP VBX VBZ VBD VBP VB MD SQ
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UCP left-to-right UCP

VP right-to-left VBN VBX VBD MD VBZ VBP VP VB VBG ADJP NP NPL

WHADJP right-to-left WHADJP WHADVP WRB CC JJ ADJP

WHADVP left-to-right WRB CC

WHNP right-to-left WDT WP WP$ WHADJP WHPP WHNP WRB @SNC DT @DLQ

NP NPL

WHPP left-to-right IN @OF TO FW PP

X left-to-right X

TOINF left-to-right TO

AUX right-to-left NP NPL

NEG right-to-left RB

NNPX left-to-right NNPX

FW left-to-right FW

CD left-to-right CD

SYM left-to-right SYM
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Appendix C

Examples of Binary

Comparison

Scores of parser (left) and trigram (right) are shown in parentheses. Smaller num-

bers are better.

C: correct sentence S: SRI-best candidate

Parser and Trigram both favor SRI-best

C: some dealers of foreign cars also lowered their

japanese prices (448,655)

S: some dealers of foreign cars also lowered the

japanese prices (424,614)

C: the problem isn't gridlock he says the wheels are

out of alignment (598,646)

S: the problem is in gridlock he says the wheels are

out of alignment (567,625)

Trigram favors Correct, but Parser favors SRI-best (Bad example)

C: board would review distributing the remaining shares in the

gold subsidiary to the parent company's shareholders (1328,1306)

S: board would review distributing the remaining shares in the

gold subsidiary to the parent company shareholders (1254,1333)

100



Trigram favors SRI-best, but Parser favors Correct (Good example)

C: mcdonnell douglas corporation has built

helicopter parts ... (1360,1548)

S: mcdonnell douglas corporation and bell

helicopter parts ... (1404,1491)

C: they are interested in commodities as a new asset class

van says (521,731)

S: they are interested in commodities says a new asset class

van says (560,720)

C: weary of worrying about withdrawal charges

if you want to leave ... (1132,1273)

S: weary of worrying about withdraw all charges

if you want to leave ... (1210,1202)

C: this scenario as they say on t.v. is

based on a true story (550,649)

S: this scenario as a say on t.v. is

based on a true story (576,644)

C: indirect foreign ownership is limited to 25% (613,723)

S: in direct foreign ownership is limited to 25% (695,709)

C: even some lawyers now refer clients to mediators

offering to review the mediated agreement and

provide advice if needed (1045,1255)

S: even some lawyers now refer clients to mediators

offering to review the mediated agreement can

provide advice if needed (1067,1253)

Others

C: the may figures show signs of improving sales said

noriyuki matsushima (951,?)

S: the may figures show signs of improving sales said

nora you keep matsui shima (1211,?)
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Appendix D

Brown Corpus

CATEGORIES of Brown Corpus (In total 500 samples)

=================================================

I. Informative Prose (374 samples)

A. Press: Reportage (44)

Political (Daily 10, Weekly 4, Total 14)

Sports ( 5, 2, 7)

Society ( 3, 0, 3)

Spot News ( 7, 2, 9)

Financial ( 3, 1, 4)

Cultural ( 5, 2, 7)

B. Press: Editorial (27)

Institutional (7, 3, 10)

Personal (7, 3, 10)

Letters to the Editor (5, 2, 7)

C. Press: Reviews (17)

Theatre, books, music, dance

(14, 3, 17)

D. Religion (17)

Books ( 7)

Periodicals ( 6)

Tracts ( 4)

E. Skills and Hobbies (36)
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Books ( 2)

Periodicals (34)

F. Popular Lore (48)

Books (23)

Periodicals (25)

G. Belles Letters, Bibliography, Memories, etc (75)

Books (38)

Periodicals (37)

H. Miscellaneous (30)

Government Documents (24)

Foundation Reports ( 2)

Industry Reports ( 2)

College Catalog ( 1)

Industry House Organ ( 1)

J. Learned (80)

Natural Science (12)

Medicine ( 5)

Mathematics ( 4)

Social and behavioral Sciences (14)

Political Science, Law, Education (15)

Humanities (18)

Technology and Engineering (12)

II. Imaginative Prose (126 Samples)

K. General Fiction (29)

Novels (20)

Short Stories ( 9)

L. Mystery and Detective Fiction (24)

Novels (20)

Short Stories ( 4)

M. Science Fiction (6)

Novels ( 3)

Short Stories ( 3)

N. Adventure and Western Fiction (29)
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Novels (15)

Short Stories (14)

P. Romance and Love Story (29)

Novels (14)

Short Stories (15)

R. Humor ( 9)

Novels ( 3)

Short Stories ( 6)
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Appendix E

Examples of Idiosyncratic

Structures

A. Press: Reportage

ratio freq./total freq./total rule (Example)

(in domain) (in corpus)

9.40 11 / 75662 14 / 905142 NP -> NNPX NNX NP

9.30 7 / 75662 9 / 905142 NP -> NP POS JJ NNPX

8.70 8 / 75662 11 / 905142 S -> NP VBX VP NP PP

8.44 12 / 75662 17 / 905142 NP -> DT $ CD NNX

8.30 77 / 75662 111 / 905142 NP -> NNPX NP

7.98 8 / 75662 12 / 905142 NP -> NP , NP -LRB- NP -RRB-

7.98 6 / 75662 9 / 905142 NP -> DT NNX NP PP

7.61 7 / 75662 11 / 905142 S -> NP MD VP PP PP

7.56 60 / 75662 95 / 905142 S -> NP :

7.48 10 / 75662 16 / 905142 NP -> NNPX .

