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ABSTRACT 

Event extraction is a particularly challenging type of information extraction 

(IE). Most current event extraction systems rely on local information at the phrase 

or sentence level. However, this local context may be insufficient to resolve 

ambiguities in identifying particular types of events; information from a wider 

scope can serve to resolve some of these ambiguities.  

In this thesis, we first investigate how to extract supervised and unsupervised 

features to improve a supervised baseline system. Then, we present two additional 

tasks to show the benefit of wider scope features in semi-supervised learning (self 

training) and active learning (co-testing). Experiments show that using features 

from wider scope can not only aid a supervised local event extraction baseline 

system, but also help the semi-supervised or active learning approach. 
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Introduction 

While information is plentiful and readily available, from the Internet, news 

services, media, etc., extracting the critical nuggets that matter to business or to 

national security is a cognitively demanding and time consuming task. Intelligence 

and business analysts spend many hours poring over endless streams of text 

documents pulling out references to entities of interest (people, locations, 

organizations) as well as their relationships as reported in text. However, if we can 

automatically identify such information, we can eliminate or at least reduce the 

human labor and speed up the process.  

Information Extraction (IE) is the technique for automatically extracting 

structured data from text documents. Generally speaking, there are three levels of 

information extraction: entity extraction identifies all the useful snippets in text, 

such as people, location, and organizations; relation extraction identifies all the 

binary relations between entities, and event extraction identifies multi-way 

relations among entities. 

At present, the techniques developed for named entity recognition are quite 

mature (Zhang et al. 2004), and the performance already achieves real practical 

usability. For relation and event extraction, the performance is much lower, and 

there are still a lot of issues to investigate.  

Event extraction aims to extract the critical information about each event (the 

agent, objects, date, location, etc.) and place this information in a set of templates 
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(data base). Most of the current systems focus on processing single documents and, 

except for coreference resolution, operate a sentence at a time (Grishman et al., 

2005; Ahn, 2006; Agichtein and Gravano, 2000; Hardy et al., 2006).  

However, sometimes the local information is not enough, or is hard to extract. 

An event can be described in so many different ways in text, and the local context 

information from an individual sentence may not suffice to extract the event 

information accurately and completely. Moreover, even humans might need 

information from elsewhere inside or outside a document to make confident 

decisions about the information to be extracted. Thus, incorporating information 

from wider scope is one important direction to investigate. 

Still, there are a lot of issues to be explored. Wider scope includes sentence, 

discourse, document, or cross-document levels and what kind of features can be 

extracted is still being investigated. There are several recent studies using high-

level information to aid local event extraction systems. Depending on where the 

features come from, we divided them into three categories:  

Consistency enforcement: the “one sense per discourse” hypothesis 

(Yarowsky 1995) was used to enforce consistency in the testing data. Such studies 

include work from Yangarber and Jokipii (2005), Yangarber (2006), Yangarber et 

al. (2007), Mann (2007), Ji and Grishman (2008), and Gupta and Ji (2009). This 

hypothesis is quite simple, and no learning is needed. 

Supervised features: The second category extracts supervised features from a 

tagged corpus, typically, the event extraction training data. Such studies include 

work from Finkel et al. (2005), Maslennikov and Chua (2007), Ji and Grishman 
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(2008), Gupta and Ji (2009) and Patwardhan and Riloff (2007, 2009). These 

features are especially useful on traditional evaluations, where the training and 

testing data are similar.  

Unsupervised features: The third category extracts unsupervised features from 

distributions in large-scale untagged corpora. Such studies include Riloff (1996), 

Yangarber et al. (2000). These features are used when there is not much training 

data, or the training and testing data has different distribution. 

In this thesis, we first investigate how to extract supervised and unsupervised 

features to improve a supervised baseline system. Then, we present two additional 

tasks to show the benefit of wider scope features in semi-supervised learning (self 

training) and active learning (co-testing). 

The thesis is organized as follows: 

Chapter 1 describes the task of event extraction, and specifically the ACE 2005 

evaluation. Chapter 2 introduces NYU’s event extraction baseline system, which is 

a supervised model. 

Chapter 3 shows how to use document level cross-event features to improve 

event extraction. Document level cross-event information was collected and 

encoded into features that are used to build a set of document-level classifiers. It 

was aimed to solve the cases where local (sentence level) information is not 

enough and evidence from wider scope is needed. 

Chapter 4 shows how to embed large-scale unsupervised topic features to 

improve event extraction. Unsupervised topic models (LDA) were incorporated to 

improve event extraction both on test data similar to training data, and on more 
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balanced collections. Compared to a supervised multi-label classifier, the 

unsupervised approach can achieve comparable, even better, results. Also, we do 

not limit our study to the corpus from the standard ACE evaluation, which is 

preselected, but also investigate its performance on a regular newswire corpus. 

Chapter 5 presents a self-training process for event extraction. Event-centric 

entity-level Information Retrieval (IR) techniques were incorporated to provide 

topic-related document clusters. Experiments showed that bootstrapping on such a 

corpus performed better than that on a regular corpus. Global inference based on 

the properties of such clusters was then applied to achieve further improvement. 

Chapter 6 presents a pseudo co-testing method for event extraction, which 

depends on one view from the original problem of event extraction, and another 

view from a coarser granularity task. Moreover, multiple selection criteria were 

applied to seek training examples that are informative, representative, and varied. 

Chapter 7 concludes the thesis as a whole, pointing out some possible directions 

for future work. 

Chapter 1  

Task Description 

This chapter describes prior research done in information extraction (IE), 

focusing on event extraction, which involves the results of other IE tasks, like 

named entity recognition, entity identification and entity co-reference.  
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Event extraction (also referred to as “scenario template” extraction) involves the 

identification in free text of instances of a particular type of event, and the 

identification of the arguments of each such event. There is now a considerable 

literature on event extraction, and in particular on supervised and semi-supervised 

methods for constructing such systems for new tasks. Previous work has sought to 

compare event extraction tasks by measuring the complexity of the linguistic 

representation of the information to be extracted and analyzing the distribution of 

information in the document1. 

There are two event extraction tasks that are widely investigated: one is the 

MUC event extraction tasks, including MUC-3/4 on Latin American terrorist 

incidents (MUC 1991; MUC 1992), and MUC-6 on executive succession (MUC 

1995); the other is the ACE 2005 (33 event types covering the most common 

events of national and international news) (ACE 2005). In this thesis, we focus on 

the studies on ACE event types, and all of the experiments are reported on the 

ACE 2005 evaluation. 

1.1 Automatic Content Extraction (ACE) Evaluation 

ACE began in 2000 after MUC. “The objective of the ACE program is to 

develop automatic content extraction technology to support automatic processing 

of human language in text form from a variety of sources (such as newswire, 

broadcast conversation, and weblogs). ACE technology R&D is aimed at 
	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  

1 http://www.nist.gov/speech/tests/ace/ 
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supporting various classification, filtering, and selection applications by extracting 

and representing language content (i.e., the meaning conveyed by the data). Thus 

the ACE program requires the development of technologies that automatically 

detect and characterize this meaning.2”  

Unlike MUC data, which was primarily extracted from newswire, ACE also 

includes data from manually and automatically transcribed broadcast news, 

Internet blogs, etc., thus, the text is often of poor quality when compared to MUC 

data. The ACE research objectives are viewed as the detection and characterization 

of Entities, Relations and Events. 

Entity Detection and Recognition (EDR) is the core annotation task of ACE, 

providing the foundation for all remaining tasks. This ACE task identifies seven 

types of entities: Person, Organization, Location, Facility, Weapon, Vehicle and 

Geo-Political Entity (GPE). Each type is further divided into subtypes. Annotators 

tag all mentions of each entity within a document, whether named, nominal 

(common noun) or pronominal. For every mention, the annotator identifies the 

maximal extent of the string that represents the entity, and labels the head of each 

mention. Nested mentions are also captured. Annotators also review the entire 

document to group mentions of the same entity together (Coreference). 

Relation Detection and Recognition (RDR) involves the identification of 

relations between entities. As RDR is considered separate from the event 

extraction task, we do not provide more details in this thesis. 

	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  
2 http://www.nist.gov/speech/tests/ace/ 
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Event Detection and Recognition (VDR). In VDR, annotators identify and 

characterize eight types of events in which EDR entities participate. Targeted types 

include Life, Movement, Transaction, Business, Conflict, Contact, Personnel, and 

Justice. Annotators tag the textual mention or trigger for each event, and categorize 

it by type and subtype. They further identify event arguments (agent, object, source 

and target) and attributes (temporal, locative as well as others like instrument or 

purpose) according to a type-specific template. 

1.2 ACE Terminology 

Event extraction depends on previous phases like name identification, entity 

mention classification and coreference. Table 1.3 shows the results of this 

preprocessing. Note that entity mentions that share the same EntityID are 

coreferential and treated as the same object. We first present some ACE 

terminology to understand this task more easily: 

Entity: an object or a set of objects in one of the semantic categories of interest, 

referred to in the document by one or more (coreferential) entity mentions 

Entity mention: a span of text which refers to an entity.  Entity mentions may 

be referenced in a text by their name, indicated by a common noun or noun phrase, 

or represented by a pronoun. 

Value: A Value is a string that further characterizes the properties of some 

Entity or Event. ACE is only interested in certain types of possible Values. 

Specifically, ACE annotates NUMERIC, CONTACT-INFO, TIMEX2, JOB-

TITLE, CRIME and SENTENCE Values. 
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Timex: a time expression including date, time of the day, season, year, etc. 

Timex mention: a reference to a Timex (typically, a noun phrase or specialized 

time pattern) 

Event: a specific occurrence involving participants. An event is something that 

happens, which can frequently be described as a change of state. The ACE event 

extraction task only tags a particular set of types of events. 

Event mention3: a phrase or sentence within which an event is described, 

including trigger and arguments. An event mention must have one and only one 

trigger, and can have an arbitrary number of arguments. 

Event mention trigger: the main word that most clearly expresses an event 

occurrence. An ACE event trigger is generally a verb or a noun. 

Event mention arguments (roles): the entity mentions that are involved in an 

event mention, and their relation to the event. For example, event Attack might 

include participants like Attacker and Target, or attributes like Time_Within and 

Place. Arguments will be taggable only when they occur within the scope of the 

corresponding event, typically the same sentence. 

 
 

	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  
3 Note that we do not deal with event mention coreference in this thesis, so each event mention 

is treated as a separate event. 
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1.2.1 ACE Event Overview 
There are eight event types in ACE: Life, Movement, Transaction, Business, 

Conflict, Contact, Personnel and Justice. And each event type contains one or 

several subtypes (see Table 1.1).  