7.18 6 / 75662 10 / 905142 NP -> DT NNPX NNX NNX NNX

6.98 7 / 75662 12 / 905142 NP -> JJ NNX NP

6.67 29 / 75662 52 / 905142 NP -> NNX NP

6.53 6 / 75662 11 / 905142 S -> NP VP PP NP

6.53 6 / 75662 11 / 905142 NP -> JJ VBG

6.44 14 / 75662 26 / 905142 NP -> NNPX , NNPX

6.44 7 / 75662 13 / 905142 ADJP -> VBN SBAR

6.20 29 / 75662 56 / 905142 NP -> NNPX NNPX NNPX

5.98 8 / 75662 16 / 905142 NP -> NP POS JJS NNX

5.98 7 / 75662 14 / 905142 X -> NP , PP

5.72 22 / 75662 46 / 905142 ADJP -> CD

5.52 6 / 75662 13 / 905142 NP -> DT NNPX CD NNX

5.46 63 / 75662 138 / 905142 NP -> CD NNPX
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5.20 10 / 75662 23 / 905142 NP -> ADVP $ CD

5.20 10 / 75662 23 / 905142 ADVP -> RB NP

5.18 13 / 75662 30 / 905142 NP -> DT @DLQ CD NNX

5.18 13 / 75662 30 / 905142 NP -> CD PP PP

5.13 12 / 75662 28 / 905142 NP -> NP POS JJ NNX NNX

5.07 25 / 75662 59 / 905142 NP -> CD RB

5.04 8 / 75662 19 / 905142 NP -> DT NNPX NNPX NNPX

----- Example ------------------------------------

8.44 NP -> DT $ CD NNX

"the $40,000,000 budget"

"a $250 award"

"a 12,500 payment"

8.30 NP -> NNPX NP

"Vice President L.B. Johnson"

"Atty. Gen. J. Joseph Nugent"

"First Lady Jacqueline Kennedy"

7.56 S -> NP :

"Austin, Texas --"

"Geneva, June 18 --"

"Washington (AP) --"

5.46 NP -> CD NNPX

"51st Street"

"734 Hartford Avenue"

"3300 Lake Shore Dr."

It is easy to notice that there are a number of rules which have NNPX (proper

noun) in this list. The only domains which have more than three rules with NNPX

are domain A, C and H. Domain H (Miscellaneous section) is rather di�cult to

analyse, but it is intuitively understandable that domain A and C have relatively

frequent rules with NNPX. These are names of people, companies, places, etc. which

are mentioned in press reports or reviews.

Also, we can �nd some typical rules of the domain, like S -> NP :, which is the

�rst line of news reports, rules with numbers (CD), in particular with $ sign. (There

are many rules with numbers in domain J (Learned section), which is also intuitively

understandable (mathmatic or enumerations), but none of the rules in that domain

have $ sign.)
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B. Press: Editorial

ratio freq./total freq./total rule (Example)

(in domain) (in corpus)

18.57 34 / 48733 34 / 905142 S -> PP :

18.57 7 / 48733 7 / 905142 SQ -> NP SQ

18.57 6 / 48733 6 / 905142 X -> NP : `` S

18.57 6 / 48733 6 / 905142 CONJP -> @DLQ

13.00 7 / 48733 10 / 905142 NP -> DT ADJP NP NNX

11.98 20 / 48733 31 / 905142 NP -> NNPX JJ

11.46 29 / 48733 47 / 905142 NP -> DT ADJP NP

11.14 6 / 48733 10 / 905142 NP -> DT `` ADJP NNX ''

11.14 6 / 48733 10 / 905142 NP -> DT `` ADJP '' NNX

10.83 7 / 48733 12 / 905142 X -> DT ADJP

10.50 13 / 48733 23 / 905142 S -> X : S

9.66 13 / 48733 25 / 905142 NP -> NP `` NP ''

9.29 11 / 48733 22 / 905142 NP -> DT NP NNX PP

8.67 7 / 48733 15 / 905142 NP -> ADJP NP

8.29 25 / 48733 56 / 905142 NP -> DT NP NNX

6.97 6 / 48733 16 / 905142 ADVP -> DT NNX SBAR

6.84 7 / 48733 19 / 905142 NP -> CD IN NNX PP

6.65 29 / 48733 81 / 905142 NP -> LS .

5.39 9 / 48733 31 / 905142 SBAR -> SINV

5.20 7 / 48733 25 / 905142 S -> CC ADVP , S

----- Example ------------------------------------

18.57 S -> PP :

"To the editor:"

"To the editor of New York Times:"

13.00 NP -> DT ADJP NP NNX

"A former World War 2, command"

"The first Rhode Island towns"

11.46 NP -> DT ADJP NP

"a new Department of Highways"

"the all-powerful Los Angeles Times"

11.14 NP -> DT `` ADJP NNX ''

"an ``immediate and tangible reality''"

"the ``anti-party group''"

11.14 NP -> DT `` ADJP '' NNX

"an ``autistic'' child"

"a stair-step'' plan"

8.67 NP -> ADJP NP

"northeast Kansas"
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Compared to the previous domain (Press: reportage) we can �nd that there

are a number of rules which have double quote (`` or ''). It may be because, in

editorials, citation are used relatively frequently and also quotes are used to place

an emphasis on some words. It is interesting to see that there are many rules which

have ADJP. Also, we �nd a very domain speci�c rule S -> PP :.
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C. Press: Reviews

ratio freq./total freq./total rule (Example)

(in domain) (in corpus)

26.27 8 / 30624 9 / 905142 WHADVP -> NNPX

25.33 12 / 30624 14 / 905142 NP -> NP POS `` NNPX ''

20.69 7 / 30624 10 / 905142 NP -> DT ADJP `` NNPX ''

18.06 11 / 30624 18 / 905142 S -> NP VP @DLQ ADJP

17.24 7 / 30624 12 / 905142 NP -> PRP$ ADJP NNPX NNX

15.92 7 / 30624 13 / 905142 S -> NP VP @DLQ NP

15.45 46 / 30624 88 / 905142 PP -> NNPX NP

15.42 12 / 30624 23 / 905142 VP -> NNPX

14.78 16 / 30624 32 / 905142 NP -> `` S ''

13.91 8 / 30624 17 / 905142 NP -> NNPX CD PP

11.05 74 / 30624 198 / 905142 NP -> `` NNPX ''

10.89 7 / 30624 19 / 905142 NP -> NNPX , PP ,

9.46 8 / 30624 25 / 905142 ADVP -> NNPX

7.71 6 / 30624 23 / 905142 S -> PP , S , CC S

7.17 8 / 30624 33 / 905142 NP -> `` NNPX PP ''

6.33 6 / 30624 28 / 905142 NP -> NP -LRB- ADJP -RRB-

6.12 6 / 30624 29 / 905142 NP -> NP , NP , SBAR

6.02 11 / 30624 54 / 905142 NP -> NP CC NP PP

5.44 7 / 30624 38 / 905142 NP -> DT NNX ADJP

----- Example ------------------------------------

15.45 PP -> NNPX NP

Tag Error for Capitalized prepositions

14.78 NP -> `` S ''

"``East Meets West''"

"``Get Happy''"

11.05 NP -> `` NNPX ''

"``Panama''"

"``Don Quixote''"

"``Lucia Di Lammermoor"

Some tag error for Capitalized words

As is written previously, it is obvious that NNPX appears many times in the list.
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D. Religion

ratio freq./total freq./total rule (Example)

(in domain) (in corpus)

26.83 26 / 31323 28 / 905142 S -> NP -RRB- S

25.28 14 / 31323 16 / 905142 NP -> NNPX CD : CD

19.26 6 / 31323 9 / 905142 X -> X

8.15 11 / 31323 39 / 905142 NP -> DT CD NNPX

7.88 6 / 31323 22 / 905142 NP -> `` NP '' CC `` NP ''

5.62 7 / 31323 36 / 905142 SBAR -> @SNC `` S ''

5.48 11 / 31323 58 / 905142 X -> NP , NP

5.25 6 / 31323 33 / 905142 S -> S , CC ADVP S

----- Example ------------------------------------

26.83 S -> NP -RRB- S

Listing things (NP is a number)

25.28 NP -> NNPX CD : CD

"St. Peter 1:4"

"St. John 3:8"

8.15 NP -> DT CD NNPX

"the 70,000,000 Americans"

"the Four Gospels"

The second partial tree in the list NP -> NNPX CD : CD is obviously a domain

speci�c one. It is a citation indicator in the Bible.

110



E. Skills and Hobbies

ratio freq./total freq./total rule (Example)

(in domain) (in corpus)

10.58 22 / 85521 22 / 905142 NP -> CD NNX ''

10.58 6 / 85521 6 / 905142 NP -> CD TO CD

10.58 6 / 85521 6 / 905142 ADJP -> @DLQ RBR PP

10.21 27 / 85521 28 / 905142 S -> SBAR :

9.26 7 / 85521 8 / 905142 NP -> DT RB JJ NNX NNX

7.70 8 / 85521 11 / 905142 VP -> VBX ADVP VP

7.41 14 / 85521 20 / 905142 NP -> DT RBS JJ NNX PP

7.41 7 / 85521 10 / 905142 NP -> CD TO CD NNX

7.33 9 / 85521 13 / 905142 NP -> DT NNX CD NNX

7.06 18 / 85521 27 / 905142 ADJP -> DT PP

7.06 14 / 85521 21 / 905142 X -> NNX

7.06 12 / 85521 18 / 905142 NP -> DT SBAR

7.06 10 / 85521 15 / 905142 NP -> NNPX POS

6.48 30 / 85521 49 / 905142 VP -> VB ADJP SBAR

6.17 14 / 85521 24 / 905142 NP -> @DLQ $ CD

6.17 7 / 85521 12 / 905142 VP -> VB NP PP , S

5.29 8 / 85521 16 / 905142 SQ -> SBAR , SQ

----- Example ------------------------------------

10.21 S -> SBAR :

"How to feed :"