Event Type Event Subtype 

Life Be-Born, Marry, Divorce, Injure, Die 

Movement Transport 

Transaction Transfer-Ownership, Transfer-Money 

Business Start-Org, Merge-Org, Declare-Bankruptcy, End-Org 

Conflict Attack, Demonstrate 

Contact Meet, Phone-Write 

Personnel Start-Position, End-Position, Nominate, Elect 

Justice Arrest-Jail, Release-Parole, Trial-Hearing, Charge-

Indict, Sue, Convict, Sentence, Fine, Execute, Extradite, 

Acquit, Appeal, Pardon 

 
Table 1.1 - Event types and subtypes defined in ACE 2005 

 

Person Place Buyer Seller 

Beneficiary Price Artifact Origin 

Destination Giver Recipient Money 

Org Agent Victim Instrument 

Entity  Attacker Target Defendant 

Adjudicator Prosecutor Plaintiff Crime 

Position Sentence Vehicle Time-After 

Time-

Before 

Time-At-Beginning Time-At-

End 

Time-Starting 

Time-

Ending 

Time-Holds Time-

Within 

 

 
Table 1.2 - 35 Argument roles defined by ACE 2005 
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There are a total of 35 argument roles defined for the above events (see Table 

1.2). Each event type will have its own set of potential participant arguments for 

the entities that occur within its scope, while there are some general roles like 

Time-Arg and Place-Arg. There are two different kinds of arguments: 

Event Participants:  Event participants are Entities that are involved in the 

event. For example, an Attack event might contain Attacker-Arg, Target-Arg, and 

Instrument-Arg, which represent the attacking agent, the target of the attack, and 

the instrument used in the attack.  

Event Attributes: Event attributes are Values that are involved in the event. 

There are two kinds of attributes: one is event-specific attributes, which includes 

Crime-Arg, Sentence-Arg, and Position-Arg, which are for events Crime, Sentence, 

and Personnel respectively; the other is general event attributes, which can be 

applied to most (if not all) events, including Place-Arg and Time-Arg. 

1.2.2 ACE Event Example 
Here is an example: 

(Ex 1–1) Three murders occurred in France today, including the senseless 

slaying of Bob Cole and the assassination of Joe Westbrook. Bob was on his 

way home when he was attacked…    

In (Ex 1–1), we will have the following entity or Timex mentions, with co-

reference information (see Table 1.3). There are three Die events, which share the 

same Place and Time roles, with different Victim roles. And there is one Attack 

event sharing the same Place and Time roles with the Die events (see Table 1.4 ). 
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Entity mention Head word Entity ID Entity type 

0001-1-1 France 0001-1 GPE 

0001-T1-1 Today 0001-T1 Timex 

0001-2-1 Bob Cole 0001-2 PER 

0001-3-1 Joe Westbrook 0001-3 PER 

0001-2-2 Bob 0001-2 PER 

0001-2-3 He 0001-2 PER 

 
Table 1.3 – Entity and entity mentions and their types for (Ex 1–1) 

 
 

Event type Event 
subtype 

Trigger Role 
Place Victim Time 

Life Die murder 0001-1-1  0001-T1-1 

Life Die death 0001-1-1 0001-2-1 0001-T1-1 

Life Die killing 0001-1-1 0001-3-1 0001-T1-1 

   Place Target Time 

Conflict Attack attack 0001-1-1 0001-2-3 0001-T1-1 

 
Table 1.4 – Event mentions and their types for (Ex 1–1) 

	  

1.2.3 Evaluation Metric  
Since an ACE event contains one trigger and an arbitrary number of arguments, 

its structure is somewhat complicated and it is hard to evaluate it as a whole. As a 

result, we prefer to examine the system performance at three levels, the trigger 

classification, the argument identification and the argument classification. The 

trigger classification assesses how well the system can detect events and their 

types; argument identification assesses how well the system finds arguments of the 

events; argument classification assesses how well the system assign roles for the 

arguments.  
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We use the precision, recall, and F-measure standard metrics to evaluate the 

system performance, which are defined as follows: 

Pr ecision = | system samples ∩ key samples |
| system samples |

 

Recall = | system samples ∩ key samples |
| key samples |

 

F −measure = 2*Pr ecision*Recall
Pr ecision+Recall

 

 

The three metrics define a correct instance as one matching the key with respect 

to the following elements: 

Evaluation metric Matched Elements 

Trigger Labeling Event type and subtype  

Trigger start offset 

Trigger end offset  

Argument 

Identification 

Event type and subtype 

Argument head start offset 

Argument head end offset 

Argument 

Classification 

Event type and subtype 

Argument head start offset 

Argument end offset 

Argument role 

 
Table 1.5 - The elements that need to be matched for each evaluation metric 
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Chapter 2  

Baseline System 

In this section, we describe a state-of-the-art English baseline event extraction 

system (Grishman et al. 2005), and possible problems in such systems. Our 

English extraction system, developed over the course of the last several ACE 

evaluations, includes facilities for the EDR (entity), RDR (relation), and VDR 

(event) tasks. The English ACE system is built on top of the JET (Java Extraction 

Toolkit), which was developed at NYU for instructional purposes and is freely 

available for research purposes.  

This chapter is organized as follows: section 2.1 describes the pre-processing 

phases of event extraction; section 2.2 gives details on how to extract ACE events; 

sections 2.3 and 2.4 discuss the problems of trigger identification and argument 

identification in this baseline system.  

2.1 Pre-processing Phases 

Before event extraction, there are some normal pre-processing steps. For 

example, we need to tokenize the words, and tag the part-of-speech. Also, since the 

arguments of the event should be entities, timex expressions, or values, we need to 

extract them first. We list the most important pre-processing steps below: 
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Lexical Lookup: The input text is divided into sentences and tokenized. 

Tokens are looked up in a large general English dictionary that provides part-of-

speech information and the base form of inflected words. 

Named Entity Analysis: Named entities are tagged using an HMM trained on 

the ACE training corpora.  The HMM has six states for each name type (PERSON, 

GPE etc.), as well as a not-a-name state.  These six states correspond to the token 

preceding the name; the single name token (for names with only one token); the 

first token of the name; an internal token of the name (neither first nor last); the 

last token of the name; and the token following the name. These multiple states 

allow the HMM to capture context information and limited information about the 

internal structure of the name. 

Reference resolution: Reference resolution first identifies mentions (referring 

expressions) and then links co-referring expressions. Coreference resolution 

proceeds incrementally. Mentions are resolved in order of appearance in the 

document, and feature extraction depends on previous decisions. For each mention, 

the system checks to see whether a simple, high-precision rule can resolve the 

mention (whether there is an exact string match between two multi-word names, 

for example), and immediately applies the rule if one is found.  

ACE Entity Detection and Recognition: Given the output of reference 

resolution, ACE entity detection is primarily a task of semantic classification of the 

co-referring mention groups. Classification is performed differently for entities 

with and without named mentions.  If there is a named mention, the type of the 

entity is obtained from the name tagger.  The subtype is determined using a 
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MaxEnt model whose features are the individual tokens of the name, trained on the 

ACE 2005 corpus.  The type and subtype of a nominal mention is determined from 

the head of the mention (with the exception of a small number of hand-coded 

cases), with the frequencies of the types and subtypes learned from the ACE 

corpus. 

2.2 Event Extraction Phase 

The identification of the trigger and the arguments interact: the relation between 

the trigger and the argument is one essential factor to identify both the trigger and 

the role of the argument. For example, if we know that the object of the word 

“shoot” is a person and it has the “fire a shot” sense, we can confidently identify 

the person as the Target role, and tag “shoot” as the trigger of an Attack event. As 

a result, most current event extraction systems consider trigger and argument 

information together to tag a reportable event.  

Our baseline system is trigger-based, and combined pattern matching and 

statistical models. In training, there are three steps: 

Step 1: For each instance of an event, we construct the chunk patterns 

representing the connection between the trigger and the event arguments. The 

chunk-based pattern records the sequence of constituent heads separating the 

trigger and arguments. For each argument, we record its ACE type and subtype as 

well as its head. 

Step 2: For each pattern, we determine the accuracy of predicting an event 

given a partial match to it. We record the fraction of matches to the trigger alone 
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that predicts a correct event, and the fraction of matches to the trigger and each 

argument as well. Patterns that over-generate – predicting incorrect or spurious 

events most of the time – are discarded.  

Step 3: Patterns are supplemented by a set of Maximum Entropy statistical 

classifiers: 

Argument Classifier:  it is a binary classifier that distinguishes arguments of a 

potential trigger from non-arguments. 

Role Classifier: it is a multi-class classifier to assign each argument with its 

proper role.  

Reportable-Event Classifier (Trigger Classifier): Given a potential trigger, 

an event type, and a set of arguments, it is a binary classifier determining whether 

there is a reportable event mention. 

	  

Classifier	   Features	  

Argument/role classifier • Trigger word 

• Event type 

• Argument mention type 

• Head of mention  

• Head of mention coupled with event subtype 

• Word preceding mention 

• Chunk path 

• Chunk path coupled with event type 

• Distance to trigger 

• Syntactic path 

 

Trigger classifier • Trigger word 
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• Fraction of times the trigger is reportable 

• Probability that it has each argument 

 
Table 2.1 - Features used in classifiers of the baseline system 

	  

In the test procedure, each document is scanned for instances of triggers from 

the training corpus. When an instance is found, the system tries to match the 

environment of the trigger against the set of patterns associated with that trigger. 

This pattern-matching process, if successful, will assign some of the mentions in 

the sentence as arguments of a potential event mention. The argument classifier is 

applied to the remaining mentions in the sentence; for any argument passing that 

classifier, the role classifier is used to assign a role to it. Finally, once all 

arguments have been assigned, the reportable-event classifier is applied to the 

potential event mention; if the result is successful, this event mention is reported.4 

2.3 Problems of Trigger Identification 

Identifying the trigger – the word most clearly expressing the event - is essential 

for event extraction. Usually, the trigger itself is the most important clue in 

detecting and classifying the type of an event. For example, the word “attack” is 

very likely to represent an Attack event while the word “meet” is not. However, 

this is not always the case. When we collect all the words that serve as an Attack 

event trigger at least once, and plot their probability of triggering an event (Figure 

	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  
4 If the event arguments include some assigned by the pattern-matching process, the event 

mention is accepted unconditionally, bypassing the reportable- event classifier. 
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2.1), we see that the probabilities are widely scattered. Some words always trigger 

an event (probability = 1.0), but most are not. 

Why is the trigger itself not sufficient to identify an event? If we look at all the 

possible trigger words in ACE 2005, we find that a word can sometimes be a 

trigger, sometime not. For example, “attack with a stone” is an Attack event, since 

it might cause physical damage, while “verbal attack” is not. 

 

	   	  

Figure 2.1 - Distribution of probability of a word being a trigger for an Attack 
event  

 
Word Event subtype 

casualties Die, Injury 

named Start-Position, Nominate, Elect 

pay Fine, Transfer-Money, Transfer-Ownership 

take Transport, Transfer-Ownership, Transfer-Money, Elect 

fire End-Position, Attack 

leave End-Position, Transport 

become Elect, Start-Position 

replace Start-Position, End-Position 
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shot Attack, Die, Execute 

deliver Transport, Be-Born, Transfer-Ownership, Phone-Write 

 
Table 2.2 - Examples of ambiguous triggers 

 

Also, a word might trigger different types of events. To give some intuition, 

Table 2.2 presents several words that might trigger different types of events in 

different contexts. Below, we list some problems in trigger identification. 

 

2.3.1 Word Sense Ambiguity 
A word may be ambiguous and have several senses, only some of which 

correspond to a particular event type. For example, the word “fire” can trigger 

Attack or End-Position events, based on different senses it presents in different 

contexts. If it means “the act of firing weapons or artillery at an enemy”, it always 

triggers an Attack event; if it means “discharge from an office or position”, it 

always triggers an End-Position event. Also, the sense “fire a shot”, is more likely 

to trigger an Attack event, than the sense “record on photographic film”. 