"What it does :"

6.48 VP -> VB ADJP SBAR

"Be sure that its ventilation is adequate"

"Make sure your equipment includes a tripod"

"Be sure it is working"
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F. Popular Lore

ratio freq./total freq./total rule (Example)

(in domain) (in corpus)

10.58 8 / 85521 8 / 905142 NP -> DT NP POS NNPX

10.58 6 / 85521 6 / 905142 NP -> NNX DT NNX PP

8.23 7 / 85521 9 / 905142 S -> NP MD TO VP

7.94 6 / 85521 8 / 905142 VP -> VBG ''

7.06 6 / 85521 9 / 905142 X -> DT JJR

7.06 6 / 85521 9 / 905142 SBAR -> WHNP , PP , S

7.06 6 / 85521 9 / 905142 NP -> NP , ADVP VP ,

5.77 6 / 85521 11 / 905142 VP -> VBX NP : `` S

5.77 6 / 85521 11 / 905142 VP -> VBG '' PP

5.77 6 / 85521 11 / 905142 S -> TO `` VP ''

5.64 16 / 85521 30 / 905142 VP -> VBG '' NP

5.29 7 / 85521 14 / 905142 ADJP -> RB DT

----- Example ------------------------------------

5.64 VP -> VBG '' NP

Tag error: givin' -> givin '

The frequency of the partial trees in the list are all very low, and there are little

to investigate in this section.
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G. Belles Letters, Bibliography, Memories, etc

ratio freq./total freq./total rule (Example)

(in domain) (in corpus)

6.59 8 / 137293 8 / 905142 WHPP -> TO SBAR

6.59 7 / 137293 7 / 905142 NP -> CD NNPX CD

6.59 6 / 137293 6 / 905142 VP -> VBX RB NP

6.04 22 / 137293 24 / 905142 WHPP -> @OF SBAR

5.65 6 / 137293 7 / 905142 S -> PP S , SBAR

5.65 6 / 137293 7 / 905142 ADJP -> JJ JJ CC JJ

5.36 13 / 137293 16 / 905142 PP -> @SNC @OF NP

5.36 13 / 137293 16 / 905142 NP -> `` DT NNX PP ''

5.27 8 / 137293 10 / 905142 CONJP -> @DLQ RB

5.13 7 / 137293 9 / 905142 PP -> @SNC NP

5.04 13 / 137293 17 / 905142 NP -> PRP$ JJ CC JJ NNX

5.02 16 / 137293 21 / 905142 WHPP -> IN SBAR

----- Example ------------------------------------

6.59 WHPP -> TO SBAR

"to what they mean by concept like liberty"

"to what may happen next"

6.04 WHPP -> @OF SBAR

"of what it is all about"

"of what he had to show his country"

5.02 WHPP -> IN SBAR

"from what we encounter on earth"

"for what we propose"

"beyond what was internationally feasible"

Although it is interesting to see that the three frequent examples are in the same

type (preposition followed by SBAR), these are bit pecurior in this domain. In other

domain, the root node is not WHPP but PP. We will call this kind of error as the

annotator's propensity.
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H. Miscellaneous

ratio freq./total freq./total rule (Example)

(in domain) (in corpus)