2.3.2 Argument Constraint 
Even if the scenario is well detected, there is no guarantee of identifying the 

event correctly. Think about words like “fire” or “shot”: these can only be an 

Attack event when the target is a person, organization, Geo-Political Entity (GPE), 

weapon or facility. If the target is, for example, an animal, it is probably not an 

Attack event.  
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2.3.3 Scenario (Context) Constraint 
The scenario also has subtle effects even once the correct sense is identified. 

For example, if we see the word “fire” with the sense “fire a shot” in terrorist 

activities, it may be an Attack event. However, the same word with the same sense 

in hunting-related or shooting-contest-related activities is probably not an Attack 

event.  

However, we have to point out that while the above information can solve the 

problem to some extent, there are always some harder cases, which even humans 

cannot annotate confidently. For example, “casualties” can trigger both Die or 

Injury events, and most of the time, it is mentioned briefly after the report of an 

Attack event, and even a human reader cannot know whether it refers to death or 

injury, or sometimes, both. 

2.4 Problems of Argument Identification 

Argument identification has its own problems as well, even if the trigger 

identification is correct. If we look at the performance of argument identification, 

we find that it is relatively low. Figure 2.2 shows that the precision using the 

original training data is not very good: while precision improves with increasing 

classifier threshold, about 1/3 of the roles are still incorrectly tagged at a threshold 

of 0.90.  
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Argument Labeling 

Role Labeling 

 
 

Figure 2.2 – Average precision (5-folded cross-validation) of the baseline system 
with different confident thresholds  

 

There are several reasons for this: 

2.4.1 Preprocessing Error 
 Argument identification depends heavily on pre-processing such as EDR 

(Entity Detection and Recognition). Arguments are limited to Entities, Values and 

Timex which are found in previous phases. If the correct argument is not 

discovered, it will be never be identified by the event extraction system. Also, if its 

type and subtype are wrongly tagged, the event extraction will also be affected 

because they are important features for argument /role classification. For example: 

(Ex 2–1) Over 45 minutes as we watched, 32 patients were delivered here, 

evaluated and nine operations started; [29: Artifact] of those delivered 

[Transport], Marines involved in a firefight in the center of Baghdad.  

(Ex 2–2) In the case of 1991, the task was to go in and get them out of 

Kuwait, and they did it, and [they: Artifact] were properly greeted coming 

back [Transport] to the United States. 
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In Ex 2–1Error! Reference source not found., the “29” should be tagged as a 

PERSON entity in ACE, however, the pre-processing misses it because the word 

itself is a number, and you need a inference from its context to decide it refers to 

“29 patients”, which is very hard. Since the preprocessing misses this entity, we 

will never be able to tag it as the Artifact role for the Transport event. 

In Ex 2-2, the preprocessing wrongly tags “they” as a “GPE” because the most 

recent entity mention for this pronoun is “Kuwait”, which is a GPE entity. Since 

the Artifact role of Transport must be a person, the event tagger will not consider it 

as an Artifact role. Preprocessing misses 24% of the arguments, and 5.7% of the 

arguments’ Entity/Values/Timex types are wrongly tagged, while 9.3% of the 

subtypes are wrongly tagged. Thus, the event extraction system would probably 

miss or wrongly assign roles for these mentions. 

2.4.2 Structure Variation 
There are various ways to present an event, and the arguments can appear in 

many different positions. ACE evaluation already limits the argument 

identification to local context: the sentence, but that is not enough. Most event 

extraction systems identify the argument of a specific event by its relation to the 

trigger, for example, the chunk-based or syntax-based path from argument to 

trigger. This feature is a very strong predictor to identify the argument; for 

example, the subject of “kill” should fill the Agent role of a Die event, while the 

object should fill the Victim role. However, one big problem with this pattern is 

that people might use very different expressions and the path varies a lot. From 

Figure 2.3, we can see that most chunk-based paths appear only once or twice in 
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ACE data, which means that we cannot depend on such features since their 

frequency of occurrence is very low. Moreover, even if we use deeper structure, 

like semantic labeling, we do not come close to solving this problem. 

 

Figure 2.3 - Frequency of patterns from trigger to argument5 
 

Also, there are arguments that are far from the trigger, for example, in a 

different clause of the sentence. In such a case, a little difference in the sentence 

might change the whole situation. Here is an example: 

(Ex 2–3) He gave us a whole lot of information and then went [home: 

Place] and his [father-in-law:Agent] killed[Die] [him:Victim]. 

(Ex 2–4) He gave us a whole lot of information and then left home and his 

[father-in-law:Agent] killed[Die] [him:Victim]. 

	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  
5  Note that the argument is replaced by its ACE type (GPE, Person, Organization, etc.), and 

the trigger is replaced by its event type (Attack, Die, Start-Position, etc.). X axis is the pattern 

occurrence frequency, while Y axis is the number of patterns with that frequency 
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In the above examples, a Die event occurs in each sentence, and there is only 

one word different for the two sentences. The annotation for trigger identification 

is easy: “kill” is a very strong prediction word for event Die. Also, the Victim 

argument is easy to detect since it is the object of the verb kill. However, the Place 

argument is hard to detect because it is in another clause, and a different 

expression might cause different results. In (Ex 2–3), a human can easily tag 

“home” as the Place argument of the Die event, while in (Ex 2–4), a human would 

probably not tag it as an argument of the Die event. 

2.4.3 Multi-mention Role Problem 
Last but still, not less important, ACE argument identification allows one event 

to have more than one mention fill the same role. 16.6% of arguments share the 

same role with other arguments. Also, the “multiple mention in one slot” problem 

is not limited to a few roles; it appears in 28 roles (see Table 2.3) out of a total of 

35 roles. Our baseline system uses a “one slot one mention” policy, and assigns the 

mention with highest probability to a specific slot. We did this because we haven’t 

found an efficient way to deal with the multi-mention role problem. Here is an 

example: 

(Ex 2–5) Clinton suffered greatly over the ［19 Rangers:Victim] that died, 

[18:Victim] on the 3rd of October and [Matt Reersen:Victim] three days 

later. 

The baseline system can easily find “Rangers” as victim, but it will miss the 

“18” and “Matt Reersen”. 
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Entity Money Destination Adjudicator 

Time-Within Recipient Artifact Buyer 

Victim Target Crime Prosecutor 

Position Attacker Plaintiff Vehicle 

Person Place Sentence Time-Holds 

Giver Instrument Agent Price 

Org Origin Defendant Beneficiary 

 
Table 2.3 - Argument roles that can contain multiple mentions 

	  

2.5 How to Solve the Above Problems 

Although the problems are clear from the above sections, how to solve them is 

still under investigation. The local information can solve some of them to some 

extent. For example, in the baseline system (see section 2.2), the argument mention 

type is used to solve the argument constraint (see section 2.3.2). The fraction of 

times when the trigger is reportable is used to figure out whether this trigger is too 

ambiguous or not, which can partially solve the word sense ambiguity problem 

(see section 2.3.1). The distance from argument to trigger can be used to generalize 

over different structure variations (see section 2.4.2), although it might be too 

general. However, to thoroughly solve all the problems might be hard or even 

impossible: Word sense disambiguation is already a hard NLP task, and 

normalizing different expressions is even harder.  Moreover, when the training 
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data is preselected, these problems would be more severe (see details in section 

4.1).  

Therefore, we need to figure out some indirect but novel ways to solve the 

problems. That is, how do we extract information from non-local scope to aid the 

baseline system, without too much effort?  In chapter 3, we will discuss how to 

solve the above problems without really doing word sense disambiguation, 

structure normalization, or context detection, but using some indirect information 

instead. In chapter 4, we will investigate how to solve the problem when the data is 

imbalanced.  

At last, we have to point out we do not investigate the problem of preprocessing 

error, and the multi-mention role problem in this thesis, since we do not have a 

clear idea of how features from wider scope can help improve them. We just point 

them out to explain why the baseline system has relatively low performance. 

Chapter 3  

Document Level Cross-event Inference6 

Most current event extraction systems are based on phrase or sentence level 

extraction. This local context may be insufficient to resolve ambiguities for both 

trigger and argument identification; sometimes it is difficult even for people to 

classify events from isolated sentences. However, information from a wider scope 
	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  
6 This chapter is mainly adapted from a published paper (Liao and Grishman 2010a). 
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can serve to resolve some of these problems to some extent. For trigger 

identification, wider scope, instead of the local sentence, might be a better 

predictor for both word sense disambiguation or scenario detection (see section 

2.3). For example: 

(Ex 3–1) He left the company. 

It is hard to tell whether it is a Transport event in ACE, which means that he 

left the place; or an End-Position event, which means that he retired from the 

company. 

However, if there are similar events reported in the document, they will be good 

predictors. For example, a sentence “he planned to go shopping before he went 

home” would give us confidence to tag it as a Transport event; while another 

sentence like “They held a party for his retirement” would lead us to tag it as an 

End-Position event. 

Moreover, different events are also a good predictor for a specific event. For 

example, if we find a Start-Position event like “he was named president three 

years ago”, we are also confident to tag (Ex 3–1) as an End-Position event. 

Event argument identification also shares this benefit, especially when the 

sentence structure is complicated or ambiguous (see section 2.4.2). In such cases, 

obtaining more information from the sentence structure might be hard, but if we 

just check the co-occurrence of other events in the document, we can acquire 

evidence in a much easier way. Consider the following two sentences: 

(Ex 3–2) A bomb exploded in Bagdad; seven people died while 11 were 

injured.  
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(Ex 3–3) A bomb exploded in Bagdad; the suspect got caught when he tried 

to escape.  

If we only consider the local context of the trigger “exploded”, it is hard to 

determine that “seven people” is a likely Target of the Attack event in (Ex 3–2), or 

that the “suspect” is the Attacker of the Attack event, because the structures of (Ex 

3–2) and (Ex 3–3) are quite similar. The only clue is from the semantic inference 

that a person who died may well have been a Target of the Attack event, and the 

person arrested is probably the Attacker of the Attack event. These may be seen as 

examples of a broader textual inference problem, and in general such knowledge is 

quite difficult to acquire and apply. However, in the present case we can take 

advantage of event extraction to learn these rules in a simpler fashion, which we 

present below.  

As mentioned in the Introduction, there are several studies on extracting 

features on wider scope. Maslennikov and Chua (2007) used discourse trees and 

local syntactic dependencies in a pattern-based framework to incorporate wider 

context to refine the performance of relation extraction. They claimed that 

discourse information could filter noisy dependency paths as well as increasing the 

reliability of dependency path extraction. 

Finkel et al. (2005) used Gibbs sampling, a simple Monte Carlo method used to 

perform approximate inference in factored probabilistic models. By using 

simulated annealing in place of Viterbi decoding in sequence models such as 

HMMs, CMMs, and CRFs, it is possible to incorporate non-local structure while 

preserving tractable inference. They used this technique to augment an information 
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extraction system with long-distance dependency models, enforcing label 

consistency and extraction template consistency constraints. 