16.82 70 / 53814 70 / 905142 S -> NP . S

16.82 17 / 53814 17 / 905142 S -> -LRB- VP . -RRB-

16.82 13 / 53814 13 / 905142 VP -> -LRB- VBG NP -RRB-

16.82 7 / 53814 7 / 905142 NP -> DT CD CC ADJP

16.82 7 / 53814 7 / 905142 NP -> DT ADJP PP NNX PP

16.82 7 / 53814 7 / 905142 NP -> -LRB- NNPX CD -RRB-

15.95 55 / 53814 58 / 905142 NP -> -LRB- NNX -RRB-

15.34 31 / 53814 34 / 905142 ADVP -> NP

14.72 7 / 53814 8 / 905142 NP -> ADJP ADJP NNPX

14.42 6 / 53814 7 / 905142 NP -> DT ADJP ADJP NNPX

14.42 6 / 53814 7 / 905142 NP -> ADJP CC ADJP NNX

14.23 11 / 53814 13 / 905142 PP -> -LRB- IN NP -RRB-

14.11 73 / 53814 87 / 905142 NP -> -LRB- LS -RRB-

14.02 15 / 53814 18 / 905142 NP -> ADJP ADJP NNX NNX

14.02 10 / 53814 12 / 905142 NP -> ADJP NNX CC NNX PP

13.46 8 / 53814 10 / 905142 NP -> NP NP , PP

12.62 313 / 53814 417 / 905142 ADJP -> NNPX

12.61 27 / 53814 36 / 905142 NP -> ADJP ADJP NNX PP

12.61 9 / 53814 12 / 905142 NP -> -LRB- NNPX -RRB-

12.15 13 / 53814 18 / 905142 VP -> NP VP

11.94 22 / 53814 31 / 905142 NP -> ADJP PP

11.91 17 / 53814 24 / 905142 NP -> CD SYM

11.64 9 / 53814 13 / 905142 CONJP -> CC

11.56 11 / 53814 16 / 905142 NP -> ADJP NNX NNX NNX

11.21 52 / 53814 78 / 905142 PP -> @SNC S

11.21 6 / 53814 9 / 905142 S -> NP VBX ADVP VP NP

11.21 6 / 53814 9 / 905142 NP -> NNX CD , PP

11.21 6 / 53814 9 / 905142 NP -> ADJP NNX CC NNX NNX

10.28 11 / 53814 18 / 905142 NP -> NP . NP

10.09 15 / 53814 25 / 905142 SBAR -> WDT S

9.74 22 / 53814 38 / 905142 ADJP -> JJ NNX

9.28 16 / 53814 29 / 905142 NP -> ADJP NNX NNX PP

9.17 6 / 53814 11 / 905142 NP -> -LRB- CD -RRB-

8.78 24 / 53814 46 / 905142 NP -> ADJP NNX CC NNX

8.78 12 / 53814 23 / 905142 NP -> NP NP PP

8.78 12 / 53814 23 / 905142 NP -> @DLQ ADJP NNX PP

8.41 7 / 53814 14 / 905142 S -> NP NP

7.85 84 / 53814 180 / 905142 NP -> ADJP NNX NNX

7.85 56 / 53814 120 / 905142 NP -> ADJP
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7.85 7 / 53814 15 / 905142 X -> PP CC ADVP

7.82 79 / 53814 170 / 905142 NP -> ADJP ADJP NNX

7.60 14 / 53814 31 / 905142 NP -> NNPX NNX NNPX

7.48 36 / 53814 81 / 905142 NP -> @DLQ ADJP NNX

7.42 15 / 53814 34 / 905142 NP -> NNX CD PP

7.21 6 / 53814 14 / 905142 NP -> DT NNX CC NNX PP PP

7.08 16 / 53814 38 / 905142 NP -> DT ADJP NNPX PP

6.61 11 / 53814 28 / 905142 S -> NP , MD VP

6.56 23 / 53814 59 / 905142 NP -> DT ADJP ADJP NNX PP

6.54 7 / 53814 18 / 905142 NP -> ADJP NNX S

6.49 98 / 53814 254 / 905142 ADJP -> NNX

6.45 202 / 53814 527 / 905142 NP -> ADJP NNX PP

6.41 16 / 53814 42 / 905142 NP -> DT ADJP NNX NNX PP

6.27 19 / 53814 51 / 905142 NP -> NP ADVP VP

6.08 17 / 53814 47 / 905142 NP -> CD ADJP NNX

6.07 13 / 53814 36 / 905142 NP -> PRP$ ADJP ADJP NNX

5.98 27 / 53814 76 / 905142 NP -> DT ADJP NNX PP PP

5.89 14 / 53814 40 / 905142 NP -> PRP$ ADJP NNX PP

5.89 7 / 53814 20 / 905142 NP -> DT ADJP NNX NNX NNX

5.85 8 / 53814 23 / 905142 NP -> DT NNPX PP PP

5.82 9 / 53814 26 / 905142 SBAR -> WHNP

5.68 689 / 53814 2041 / 905142 NP -> ADJP NNX

5.61 7 / 53814 21 / 905142 PP -> RB ADVP

5.43 60 / 53814 186 / 905142 NP -> DT ADJP NNX NNX

5.41 28 / 53814 87 / 905142 NP -> NP , ADVP

5.31 6 / 53814 19 / 905142 ADJP -> ADVP JJ SBAR

5.25 49 / 53814 157 / 905142 NP -> DT ADJP ADJP NNX

5.22 9 / 53814 29 / 905142 NP -> NP , NP , NP , NP ,

NP , CC NP

5.10 10 / 53814 33 / 905142 NP -> CD CC CD

5.05 6 / 53814 20 / 905142 NP -> DT ADJP NNX SBAR

----- Example ------------------------------------

16.82 S -> NP . S

title of section

16.82 S -> -LRB- VP . -RRB-

"(See Source of Data, below...)"

"(Multiply the result obtained in item 3...)"

16.82 VP -> -LRB- VBG NP -RRB-

"(excluding coal and lignite)"

"(excluding export)"

16.82 NP -> DT CD CC ADJP

"the one hundred and eighty-fifth"
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16.82 NP -> DT ADJP PP NNX PP

"the average per capita income of the U.S."

16.82 NP -> -LRB- NNPX CD -RRB-

"(August 31)"

Tagging mistakes capitalize month names

15.95 NP -> -LRB- NNX -RRB-

"subsection (A) above"

15.34 ADVP -> NP

"today"

"each September"

Tagging propensity(?)

14.72 NP -> ADJP ADJP NNPX

Tagging mistakes capitalize words

14.42 NP -> DT ADJP ADJP NNPX

Tagging mistakes capitalize words

14.23 PP -> -LRB- IN NP -RRB-

"(in U.S.)"

"(in 1938-1939)"

14.11 NP -> -LRB- LS -RRB-

enumeration

12.62 ADJP -> NNPX

Tagging mistakes capitalized word

12.61 NP -> -LRB- NNPX -RRB-

"the North Atlantic Treaty Organization (NATO)"

11.21 PP -> @SNC S

tagging error

We can �nd more number of ADJP appears than that in other sections. By

observing the instances, we can conclude that this is caused by the annotator's

propensity. Even a simple JJ NN like warm heart, annotators annotate like (NP

(ADJP (JJ warm)) (NN heart)) which is usually (NP (JJ warm) (NN heart)).
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J. Learned

ratio freq./total freq./total rule (Example)

(in domain) (in corpus)

6.51 28 / 139137 28 / 905142 NP -> CD : CD

6.51 20 / 139137 20 / 905142 NP -> NNX :

6.51 11 / 139137 11 / 905142 NP -> NNX -LRB- CD -RRB-

6.51 10 / 139137 10 / 905142 NP -> NNX PP :

6.51 8 / 139137 8 / 905142 NP -> NP -LRB- NP -RRB-

-LRB- NP -RRB-

6.51 8 / 139137 8 / 905142 NP -> NP -LRB- -RRB-

6.51 8 / 139137 8 / 905142 NP -> NNX CD , CC CD

6.51 8 / 139137 8 / 905142 NP -> NNX -LRB- NNX -RRB-

6.51 7 / 139137 7 / 905142 NP -> IN

6.51 6 / 139137 6 / 905142 NP -> NP NP :

6.51 6 / 139137 6 / 905142 NP -> NNX NNX CD .

6.51 6 / 139137 6 / 905142 NP -> CD : NNX

6.51 6 / 139137 6 / 905142 ADJP -> JJ : CC JJ

6.22 44 / 139137 46 / 905142 S -> S -LRB- NP -RRB-

5.85 9 / 139137 10 / 905142 NP -> SBARQ

5.78 8 / 139137 9 / 905142 NP -> NNX CD : CD

5.69 7 / 139137 8 / 905142 SBARQ -> WHNP SQ . .

5.58 6 / 139137 7 / 905142 NP -> CD : CD NNX

5.49 27 / 139137 32 / 905142 NP -> -LRB- NP -RRB-

5.34 32 / 139137 39 / 905142 NP -> CC

5.30 22 / 139137 27 / 905142 NP -> NP CC

5.20 8 / 139137 10 / 905142 NP -> DT NNX NNX CC JJ NNX

----- Example ------------------------------------

6.51 NP -> CD : CD

"titer of 1 : 512 in saline"

"averaging around 60 - 80"

6.22 S -> S -LRB- NP -RRB-

Sentence followed by name and year in bracket

Sentence followed by figure name in bracket

5.49 NP -> -LRB- NP -RRB-

Name in bracket

Reference in bracket

5.34 NP -> CC

Special string (**f) is deleted in sentences

5.30 NP -> NP CC

Special string (**f) is deleted in sentences
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There are many numbers CD in the list. Also there are several kinds of do-

main speci�c partial trees, like S -> S -LRB- NP -RRB- or NP -LRB- NP -LRB-

as shown in the example.
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K. General Fiction

ratio freq./total freq./total rule (Example)

(in domain) (in corpus)

11.58 7 / 54721 10 / 905142 NP -> PRP S

11.03 6 / 54721 9 / 905142 S -> ADVP S : : S

10.75 13 / 54721 20 / 905142 S -> PP S , CC S

8.82 8 / 54721 15 / 905142 S -> S , CC PP S

8.10 24 / 54721 49 / 905142 PP -> RP

7.72 7 / 54721 15 / 905142 VP -> VP CC RB VP

7.63 6 / 54721 13 / 905142 S -> NP VP @DLQ NP

7.44 9 / 54721 20 / 905142 S -> INTJ

7.14 19 / 54721 44 / 905142 PP -> RP NP

6.74 11 / 54721 27 / 905142 PP -> RB

6.36 10 / 54721 26 / 905142 S -> ADVP S , CC S

5.67 12 / 54721 35 / 905142 PP -> @DLQ IN NP

5.51 6 / 54721 18 / 905142 S -> NP VP @DLQ ADJP

5.34 10 / 54721 31 / 905142 S -> NP VP VP

----- Example ------------------------------------

10.75 S -> PP S , CC S

"In the half darkness the banisters gleamed,

and the hall seemed enormous"

"Of course I had to give her Eileen's address,

but she never came near us"

8.82 S -> S , CC PP S

"There was a glass pane in the front door,

and through this he could see into..."

8.10 PP -> RP

"extend out"

"go off"

7.72 VP -> VP CC RB VP

"looked around the room and then called out..."

"snorted and then laughed aloud"

5.67 PP -> @DLQ IN NP

"just for his private satisfaction"

"only in the next day or two"

5.34 S -> NP VP VP

Tagging mistake for passive, past perfect

At a glance, we can tell that there are many partial trees whose heads are S's,

compare to many NP's in the non-�ction section. This is the case throughout the

�ction sections. By the examples, it is intuitively true to say these are domain
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speci�c (�ction style sentences). For example, the cases in which the �rst example

partial tree appears in news paper article, may be limited to such narrative sentences.