Ji and Grishman (2008) were inspired from the hypothesis of “One Sense Per 

Discourse” (Yarowsky, 1995); they extended the scope from a single document to 

a cluster of topic-related documents and employed a rule-based approach to 

propagate consistent trigger classification and event arguments across sentences 

and documents. Combining global evidence from related documents with local 

decisions, they obtained an appreciable improvement in both event and event 

argument identification. 

Patwardhan and Riloff (2009) proposed an event extraction model which 

consists of two components: a model for sentential event recognition, which offers 

a probabilistic assessment of whether a sentence is discussing a domain-relevant 

event; and a model for recognizing plausible role fillers, which identifies phrases 

as role fillers based upon the assumption that the surrounding context is discussing 

a relevant event. This unified probabilistic model allows the two components to 

jointly make decisions based upon both the local evidence surrounding each phrase 

and the “peripheral vision”. 

Gupta and Ji (2009) used cross-event information within ACE extraction, but 

only for recovering implicit time information for events. 

However, most of the above work focuses on single event extraction, or focuses 

on high-level information within a single event type (or a scenario), and does not 

consider information acquired from other event types. We extend these approaches 
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by introducing cross-event information to enhance the performance of multi-event-

type extraction systems.  

This chapter is organized as follows: section 3.1 will introduces the motivation 

of using cross-event information, and the consistency and distribution for trigger 

and argument respectively; section 3.2 will demonstrate how the cross-event 

information is extracted and encoded into the baseline system; section 3.3 shows 

the improvement we obtained in experiments. 

3.1 Motivation 

Cross-event information is quite useful: first, some events co-occur frequently, 

while other events do not. For example, Attack, Die, and Injure events very 

frequently occur together, while Attack and Marry are less likely to co-occur. Also, 

typical relations among the arguments of different types of events can be helpful in 

predicting information to be extracted. For example, the Victim of a Die event is 

probably the Target of the Attack event. As a result, we extend the observation that 

“a document containing a certain event is likely to contain more events of the same 

type”, and base our approach on the idea that “a document containing a certain 

type of event is likely to contain instances of related events”.  

We analyzed the sentence-level baseline event extraction, and found that many 

events are missing or spuriously tagged because the local information is not 

sufficient to make a confident decision. In some local contexts, it is easy to 

identify an event; in others, it is hard to do so. Thus, if we first tag the easier cases, 

and use such knowledge to help tag the harder cases, we might get better overall 
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performance. In addition, global information can make the event tagging more 

consistent at the document level. 

Here are some examples. For trigger classification: 

(Ex 3–4) The pro-reform director of Iran's biggest-selling daily newspaper 

and official organ of Tehran's municipality has stepped down following the 

appointment of a conservative …it was founded a decade ago … but a 

conservative city council was elected in the February 28 municipal polls … 

Mahmud Ahmadi-Nejad, reported to be a hardliner among conservatives, 

was appointed mayor on Saturday …Founded by former mayor 

Gholamhossein Karbaschi, Hamshahri… 

The sentence level baseline system finds event triggers like “founded” (trigger 

of Start-Org), “elected” (trigger of Elect), and “appointment” (trigger of Start-

Position), which are easier to identify because these triggers have more specific 

meanings. However, it does not recognize the trigger “stepped” (trigger of End-

Position) because in the training corpus “stepped” does not always appear as an 

End-Position event, and local context does not provide enough information for the 

MaxEnt model to tag it as a trigger. However, in the document that contains 

related events like Start-Position, “stepped” is more likely to be tagged as an End-

Position event. 

For argument classification, the cross-event evidence from the document level 

is also useful: 

(Ex 3–5) British officials say they believe Hassan was a blindfolded woman 

seen being shot in the head by a hooded militant on a video obtained but not 

aired by the Arab television station Al-Jazeera. She would be the first 
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foreign woman to die in the wave of kidnappings in Iraq…she's been killed 

by (men in pajamas), turn Iraq upside down and find them. 

From this document, the local information is not enough for our system to tag 

“Hassan” as the target of an Attack event, because it is quite far from the trigger 

“shot” and the syntax is somewhat complex. However, it is easy to tag “she” as the 

Victim of a Die event, because it is the object of the trigger “killed”. As “she” and 

“Hassan” are co-referential, we can use this easily tagged argument to help 

identify the harder one. 

3.1.1 Trigger Consistency and Distribution 
Within a document, there is a strong trigger consistency: if one instance of a 

word triggers an event, other instances of the same word will trigger events of the 

same type7.  

There are also strong correlations among event types in a document. To see this 

we calculated the conditional probability (in the ACE corpus) of a certain event 

type appearing in a document when another event type appears in the same 

document. 

 
Event Cond. Prob. 

Attack 0.714 

Transport 0.507 

Injure 0.306 

Meet 0.164 

Arrest-Jail 0.153 

	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  
7 This is true over 99.4% of the time in the ACE corpus. 
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Sentence 0.126 

Phone-Write 0.111 

End-Position 0.116 

Trial-Hearing 0.105 

Convict 0.100 

 
Table 3.1 - Events co-occurring with Die events with conditional probability > 

10% 
	  

As there are 33 subtypes, there are potentially 33⋅32/2=528 event pairs. 

However, only a few of these appear with substantial frequency. For example, 

there are only 10 other event types that occur in more than 10% of the documents 

in which a Die event appears. From Table 3.1 and Figure 3.1, we can see that 

Attack, Transport and Injure events appear frequently with Die. We call these the 

related event types for Die.  

The same thing happens for Start-Org events, although its distribution is quite 

different from Die events. For Start-Org, there are more related events like End-

Org, Start-Position, and End-Position (Figure 3.2). But there are 12 other event 

types which never appear in documents containing Start-Org events.  

From the above, we can see that the distributions of different event types are 

quite different, and these distributions might be good predictors for event 

extraction. 
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Figure 3.1 - Conditional probability of the other 32 event types in documents 
where a Die event appears 

	  

	  

 
Figure 3.2 - Conditional probability of the other 32 event types in documents 

where a Start-Org event appears 
 

3.1.2 Role Consistency and Distribution 
Normally one entity, if it appears as an argument of multiple events of the same 

type in a single document, is assigned the same role each time.8 

Moreover, there is a strong relationship between the roles when an entity 

participates in different types of events in a single document. For example, we 
	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  
8 This is true over 97% of the time in the ACE corpus. 
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checked all the entities in the ACE corpus that appear as the Target role for an 

Attack event, and recorded the roles they were assigned for other event types. Only 

31 other event-role combinations appeared in total (out of 237 possible with ACE 

annotation), and 3 clearly dominated. In  Figure 3.3, we can see that the most 

likely roles for the Target role of the Attack event are the Victim role of the Die or 

Injure event and the Artifact role of the Transport event. The last of these 

corresponds to troop movements prior to or in response to attacks. 

 
 

Figure 3.3 - Conditional probability of all possible roles in other event types for 
entities that are the Targets of Attack events (roles with conditional probability 

below 0.002 are omitted) 
	  

3.2 Document level Cross-event Approach 

In this section, we propose a document-level statistical model for event trigger 

and argument (role) classification to achieve document level within-event and 

cross-event consistency. Our event extraction system is a two-pass system where 

the sentence-level system is first applied to make decisions based on local 

information. Then the confident local information is collected and gives an 
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approximate view of the content of the document. The document level system is 

finally applied to deal with the cases which the local system can’t handle, and 

achieve document consistency. To take advantage of cross-event relationships, we 

train two additional MaxEnt classifiers – a document-level trigger and argument 

classifier – and then use these classifiers to infer additional events and event 

arguments. In analyzing new text, the trigger classifier is first applied to tag an 

event, and then the argument (role) classifier is applied to tag possible arguments 

and roles of this event. 

3.2.1 Confident Information Collector 
To use document-level information, we need to collect information based on the 

sentence-level baseline system. As it is a statistically-based model, it can provide a 

value that indicates how likely it is that this word is a trigger, or that the mention is 

an argument and has a particular role. We want to see if this value can be trusted as 

a confidence score. To this end, we set different thresholds from 0.1 to 1.0 in the 

baseline system output, and only evaluate triggers, arguments or roles whose 

confidence score is above the threshold. Results show that as the threshold is 

raised, the precision generally increases and the recall falls. This indicates that the 

value is consistent and a useful indicator of event/argument confidence (see Figure 

3.4). 
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Figure 3.4 -The performance of different confidence thresholds in the baseline 
system  

on the development set 
	  

To acquire confident document-level information, we only collect triggers and 

roles tagged with high confidence. Thus, a trigger threshold t_threshold and role 

threshold r_threshold are set to remove low confidence triggers and arguments. 

Finally, a table with confident event information is built. For every event, we 

collect its trigger and event type; for every argument, we use co-reference 

information and record every entity and its role(s) in events of a certain type.  

To achieve document consistency, in cases where the baseline system assigns a 

word to triggers for more than one event type, if the margin between the 

probability of the highest and the second highest scores is above a threshold 

m_threshold, we only keep the event type with highest score and record this in the 

confident-event table. Otherwise (if the margin is smaller) the event type 

assignments will be recorded in a separate conflict table. The same strategy is 

applied to argument/role conflicts. We will not use information in the conflict table 

to infer the event type or argument/roles for other event mentions, because we 



	   38	  

cannot confidently resolve the conflict. However, the event type and argument/role 

assignments in the conflict table will be included in the final output because the 

local confidence for the individual assignments is high.  

As a result, we finally build two document-level confident-event tables: the 

event type table and the argument (role) table. A conflict table is also built but not 

used for further predictions (see Table 3.2). 

 
Event type table 

Trigger Event Type 

Met Meet 

Exploded Attack 

Went Transport 

Injured Injure 

Attacked Attack 

Died Die 

Argument role table 

Entity ID Event type Role 

0004-T2 Die Time Within 

0004-6 Die Place 

0004-4 Die Victim 

0004-7 Die Agent 

0004-11 Attack Target 

0004-T3 Attack Time Within 

0004-12 Attack Place 

0004-10 Attack Attacker 

Conflict table 

Entity ID Event type Roles 

0004-8 Attack Victim, Agent 

 
Table 3.2 - Example of document-level confident-event table (event type and 

argument role entries) and conflict table 
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3.2.2 Document Level Classifiers 
We build two document level classifiers: one for trigger, and the other for 

argument.  

Document Level Trigger Classifier: From the document-level confident-event 

table, we have a rough view of what kinds of events are reported in this document. 

The trigger classifier predicts whether a word is the trigger of an event, and if so of 

what type, given the information (from the confident-event table) about other types 

of events in the document. Each feature of this classifier is the conjunction of: 

The base form of the word 

An event type 

A binary indicator of whether this event type is present elsewhere in the 

document (There are 33 event types and so 33 features for each word). 

Document level argument classifier: The role classifier predicts whether a 

given mention is an argument of a given event and, if so, what role it takes on, 

again using information from the confident-event table about other events. As 

noted above, we assume that the role of an entity is unique for a specific event 

type, although an entity can take on different roles for different event types. Thus, 

if there is a conflict in the document level table, the collector will only keep the 

one with highest confidence, or discard them all. As a result, every entity is 

assigned a unique role with respect to a particular event type, or null if it is not an 

argument of a certain event type. Each feature is the conjunction of: 

The event type we are trying to assign an argument/role to. 