120



L. Mystery and Detective Fiction

ratio freq./total freq./total rule (Example)

(in domain) (in corpus)

14.28 8 / 46089 11 / 905142 SQ -> S , SQ

12.00 11 / 46089 18 / 905142 VP -> VBX RB (=NEG)

11.78 6 / 46089 10 / 905142 S -> NP VBX RB VP , NP

10.71 6 / 46089 11 / 905142 ADVP -> RB , RB

9.82 8 / 46089 16 / 905142 S -> SQ ''

9.82 7 / 46089 14 / 905142 S -> S '' :

9.82 6 / 46089 12 / 905142 VP -> VBX RB PP

9.16 7 / 46089 15 / 905142 S -> `` ADJP '' , S

8.21 23 / 46089 55 / 905142 VP -> VBX , `` S

8.09 14 / 46089 34 / 905142 VP -> VP , ADVP VP

8.09 7 / 46089 17 / 905142 S -> `` X '' , S

6.93 6 / 46089 17 / 905142 NP -> NNX JJ

6.31 9 / 46089 28 / 905142 X -> VBX RB VP

6.04 8 / 46089 26 / 905142 S -> X ''

5.95 10 / 46089 33 / 905142 S -> NP VP , ADJP

5.61 8 / 46089 28 / 905142 S -> `` NP '' , S

5.61 6 / 46089 21 / 905142 ADJP -> JJ RB

5.38 17 / 46089 62 / 905142 PP -> @DLQ PP

5.20 62 / 46089 234 / 905142 PP -> RB PP

----- Example ------------------------------------

14.28 SQ -> S , SQ

tag questions

12.00 VP -> VBX RB (=NEG)

negation

9.82 S -> SQ ''

the last sentence in quote

9.16 S -> `` ADJP '' , S

"``All right'', Calenda said"

"``Cool'', I told him"

8.21 VP -> VBX , `` S

upto the first sentence in quote

8.09 VP -> VP , ADVP VP

"said, then changed the subject"

"frowned slightly, then became sad and moody"

5.95 S -> NP VP , ADJP

"The kick came, sudden and vicious but short"

5.61 S -> `` NP '' , S

"``My God'', he muttered"

"``Nice place'' I told him"
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5.20 PP -> RB PP

"back to New York"

"aside from everything else"

There are a lot of partial trees with double quotes. As we can see from the

examples, there are conversations or a part of a conversation. It is interesting to

see that there is no rule with double quote in the previous section (general �ction),

when it is compared with this section.
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M. Science Fiction

ratio freq./total freq./total rule (Example)

(in domain) (in corpus)

17.89 7 / 11068 32 / 905142 S -> S , SINV

10.22 8 / 11068 64 / 905142 S -> SBARQ '' .

7.84 7 / 11068 73 / 905142 S -> SQ '' .

6.96 8 / 11068 94 / 905142 SQ -> VP

6.73 7 / 11068 85 / 905142 SBAR -> ADJP S

6.29 20 / 11068 260 / 905142 SINV -> VP NP

----- Example ------------------------------------

17.89 S -> S , SINV

"``Forgive me, Sandalphon'', said Hal"

"``sentence'', remarked Helva"

6.73 SBAR -> ADJP S

"How long he had been there"

6.29 SINV -> VP NP

"Said the whining voice"

"Asked Mercer"

There is little to see in this section. All but the last one have very low frequencies.

The last one is introducer of a conversation, which is very common in �ction sections.
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N. Adventure and Western Fiction

ratio freq./total freq./total rule (Example)

(in domain) (in corpus)

14.59 45 / 55831 50 / 905142 VP -> VBX RB

12.97 8 / 55831 10 / 905142 VP -> VBX RB PP

12.61 7 / 55831 9 / 905142 S -> `` INTJ , INTJ '' , S

11.35 21 / 55831 30 / 905142 VP -> VP , RB VP

10.46 20 / 55831 31 / 905142 X -> @DLQ

9.98 8 / 55831 13 / 905142 S -> S , RB S

8.11 7 / 55831 14 / 905142 S -> S '' :

8.11 6 / 55831 12 / 905142 VP -> NP

7.48 6 / 55831 13 / 905142 S -> S , CC RB S

7.48 6 / 55831 13 / 905142 S -> INTJ .

6.95 12 / 55831 28 / 905142 S -> `` NP '' , S

6.68 7 / 55831 17 / 905142 VP -> VBX NP PP , S

6.48 6 / 55831 15 / 905142 S -> `` VP

6.34 9 / 55831 23 / 905142 VP -> VBX NP PP ADVP

6.30 14 / 55831 36 / 905142 NP -> @DLQ SBAR

6.05 22 / 55831 59 / 905142 S -> RB S

5.99 17 / 55831 46 / 905142 S -> VP , NP

5.67 149 / 55831 426 / 905142 S -> `` S '' , S

5.40 6 / 55831 18 / 905142 VP -> VBX ADVP , S

5.19 8 / 55831 25 / 905142 VP -> VBG NP PRT

5.16 7 / 55831 22 / 905142 X -> DT

5.12 6 / 55831 19 / 905142 VP -> RB VBN PP

5.10 11 / 55831 35 / 905142 ADVP -> ADVP RB

5.04 14 / 55831 45 / 905142 NP -> DT RB JJ NNX

----- Example ------------------------------------

14.59 VP -> VBX RB

"said quickly"

"whistled tunelessly"

11.35 VP -> VP , RB VP

"swirled low to the ground, then rose with..."

"waited for a long moment, then asked the..."

Similar structure in L (RB<->ADJP)

6.95 S -> `` NP '' , S

"``Your choice;;,he said briefly"

"``Temper, temper'', Mrs.Forsythe said"

Same structure in L

6.30 NP -> @DLQ SBAR

"all they wanted"

"all that had happened"
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6.05 S -> RB S

`then' followed by a sentence

5.67 S -> `` S '' , S

"``I will see'', Morgan said"

"``I loved this valley'' he whispered huskily"

5.04 NP -> DT RB JJ NNX

"a very strong woman"

"that bitterly cold day"

Again, there are a lot of conversations. A relatively frequent appearance of RB

may indicate that there are a lot of adverb modi�ers in this section.
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P. Romance and Love Story

ratio freq./total freq./total rule (Example)

(in domain) (in corpus)

15.99 7 / 56599 7 / 905142 S -> CC SBARQ

15.99 6 / 56599 6 / 905142 S -> `` NP VP , NP ''

12.23 13 / 56599 17 / 905142 S -> SQ S

11.99 6 / 56599 8 / 905142 S -> `` VP , NP ''

11.42 15 / 56599 21 / 905142 S -> SBARQ S

11.42 10 / 56599 14 / 905142 S -> `` NP VBX RB VP ''

10.66 6 / 56599 9 / 905142 WHNP -> WP DT NNX

8.72 18 / 56599 33 / 905142 INTJ -> `` UH ''

8.72 6 / 56599 11 / 905142 SBARQ -> `` WHNP SQ '' . .

8.47 9 / 56599 17 / 905142 S -> `` INTJ , S ''

8.00 16 / 56599 32 / 905142 S -> `` NP VBX VP ''

8.00 6 / 56599 12 / 905142 CONJP -> CC @DLQ

7.53 8 / 56599 17 / 905142 ADJP -> ADVP RB

7.38 6 / 56599 13 / 905142 S -> `` S , S ''

7.37 65 / 56599 141 / 905142 S -> `` NP VP ''

7.02 18 / 56599 41 / 905142 S -> S , CC S , CC S

6.95 10 / 56599 23 / 905142 ADVP -> VB

6.33 38 / 56599 96 / 905142 VP -> VBX , S

6.09 8 / 56599 21 / 905142 NP -> PRP$ JJ , JJ NNX

6.00 6 / 56599 16 / 905142 SQ -> MD RB NP VP

6.00 6 / 56599 16 / 905142 S -> `` PP S ''

5.95 180 / 56599 484 / 905142 NP -> NP PP

5.64 12 / 56599 34 / 905142 SQ -> VBX RB NP VP

5.64 6 / 56599 17 / 905142 VP -> VBX , NP

5.56 8 / 56599 23 / 905142 S -> CC S CC S

5.51 20 / 56599 58 / 905142 VP -> VBX RB NP

5.33 15 / 56599 45 / 905142 S -> `` VP ''

5.33 8 / 56599 24 / 905142 S -> S CC S CC S

5.33 7 / 56599 21 / 905142 SBAR -> RB @SNC S

5.05 6 / 56599 19 / 905142 ADJP -> JJ CC JJ CC JJ

5.03 11 / 56599 35 / 905142 S -> `` NP MD VP ''

----- Example ------------------------------------

15.99 S -> `` NP VP , NP ''

"``That is n't like you, Janice''"

12.23 S -> SQ S

"``Does this bother you''?? I said"

"``Is it a woman''?? She asked gently"

11.99 S -> `` VP , NP ''

"``Wait and see, Dad''"
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11.42 S -> SBARQ S

"``What's the matter''?? She asked suddenly"

8.72 INTJ -> `` UH ''

"``Yes''"

"``Uhhu''"

7.37 S -> `` NP VP ''

"``You said a mouthful''"

7.02 S -> S , CC S , CC S

sequence of sentences by `and' and `but'

6.33 VP -> VBX , S

"said, ``Answer me properly, Spencer''"

5.95 NP -> NP PP

"a signal from Spencer"

"the Christmas card with no name on it"

5.64 SQ -> VBX (=AUX) RB (=NEG) NP VP

Negative questions

5.33 S -> `` VP ''

"``Pack your clothes''"

"``Be my guest''"

Obviously there are a lot of rules with open and close double quotation marks.

It indicates that an utterance consists of only a single sentence. So we can say that,

also from the evidence of the examples, in this section there are many utterances,

and that these are a simple sentence.
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R. Humor

ratio freq./total freq./total rule (Example)

(in domain) (in corpus)

6.92 6 / 16687 47 / 905142 NP -> DT ADJP NP

6.78 7 / 16687 56 / 905142 NP -> PRP @DLQ

5.67 7 / 16687 67 / 905142 PP -> IN `` NP ''

----- Example ------------------------------------

5.67 PP -> IN `` NP ''

"on ``The Civic Sprit of the Southland''"

"as ``off-Broadway''"

There is nothing to say. The size of this section is small.
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