One of the 32 other event types 
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The role of this entity with respect to the other event type elsewhere in the 

document, or null if this entity is not an argument of that type of event 

 

3.2.3 Document Level Event Tagging 
At this point, the low-confidence triggers and arguments (roles) have been 

removed and the document-level confident-event table has been built; the new 

classifiers are now used to augment the confident tags that were previously 

assigned based on local information. 

For trigger tagging, we only apply the classifier to the words that do not have a 

confident local labeling; if the trigger is already in the document level confident-

event table, we will not re-tag it.  

The argument/role tagger is then applied to all events—those in the confident-

event table and those newly tagged. For argument tagging, we only consider the 

entity mentions in the same sentence as the trigger word, because by the ACE 

event guidelines, the arguments of an event should appear within the same 

sentence as the trigger. For a given event, we re-tag the entity mentions that have 

not already been assigned as arguments of that event by the confident-event or 

conflict table. 

3.3 Experiments  

We followed Ji and Grishman (2008)’s evaluation and randomly select 10 

newswire texts from the ACE 2005 training corpora as our development set, which 

is used for parameter tuning, and then conduct a blind test on a separate set of 40 
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ACE 2005 newswire texts. We use the rest of the ACE training corpus (549 

documents) as training data for both the sentence-level baseline event tagger and 

document-level event tagger.  

 
           performance 

system/human 

Trigger 

classification 

Argument 
classification 

Role 

classification 

 P R F P R F P R F 
Sentence-level 
baseline system 

67.6 53.5 59.7 46.5 37.2 41.3 41 32.8 36.4 

Within-event-type rules 63 59.9 61.4 48.6 46.2 47.4 43.3 41.2 42.2 

Cross-event 
statistical model 

68.71 68.9 68.8 50.9 49.7 50.3 45.1 44.1 44.6 

Human annotation1 59.2 59.4 59.3 60.0 69.4 64.4 51.6 59.5 55.3 

Human annotation2 69.2 75.0 72.0 62.7 85.4 72.3 54.1 73.7 62.4 

 
Table 3.3 - Overall performance on blind test data 

 

To compare with previous work on within-event propagation, we reproduced Ji 

and Grishman (2008)’s approach for cross-sentence, within-event-type inference 

(see “within-event-type rules” in  Table 3.3). We applied their within-document 

inference rules using the cross-sentence confident-event information. These rules 

basically serve to adjust trigger and argument classification to achieve document-

wide consistency. This process treats each event type separately: information about 

events of a given type is used to infer information about other events of the same 

type. 
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We report the overall Precision (P), Recall (R), and F-Measure (F) on blind test 

data. In addition, we report the performance of two human annotators on 28 ACE 

newswire texts (a subset of the blind test set).9 

From the results presented in Table 3.3, we can see that using the document 

level cross-event information, we can improve the F score for trigger classification 

by 9.0%, argument classification by 9.0%, and role classification by 8.1%. Recall 

improved sharply, demonstrating that cross-event information could recover 

information that is difficult for the sentence-level baseline to extract; precision also 

improved over the baseline, although not as markedly. 

Compared to the within-event-type rules, the cross-event model yields much 

more improvement for trigger classification: rule-based propagation gains 1.7% 

improvement while the cross-event model achieves a further 7.3% improvement. 

For argument and role classification, the cross-event model also gains 3% and 

2.3% above that obtained by the rule-based propagation. 

The above experiments show that document-level information can improve the 

performance of a sentence-level baseline event extraction system. However, the 

model presented here is a simple two-stage recognition process; nonetheless, it has 

proven sufficient to yield substantial improvements in event recognition and event 

argument recognition. Richer models, such as those based on joint inference, may 

produce even greater gains  
	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  
9 The final key was produced by review and adjudication of the two annotations by a third 

annotator, which indicates that the event extraction task is quite difficult and human 

agreement is not very high. 
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Chapter 4  

Document Level Topic Features10 

As discussed in section 2.3, knowledge of the scenario is essential to identify 

the occurrence of an event, especially when local context is not sufficient. Given a 

narrow scope of information, even a human cannot make a confident decision. For 

example, for the sentence: 

(Ex 4–1) So he returned to combat … 

It is hard to tell whether it is an Attack event, which is defined as a violent 

physical act causing harm or damage, or whether it refers to a more innocent 

endeavor such as a tennis match.  A broader field of view is often helpful to 

understand how facts tie together. If we read the whole article, and find it to be a 

terrorist story, it is easy to tag this as an Attack event; however, if it is in a tennis 

article, we probably won’t tag it as an Attack event.  

Most previous studies that acquire wider scope information use preselected 

corpora, like (Riloff 1996); or are rule-based, like Ji and Grishman (200811); or 

involve supervised learning from the same training data, like Finkel et al. (2005), 

Liao and Grishman (2010a). However, such information depends mainly on the 

training data. We will be concerned in this chapter with situations where the test 

	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  
10 This chapter is mainly adapted from a published paper (Liao and Grishman, 2011b) 

11 See section 5.2 for more details.  
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data may not match the training, and so we are more interested in using an 

unsupervised topic model to provide such information.  

There is not as much work on evaluation on a more balanced collection when 

the training corpus has a different distribution. Grishman (2010) first pointed out 

that understanding the characteristics of the corpus is an inherent parts of the event 

extraction task. He gave a small example of the effect of applying an event 

extractor to a more balanced corpus, and used a document classifier to reduce the 

spurious errors. 

In this section, we propose to use a topic model (LDA) to provide document 

level topic information to solve this problem to some extent. In experiments, we 

not only evaluate its effect on ACE cross-validation, but also on a more balanced 

newswire corpus. Also, we compare this unsupervised approach to a supervised 

multi-label text classifier, and show that unsupervised topic modeling can get 

better results for both collections, and especially for a more balanced collection.  

4.1 Data imbalance 

Why are we interested in unsupervised topic features? There is a problem that 

arises in the evaluation of almost all the tasks in NLP, concerning the similarity of 

distribution between training and testing data. Ideally, training and testing should 

be as similar as possible, but this is not always the case. In general, an effort is 

made to have the test corpora be representative of the sort of texts to which the 

NLP process is intended to be applied. In the case of the event extraction, this has 

generally been news sources such as newswires or broadcast news transcripts. 
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However, a particular event type is likely to occur infrequently in the general 

news, which might contain many different topics, only a few of which are likely to 

include mentions of this event type. 

As a result, a typical evaluation corpus (a few hundred hand-annotated 

documents), if selected at random, would contain only a few events, which is not 

sufficient for training. To avoid this, these annotated corpora are artificially 

enriched through a combination of topic classification and manual review, so that 

they contain a high concentration of the events of interest. For example, in the 

MUC-3/4 test corpora, about 60% of the documents include relevant events, and in 

the ACE 2005 training corpus 48% include Attack events. 

If we train and test the event extraction system on ACE annotated corpora, the 

problem is not significant because there are very few sports articles in the ACE 

evaluation: 74% of the instances of the word “combat” indicate an Attack event. 

However, if you extend the evaluation to a more balanced collection, for example, 

the un-filtered New York Times (NYT) newswire, you will find that there are a lot 

of sports articles and an event extractor will mistakenly tag lots of sports events as 

Attack events. Grishman (2010) drew attention to this phenomenon, pointing out 

that only about 17% of articles from the contemporaneous sample of The NYT 

newswire contained attack events, compared to 48% in the ACE evaluation. In this 

situation, if we apply the event extractor trained on the ACE corpus to the balanced 

NYT newswire, the performance may be significantly degraded. 
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4.2 Motivation 

Clearly, the topic of the document is a good predictor of particular event types. 

For example, a reference to “war” inside a business article might refer to a 

financial competition; while “war” inside a military article would be more likely to 

refer to a physical attack event. Text classification can be used here to identify 

document topic, and the final decision can be made based on both local evidence 

and document relevance. However, this method has three disadvantages: 

First, the event type and document topic are not always strongly connected, and 

it depends significantly on what kind of event we are going to explore. If the 

events are related to the main category of the article, only knowing the article 

category is enough. But if they are not, treating each document as a single topic is 

not enough. For example, Die events might appear in military, financial, political 

or even sports articles. And most of the time, it is not the main event reported by 

the article. The article may focus more on the reason for the death, the biography 

of the person, or the effect of the death.  

Second, when the article talks about more than one scenario, simple text 

classification will basically ignore the secondary scenario. For example, if a sports 

article that reported the results of a football game also mentions a fight between 

the fans of two teams, the topic of the document might be “sports”, which is 

irrelevant to Attack events; however, there is an Attack event, which appears in the 

secondary scenario of the document. 
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Third, the category or relevance depends on the annotated data, and a classifier 

may be unable to deal with articles whose topics were rarely seen in the training 

data. Thus, if the category distribution of the evaluation data is different from the 

training data, a text classifier might have poor performance. 

To solve the first two problems, we need to treat each document as a mixture of 

several topics instead of one; to solve the third problem, we want to see if 

unsupervised methods can give us some guidance which a supervised method 

cannot. These two goals are easily connected to a topic model, for example, Latent 

Dirichlet Allocation.  

4.3 Topic Features  

A topic model, like Latent Dirichlet Allocation (LDA, David Blei, etc. 2003), is 

a generative model that allows sets of observations to be explained by unobserved 

groups. For example, if the observations are words collected into documents, it 

posits that each document is a mixture of a small number of topics and that each 

word is attributable to one of the document's topics. For event extraction, there is a 

similar assumption that each document consists of various events, and each event 

is presented by one or several snippets in the document. We want to know if these 

two can be somehow connected and how one can improve the other. 

We are more interested in an unsupervised approach from a large untagged 

corpus. In this way, we can avoid the data bias that may be introduced by an 

unrepresentative training collection, thus providing better high-level information 
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than previous approaches, especially when applied to the final target application 

instead of a specially selected development or evaluation corpus.  

4.3.1 Unsupervised Features 
Latent Dirichlet Allocation (LDA) tries to group words into “topics”, where 

each word is generated from a single topic, and different words in a document may 

be generated from different topics. Thus, each document is represented as a list of 

mixing proportions for these mixture components and thereby reduced to a 

probability distribution on a fixed set of topics. In LDA, each document may be 

viewed as a mixture of various topics. A document is generated by picking a 

distribution over topics, and given this distribution, picking the topic of each 

specific word to be generated. Then words are generated given their topics. Words 

are considered to be independent given the topics; this is a standard bag of words 

model assumption where individual words are exchangeable.  

Unlike supervised classification, there are no explicit labels, like “finance” or 

“war”, in unsupervised LDA.  Instead, we can imagine each topic as “a cluster of 

words that refers to an implicit topic”. For example, if a document contains words 

like “company”, “financial”, and “market”, we assume it contains a “financial 

topic” and are more confident to find events like Start-Position, End-Position, 

while a document that contains “war”, “combat”, “fire”, and “force” will be 

assumed to contain the “war topic”, which is more likely to contain Attack, Die, or 

Injure events.  
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4.3.2 Supervised Features 
As the event extraction system uses a supervised model, it is natural to ask 

whether supervised topic features are better than unsupervised ones. There are 

several possible approaches. For example, we can first run a topic classification 

filter to predict whether or not a document is likely to contain a specific type of 

event. However, because of the limited precision of a simple classifier such as a 

bag-of-words MaxEnt classifier (for Attack events, the precision is around 69% in 

ACE data), using it as a pre-filter will lead to event recall or precision errors. 

Instead, we decide to use the topic information as features within the event 

extraction system. As one document might contain several event types, we tag 

each document with labels indicating the presence of one or more events of a given 

type, which is a multi-label text classification problem. In this section, we build a 

supervised multi-label text classifier to compare to the unsupervised topic model.  

The basic idea for a multi-label classifier comes from the credit attribution 

problem in social bookmarking websites, where pages have multiple tags, but the 

tags do not always apply with equal specificity across the whole page (Ramage et 

al. 2009). This relation between tag and page is quite similar to that between event 

and document, because one document might also have multiple events of differing 

specificity. For example, an Attack event may be more related to the main topic of 

the document than a Meet event. 

We use Labeled LDA (L-LDA) to build the multi-label text classifier, which is 

reported (Ramage et al. 2009) to outperform SVMs when extracting tag-specific 

document snippets, and is competitive with SVMs on a variety of datasets. L-LDA 
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associates each label with one topic in direct correspondence, and is a natural 

extension of both LDA and multinomial Naïve Bayes. In our experiment, each 

document can have several labels, each corresponding to one of the 33 ACE event 

types. In this way, we can easily map the goal of predicting the possible events in a 

document into a multi-label classification problem. 

4.4 Experiment  

We set up two experiments to investigate the effect of topic information.  

ACE05 Experiment: A 5-fold cross-validation on the whole ACE 2005 corpus, 

which contains 589 documents from June 2003.  

NYT03 Experiment: An experiment to address the crucial issue of mismatch 

in topic distribution between training and test corpora. In this experiment, the ACE 

2005 corpus is used as the training data, and unfiltered New York Times newswire 

data, a balanced corpus without pre-selection, is used for testing. The NYT corpus 

comes from the same epoch as the ACE corpus. This test data contains 75 

consecutive articles12.  

4.4.1 Experiment Setup 
Encoding topic features into the baseline system is straightforward: as the 

occurrence of an event is decided in the final classifier – the trigger classifier – we 

add topic features to this final classifier. Although the argument / role classifiers 

	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  
12 We annotated the test data for the three most common event types in ACE – Attack, Die, 

and Meet – and evaluated this balanced corpus on these three events. 
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have already been applied, we can still improve the argument / role classification, 

because only when a word is tagged as a trigger will all the arguments/roles related 

to it be reported. 

The unsupervised LDA was trained on the entire 2003 NYT newswire except 

for June to avoid overlap with the test data, a total of 27,827 articles; we choose 

K= 30, which means we treat the whole corpus as a combination of 30 latent 

topics. 

The multi-label text classifier was trained on the same ACE training data as the 

event extraction, where each label corresponds to one event type, and there is an 

extra “none” tag when there are no events in the document. Thus, there are in total 

34 labels. 

For inference, we use the posterior Dirichlet parameters γ*(w) associated with 

the document (David Blei, etc. 2003) as our topic features, which is a fixed set of 

real-values. Thus, using the multi-label text classifier, there are 34 newly added 

features; while using unsupervised LDA, there are 30 newly added features. 

Stanford topic modeling software is used for both the multi-label text classifier and 

unsupervised LDA. 

For preprocessing, we remove all words on a stop word list. Also, to reduce 

data sparseness, all inflected words are changed to their root form (e.g. 

“attackers”→“attacker”).  

4.4.2 Evaluation on ACE data 
We might expect supervised topic features to outperform unsupervised topic 

features when the distributions of the training and testing data are the same, 
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because its correlation to event type is clearer and explicit. However, it turns out 

not to be true in our experiment (see Table 4.1): the unsupervised features work 

better than the supervised features. This is understandable given that there are only 

hundreds of training documents for the supervised topic model, and the precision 

of the document classification is not very good, as we mentioned before in section 

4.2. For unsupervised topics, we have a much larger corpus, and the topics 

extracted, although they may not correspond directly to each event type, predicate 

a scenario where a specific event might occur.  

	  

	  	  	  	  	  	  	  	  	  	  	  	  Performance	  

System	  

Trigger	  

Classification	  

Argument	  
Classification	  

Role	  

Classification	  

 P R F P R F P R F 

Baseline system 64.3	   51.1	   56.9	   69.4	   21.8	   33.2	   62.8	   19.7	   30.0	  

Multi-label classifier 66.8	   50.0	   57.2	   54.4	   25.5	   34.7	   48.9	   22.9	   31.1	  

Unsupervised LDA 63.9	   59.7	   61.7	   71.1	   27.0	   39.1	   64.6	   24.5	   35.5	  

 
Table 4.1 - Overall performance on ACE test data  

 

4.4.3 Evaluation on NYT data 
From the ACE evaluation, we can see that the unsupervised LDA works better 

than a supervised classifier, which indicates that even if the training and testing 

data are from the same distribution, the unsupervised topic features are more 

helpful. In our second evaluation, we evaluate on a more balanced newswire 

corpus, with no pre-selection. 
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First, we implement Grishman’s solution (Simple Combination) to combine the 

document event classifier (a bag-of-words maximum-entropy model) with local 

evidence used in the baseline system. The basic idea is that if a document is 

classified as not related to a specific event, it should not contain any such events; 

while if it is related, there should be such events. Thus, an event will be reported if  

P(reportable_ event)×P(relevant _ document)> τ  

 where P(reportable_event) is the confidence score from the baseline system, 

while P(relevant_document) is computed from the document classifier.  

Table 4.2 shows that the simple combination method (geometric mean of 

probabilities) performs a little better than baseline. However, we find that the gains 

are unevenly spread across different events. For Attack events, it provides some 

benefit (from 57.9% to 59.6% F score for trigger labeling), whereas for Die and 

Meet events it does not improve much. This might be because Attack events are 

closely tied to a document’s main topic, and using only the main topic can give a 

good prediction. But Die and Meet events are not closely tied to the document 

main topic, and so the simple combination does not help much.  

Unsupervised LDA performs best of all, which indicates that the real 

distribution in the balanced corpus can provide useful guidance for event 

extraction, while supervised features might not provide enough information, 

especially when testing on a balanced corpus. 

	  

          Performance Trigger Argument 
Classification 

Role 
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System Classification Classification 

 P R F P R F P R F 
Baseline system 53.8 51.1 52.4 41.4 19.7 26.7 39.4 18.8 25.4 

Simple Combination 63.1 47.4 54.2 41.4 19.7 26.7 39.4 18.8 25.4 

Multi-label classifier 60.8 65.7 63.2 35.6 27.9 31.3 31.9 25.0 28.0 

Unsupervised LDA 60.3 81.0 69.2 45.3 34.6 39.2 44.0 33.7 38.1 

 
Table 4.2 - Performance on NYT collection 

	  

Our experiments indicated that an unsupervised document-level topic model 

trained on a large corpus yields substantial improvements in extraction 

performance and is considerably more effective than a supervised topic model 

trained on a smaller annotated corpus. 

Finally, let us consider some examples to show why topic information helps so 

much on NYT data. First, we give an example where the supervised topics method 

does not work but unsupervised does. In our baseline system, many verbs in sports 

or other articles will be incorrectly tagged as Attack events. In such cases, as there 

are very few sports articles in ACE training data, and there is no event type related 

to sports, the supervised classifier might not capture this feature, and prefer to 

connect a sports article to an Attack event in the testing phase, because there are a 

lot of words like “shot”, “fight”. However, as there are a lot of sports articles in 

NYT data, the unsupervised LDA can capture this topic. Here is an example: 

(Ex 4–2) His only two shots of the game came in overtime and the goal was 

just his second of the playoffs, but it couldn't have been bigger. 
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In (Ex 4–2), “shot” is tagged 67.5% of the time as an Attack event in training 

data. We checked the data and found that there are very few sports articles in the 

ACE corpus, and the word “shot” never appears in these documents. Thus, a 

supervised classifier will prefer to tag a document containing the word “shot” as 

containing an Attack event. However, because a sports topic can be explicitly 

extracted from an unannotated corpus that contains a reasonable portion of sports 

articles, the unsupervised model would be able to build a latent topic T which 

contains sports-related words like “racket”, “tennis”, “score” etc. Thus, most 

training documents which contain “shot” will have a low value of T; while the 

sports documents (although very few), will have a high value of T. Thus, the 

system will see both a positive feature value (the word is “shot”), and a negative 

feature value (T’s value is high), and still has the chance to correctly tag this 

“shot” as not-an-event, while in the baseline system, the system will incorrectly tag 

it as an Attack event because there are only positive feature values. 

The topic features can also help other event types. For Die events, consider: 

(Ex 4–3) A woman lay unconscious and dying at Suburban Hospital in 

Bethesda, Md.  

In (Ex 4–3), the word “dying” only appears 45.5% as a Die event in the training 

data, and is not tagged as a Die event by the baseline system. The reason is that 

there are a lot of metaphors that do not represent true Die events, like “dying 

nation”, “dying business”, “dying regime”. However, when connected to the latent 

topic features, we know that for some topics, we can confidently tag it as a Die 

event. 
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For Meet events, we also find cases where topic features help: 

(Ex 4–4) President Bush meets Tuesday with Arab leaders in Egypt and the 

next day with the Israeli and Palestinian prime ministers in Jordan,…. 

In (Ex 4–4), the baseline system misses this Meet event.  The word “meets” 

only appears 25% of the time as a Meet event in the training data, because there 

are phrases like “meets the requirement”, “meets the standard” which are not Meet 

events. However, adding topic features, we can correct this and similar event 

detection errors. 

Chapter 5  

Cross-Document IR-based Self-training13 

In the preceding two chapters, we focused on improving a supervised event 

extraction system using information from wider scope. In this section, we 

investigate the effect of wider scope information on another task: semi-supervised 

learning (self-training) for event extraction. Annotating training data for event 

extraction is tedious and labor-intensive. Most current event extraction tasks rely 

on hundreds of annotated documents, but this is often not enough. Self-training is 

one way to automatically increase the training data, which can help us improve the 

event extraction system by adding more training samples. 

	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  
13 This chapter is mainly adapted from a published paper (Shasha Liao and Ralph Grishman, 

2011a) 
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Self-training is a commonly used technique, where the classifier starts with a 

small amount of labeled data. The classifier is then used to classify the unlabeled 

data. Typically the most confident unlabeled points, together with their predicted 

labels, are added to the training set. The classifier is re-trained and the procedure 

repeated.  

Self-training has been applied to several natural language processing tasks. For 

event extraction, there are several studies on bootstrapping from a seed pattern set. 

Riloff (1996) initiated the idea of using document relevance for extracting new 

patterns, and Yangarber et al. (2000, 2003) incorporated this into a bootstrapping 

approach, extended by Surdeanu et al. (2006) to co-training. Stevenson and 

Greenwood (2005) suggested an alternative method for ranking the candidate 

patterns by lexical similarities. Liao and Grishman (2010b) combined these two 

approaches to build a filtered ranking algorithm. However, these approaches were 

focused on finding instances of a scenario/event type rather than on argument role 

labeling. Starting from a set of documents classified for relevance, Patwardhan and 

Riloff (2007) created a self-trained relevant sentence classifier and automatically 

learned domain-relevant extraction patterns. Liu (2009) proposed the BEAR 

system, which tagged both the events and their roles. However, the new patterns 

were bootstrapped based on the frequencies of sub-pattern mutations or on rules 

from linguistic contexts, and not on statistical models. 

Since the criterion for selecting the most confident examples is critical to the 

effectiveness of self-training, we need to first set up the metric to evaluate the 

confidence of an event. An event contains one trigger and an arbitrary number of 
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roles, and it is not easy to calculate its confidence as a whole. A confident trigger 

might contain some unconfident arguments, and a confident argument might refer 

to an unconfident trigger. Thus, we select a part of an entire event, containing one 

confident trigger and its most confident argument, to serve as one example and be 

fed back to the training system. In this way, for each mention mi, its probability of 

filling a role r in a reportable event whose trigger is t is computed by: 

PRoleOfTrigger (mi, r, t) = PArg(mi ) ⋅PRole(mi, r) ⋅PEvent (t)  

 where PArg(mi) is the probability from the argument classifier, PRole(mi,r) is that 

from the role classifier, and PEvent(t) is that from the trigger classifier. In each 

iteration, we added the most confident <role, trigger> pairs to the training data, and 

re-trained the system. 

5.1 Motivation 

Surprisingly, traditional self-training does not perform very well (see Table 

5.1) for events. The newly added samples do not improve the system performance; 

instead, its performance stays stable, and even gets worse after several iterations 

(see Table 5.1).  

This reminds us of two problems with traditional self-training. First, as self-

training uses its own predictions to teach itself, a classification mistake can 

reinforce itself. One way to avoid this is to stop bootstrapping if the prediction 

confidence drops below a threshold. However, this can only solve the problem to 

some extent. Another issue with self-training is that it always looks for the samples 
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most similar to the training data, and lacks the ability to finding “novel” examples, 

which can provide new information to learn.  

We analyzed the data, and found that the poor performance is caused by these 

two common problems. First, we checked the accuracy of the confident samples 

predicted by our baseline system, and found that even the most confident samples 

are not always accurate. As a result, although self-training has been successful in 

other NLP tasks, like Named Entity Recognition, parsing, or part-of-speech 

tagging, where the baseline systems already have good performance, its 

performance on event extraction is not good, due to the baseline system’s 

relatively poor performance. Thus, we need some techniques to filter the 

inaccurate samples out. 

The problem of nothing “novel” being added is harder to solve. Co-training is a 

form of self-training which can address this problem to some extent. However, it 

requires two views of the data, where each example is described using two 

different feature sets that provide different, complementary information. Ideally, 

the two views are conditionally independent and each view is sufficient (Zhu, 

2008). Co-training has had some success in training (binary) semantic relation 

extractors for some relations, where the two views correspond to the arguments of 

the relation and the context of these arguments (Agichtein and Gravano 2000).  

However, it has had less success for event extraction because event arguments may 

participate in multiple events in a corpus and individual event instances may omit 

some arguments. 
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5.2 Cross-Document IR-based Approach 

Since word sense disambiguation is already a hard task, and we do not have any 

annotated data to do word sense disambiguation on the event level, we want to find 

another way out. Yarowsky (1995) introduced the idea of sense consistency, 

declaring that the same words in the same document are likely to share the same 

senses. Later, he extended this idea to operate across related documents. Yangarber 

et al. (Yangarber and Jokipii, 2005; Yangarber, 2006; Yangarber et al., 2007) 

applied cross-document inference to correct local extraction results for disease 

name, location and start/end time. Mann (2007) encoded specific inference rules to 

improve extraction of information about CEOs (name, start year, end year).  

There also are some studies on using this idea to improve the performance of 

event extraction. Ji and Grishman (2008) incorporated this idea to propagate 

consistent triggers and arguments across topic-related documents using rule-based 

inference. Gupta and Ji (2009) used a similar approach to recover implicit time 

information for events. Liao and Grishman (2010a) use a statistical model to infer 

the cross-event information within a document to improve event extraction. 

However, these earlier studies use rule-based inference or supervised approach, 

and none apply this hypothesis to aid a semi-supervised approach. In the following 

sections, we will explain how the one-sense-per-discourse hypothesis can be 

applied to improve the self-training and why it helps. 
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5.2.1 Self-training on Information Retrieval Selected Corpus (ST_IR) 
To address the first problem (low precision of extracted events), we tried to 

select a corpus where the baseline system can tag the instances with greater 

confidence. Ji and Grishman (2008) have observed that the events in a cluster of 

documents on the same topics as documents in the training corpus can be tagged 

more confidently. Thus, we believe that bootstrapping on a corpus of topic-related 

documents should perform better than a regular newswire corpus. 

We followed Ji and Grishman (2008)’s approach and used the INDRI retrieval 

system14 (Strohman et al., 2005) to obtain the top N related documents for each 

annotated document in the training corpus. The query is event-based to insure that 

related documents contain the same events. For each training document, we 

construct an INDRI query from the triggers and arguments. For the following 

sentence: 

(Ex 5–1) Bob Cole was killed in France today; he was attacked…    

query keywords will include “killed”, “attacked”, “France”, “Bob Cole”, and 

“today”. Only names and nominal arguments will be used; pronouns appearing as 

arguments are not included. For each argument we also add other names 

coreferential with the argument. 

 

	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  
14 http://www.lemurproject.org/indri/ 
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5.2.2 Self-training using Global Inference (ST_GI) 
Although bootstrapping on related documents can solve the problem of 

“confidence” to some extent, the “novelty” problem still remains:  the top-ranked 

extracted events will be too similar to those in the training corpus. To address this 

problem, we propose to use a simple form of global inference based on the special 

characteristics of related-topic documents. Previous studies pointed out that 

information from wider scope, at the document or cross-document level, could 

provide non-local information to aid event extraction (Ji and Grishman 2008, Liao 

and Grishman 2010a). There are two common assumptions within a cluster of 

related documents: 

Trigger Consistency Per Cluster: if one instance of a word triggers an event, 

other instances of the same word will trigger events of the same type. 

Role Consistency Per Cluster: if one entity appears as an argument of multiple 

events of the same type in a cluster of related documents, it should be assigned the 

same role each time. 

Based on these assumptions, if a trigger/role has a low probability based on the 

local context, but a high probability based on another place in the article, it means 

that the local context of this trigger/role tag is not frequently seen in the training 

data, but the tag is still confident. Thus, we can confidently add it to the training 

data and it can provide novel information which the samples confidently tagged by 

the baseline system cannot provide. 

To start, the baseline system extracts a set of events and estimates the 

probability that a particular instance of a word triggers an event of that type, and 
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the probability that it takes a particular argument. The global inference process 

then begins by collecting all the confident triggers and arguments from a cluster of 

related documents15. For each trigger word and event type, it records the highest 

probability (over all instances of that word in the cluster) that the word triggers an 

event of that type.  

First, for each argument, within-document and cross-document coreference are 

both applied to collect all instances of that entity. We use a statistical within-

document coreference system (Grishman et al. 2005) to acquire coreference inside 

one document, and a simple rule-based cross-document coreference system, where 

entities sharing the same names will be treated as coreferential across documents. 

Then, we compute the maximum probability (over all instances) of that 

argument playing a particular role in a particular event type. These maxima will 

then be used in place of the locally-computed probabilities in computing the 

probability of each trigger-argument pair in the formula for PRoleOfTrigger given 

above16. For example, if the entity “Iraq” is tagged confidently (probability > 0.9) 

as the “Attacker” role somewhere in a cluster, and there is another instance where 

from local information it is only tagged with 0.1 probability to be an “Attacker” 

role, we use probability of 0.9 for both instances.  

	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  
15 In our experiment, only triggers and roles with probability higher than 0.9 will be extracted. 

16 If a word or argument has multiple tags (different event types or roles) in a cluster, and the 

difference in the probabilities of the two tags is less than some threshold, we treat this as a 

“conflict” and do not use the conflicting information for global inference. 
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In this way, a trigger pair containing this argument is more likely to be added 

into the training data through bootstrapping, because we have global evidence that 

this role probability is high, although its local confidence is low. In this way, some 

novel trigger-argument pairs will be chosen, thus improving the baseline system. 

Here is an example: 

(Ex 5-2) Miroslay Kostelka was named as new Czech defense minister 

Monday… 

(Ex 5-3) It was unclear how the Kostelka appointment would affect the 

reform plans. 

(Ex 5-4) Prime Minister Vladimir Spidla said Monday after Kostelka’s 

appointment that… 

Ex 5-2 is extracted from the annotated document, and thus the probability that 

“Miroslay Kostelka” is the Person role of Start-Position event (triggered by 

“named”) is 1.0. However, the probability that “Kostelka” is the Person role of a 

Start-Position event in Ex 5-3 and Ex 5-4 is 0.745 and 0.794 respectively.  Thus, 

Ex 5-3 and 5-4 will not be added to the training data in bootstrapping; however, 

using global information to adjust local probability, these confident and novel 

samples will be selected in bootstrapping. 

5.3 Experiments  

We randomly chose 20 newswire texts from the ACE 2005 training corpora 

(from March to May of 2003) as our evaluation set, and used the remaining 

newswire texts as the original training data (83 documents). For self-training, we 
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picked 10,000 consecutive newswire texts from the TDT5 corpus from 200317 for 

the ST experiment. For ST_IR (see section 5.2.1) and ST_GI (see section 5.2.2), 

we retrieved the best N (using N = 25, which (Ji and Grishman 2008) found to 

work best) related texts for each training document from the English TDT5 corpus 

consisting of 278,108 news texts (from April to September of 2003). In total we 

retrieved 1650 texts; the IR system returned no texts or fewer than 25 texts for 

some training documents. In each iteration, we extract 500 trigger and argument 

pairs to add to the training data. 

 
Table 5.1 shows that bootstrapping on an event-based IR corpus can produce 

improvements on all three evaluations, while global inference can yield further 

gains.  

 
 Trigger 

labeling 

Argument 

labeling 

Role 

labeling 

Baseline 54.1 39.2 35.4 

ST 54.2 40.0 34.6 

ST_IR 55.8 42.1 37.7 

ST_GI 56.9 43.8 39.0 

 
Table 5.1 - F-score with different self-training strategies after 10 iterations 

	  

	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  
17 We selected all bootstrapping data from 2003 newswire, with the same genre and time 

period as ACE 2005 data to avoid possible influences of variations in the genre or time period 

on the bootstrapping. Also, we selected 10,000 documents because this size of corpus yielded 

a set of confidently-extracted events (probability > 0.9) roughly comparable in size to those 

extracted from the IR-selected corpus; a larger corpus would have slowed the bootstrapping. 
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Experiments show that using an IR-selected corpus improves trigger labeling F 

score 1.7%, and role labeling 2.3%. Global inference can achieve further 

improvement of 1.1% for trigger labeling, and 1.3% for role labeling. Also, this 

bootstrapping involves processing a much smaller but more closely related corpus, 

which is more efficient. Such pre-selection of documents may benefit 

bootstrapping for other NLP tasks as well, such as name and relation extraction. 

Chapter 6  

Sentence Level Active Learning18 

In the previous chapter, we investigated the wider scope features from a 

document or cross-document level; in this chapter, we explore the usage of 

features from a narrower scope: sentence level. Under this approach, we treat the 

entire sentence as a whole, and introduce its effect in the active learning approach. 

Active learning is a supervised machine learning technique in which the learner 

is in control of the selection of data used for learning. The intent is to ask an oracle 

- typically a human with extensive knowledge of the domain at hand - about the 

classes of instances for which the model trained so far makes unreliable 

predictions. Selective sampling methods, introduced by Cohn, Atlas and Ladner 

(1994), made the learner query the oracle about data that is likely to be 

	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  
18 This chapter is mainly adapted from a published paper (Shasha Liao and Ralph Grishman, 

2011c) 
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misclassified. This is the crucial aspect of AL - finding “good” instances for a 

human to annotate.  

Many existing active learning methods are based on selecting the most 

uncertain examples using various measures (Thompson et al. 1999; Schohn and 

Cohn 2000; Tong and Koller 2001a; Tong and Koller 2001b; Engelson and Dagan 

1999). (McCallum and Nigam 1998; Tang et al. 2002) proposed methods that 

consider the representativeness criterion in active learning. Tang et al. (2002) used 

the density information to weight the selected examples but do not use it to select a 

sample. Brinker (2003) first incorporated diversity in active learning for text 

classification. Shen et al. (2004) proposed a multi-criteria-based active learning 

approach and applied it to named entity recognition. They jointly consider multiple 

criteria, including informativeness, representativeness and diversity. Experiments 

showed that incorporating all the criteria together is more efficient than single-

criterion-based methods. 

Traditional active learning with redundant views splits the feature set into 

several sub-sets or views, each of which is enough, to some extent, to describe the 

underlying problem. Muslea et al. (2000) presented an approach in which two 

classifiers are trained only on labeled data, then run over the unlabeled data. A 

contention set of examples is then created, consisting of all unlabeled examples on 

which the classifiers disagree. Samples are randomly selected from this set for 

query, and then both classifiers are retrained. 

To the best of our knowledge, there is no study yet of active learning in event 

extraction. However, Patwardhan and Riloff (2009) presented a model for role 
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filling in event extraction that jointly considers both the local context around a 

phrase and the wider sentential context in a probabilistic framework. They used a 

sentential event recognizer and a plausible role-filler recognizer to jointly make 

decisions on a sentence, and find the roles of the events. Although it is not a co-

testing process, it gave us the intuition of using a sentential view to predict 

possible events in a sentence. Surdeanu et al. (2006) used a co-training strategy in 

which two classifiers seek to classify documents as relevant to a particular 

scenario. In his approach, a bag of words model was used to determine relevance 

for event extraction. However, his work differs from ours because it involves semi-

supervised learning, and it uses a document-level classifier instead of a sentence-

level classifier. Patwardhan and Riloff (2007) presented an information extraction 

system that find relevant regions of text and applies extraction patterns within 

those regions. They created a self-trained relevant sentence classifier to identify 

relevant regions, and use a semantic affinity measure to automatically learn 

domain-relevant extraction patterns. They also distinguish primary patterns from 

secondary patterns and apply the patterns selectively in the relevant regions. 

After studying several sampling strategies, we settled upon a pseudo co-testing 

approach where a second classifier that solves a coarser variant of the original task 

is used. Furthermore, we incorporate multiple selection criteria into the pseudo co-

testing, not only selecting more informative sentences, but also considering their 

distribution in the sample pool, and the diversity of the instances added to the 

training set at the same time. Experiments show that a classifier for a coarser task 

can provide an extra view to build a pseudo co-testing strategy. Although the 
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ultimate goal involves training the original (fine-grained) classifier, the coarser 

task can provide useful information for query selection. In the special case of event 

extraction, we find that a sentence classifier can help an event tagger select a better 

query, because it is not only good at finding new trigger and local structures from 

graded matching over a wider scope, but also provides a better way of judge the 

representativeness and diversity of the samples. In our experiment, we reduced 

human labor by 80.6% to 87.8%. 

In particular, we apply the active learning approach to the Attack event, because 

it is the most frequent event type in the ACE corpus, and is particularly 

challenging because of the large number of different expressions: there are 312 

different words in the corpus that serve at least once as the trigger of an Attack 

event.  

6.1 Motivation 

Annotating a corpus in order to train an event tagger is a costly task. First of all, 

event extraction is difficult and requires substantial training data. The same event 

might be presented in various expressions, and an expression might represent 

different events in different contexts. For example, “retire” and “resign” can both 

represent an End-Position event, while “leave” can represent either an End-

Position or Move event in different contexts. Moreover, for each event type, the 

event participants and attributes may also appear in multiple forms and exemplars 

of the different forms may be required. 
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Furthermore, compared to other tasks like name tagging or part of speech 

tagging, events of a particular type appear relatively rarely in a document. One 

document might only contain one or two events of a given type, or even none at 

all. For the ACE 2005 event extraction task, Attack events have the highest 

frequency in the training corpus (2240 times, an average of 4 events per 

document), while Start-Position events only appear 232 times (an average of 1/3 

event per document). As a result, to acquire enough training samples, we need to 

annotate a lot of documents. If we can predict which documents, or even which 

sentences to annotate, we can save a lot of time. 

Considering the complexity of event extraction and the labor of annotating an 

event, providing the annotator with an informative sample to annotate is especially 

important. Active learning (AL) is a good way to do so because it aims to keep the 

human annotation effort to a minimum, only asking for advice where the training 

utility of the result of such a query is high. 

6.2 Pseudo Co-testing Approach 

Active learning has been successfully applied to a number of natural language 

processing tasks, such as named entity recognition (Shen et al. 2004; Hachey, Alex 

and Becker 2005; Kim et al. 2006), text categorization (Schohn and Cohn 2000; 

Tong and Koller 2002; Hoi, Jin & Lyu 2006), part of speech tagging (Ringger et 

al. 2007), parsing (Osborne and Baldridge 2004; Becker and Osborne 2005; 

Reichart and Rappoport 2007), and word sense disambiguation (Chen et al. 2006; 
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Zhu and Hovy 2007). However, there have not yet been any studies to use active 

learning in event extraction.  

There are several sampling methods in active learning; the most commonly 

used ones include uncertainty-based sampling, committee-based sampling, and co-

testing. Co-testing Muslea et al. (2000) involves two (or more) redundant views; it 

simultaneously trains a separate classifier for each view, and the system selects a 

query based on the degree of disagreement among the learners. Because well-

informed classifiers for the two views should agree, co-testing will select an 

example that is informative for at least one of the classifier models.  

The advantage of uncertainty sampling is that it is simple and can be applied to 

almost all kinds of statistical models. However, Muslea (2000) points out that 

uncertainty sampling may make queries that lead to minimal improvements of the 

classifier, and therefore require more queries to build an accurate classifier. 

The advantage of co-testing is that it has better performance than uncertainty 

based sampling. The disadvantage is that it has more constraints: the two views 

should be disjoint and each sufficient to learn a classifier. As discussed above, 

event extraction is complicated and involves several classifiers on different levels 

interacting together.  This makes it difficult to split the feature set into two views. 

In particular, the identity of the trigger will be a critical feature for any successful 

classifier.  Committee-based sampling faces similar problem as co-testing: it is 

hard to generate several classifiers that are consistent with the training set or sub-

samples of it, respectively.  
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We could do active learning at the token level – asking the oracle whether a 

specific token triggers an event – but that is not very practical.  Rather, for each 

query, we return a sentence that might contain an event to ask the oracle to 

annotate. We do so because the oracle needs to read the whole sentence to decide 

whether it is a reportable event, and annotate all its arguments. Thus, a sentence-

based sampling pool is built where each sentence is treated as a sample query.  

6.2.1 Applying Uncertainty-based Sampling 
Event extraction is a compound classification task, which involves the 

identification of arguments/roles, and the event trigger. These classifiers are 

separately trained, but not independent; results from previous classifiers are used 

as features for the following classifier, and the decision by the following classifier 

will affect the previous results (arguments confidently tagged by the argument/role 

classifier will be discarded if the trigger labeling treats it as not a event). Because 

the final classifier – the trigger classifier – takes all the considerations we 

mentioned above as input, and makes a final decision of a reportable event, we use 

its output as the probability of the event tagger. The traditional approach in 

uncertainty sampling (Lewis and Gale 1994) queries one of the samples on which 

the classifier is the least confident. In our case, the greatest uncertainty regarding 

the presence of an event corresponds to the trigger probability closest to 0.5. We 

treat the uncertainty of the sentence as the maximum of the uncertainties of the 

constituent words (i.e., the uncertainty attributable to the word with probability 

closest to 0.5):  
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€ 

e_ Info(Si) =   1− min
w j ∈Si

0.5 − prob_e(w j )  

where prob_e(wj) is the trigger probability of the word wj in Si , as returned by 

the event tagger. 

6.2.2 Problems with Uncertainty-based Sampling 
However, the results of uncertainty-based sampling are somewhat disappointing 

(see Figure 6.2, Figure 6.3 and Figure 6.4). It performs quite well at first: within a 

few iterations, trigger labeling (event detection) quickly achieves a performance (F 

score) of 65%, but beyond that point the gain is very slow. At this point there is 

still a 7% gap between its performance and that of a classifier trained on the whole 

sampling pool.  

Why does uncertainty-based AL perform this way? The event tagger depends 

primarily on the particular trigger and secondarily on its local structure, for 

example, the potential arguments in the immediate vicinity of the trigger and the 

dependency paths between them. Such information is effective at identifying the 

trigger and arguments, but is responsive only to particular words and patterns. 

Triggers and structures that have not been seen in the training data will be assigned 

uniformly low probabilities.  When trained on the whole ACE 2005 corpus (in a 

supervised training scenario) this is appropriate behavior:  we don’t want to report 

an event in testing if we haven’t seen the trigger before.19  However, for active 

learning, the inability to differentiate among potential new triggers and local 

	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  
19 Unlike some other tasks such as named entity and part-of-speech tagging, local contextual 

clues by themselves are generally not strong enough to reliably tag an event. 
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structures is critical.  Only a few words ever serve as possible triggers for a 

specific event type. For the Attack event, only 2.0% of the words in the ACE 

training data ever act as an event trigger. The uncertainty of the event tagger, by 

itself, does not provide useful guidance regarding possible additional triggers the 

user should be asked about, and the system might query a lot of irrelevant 

sentences with unseen words before a sentence with a new trigger is found.  

We can see this as an instance of a more general problem.  Our goal in AL is to 

select for labeling those data points that are most likely to improve the accuracy of 

the model.  Methods like uncertainty-based sampling are heuristics towards that 

end, but are not always effective; their success depends on characteristics of the 

classifier and the feature space.  For event extraction, the classifier is most likely to 

benefit from finding new, frequently-occurring triggers. We need a way of 

identifying likely candidates. 

Furthermore, we note that – while the final trigger classifier that we train from 

the labeled data must operate at the token level – we will be presenting the user 

with a sentence to label, so it is sufficient for the classifier we use for AL to 

operate at the sentence level. 

6.2.3 Another View from Sentential Scope 
Can we find a classifier that suits the needs of our active learner by identifying 

sentences which are likely to contain an event? A simple (bag-of-words) classifier 

based on the words in the sentence can do quite well at this task.  For example, a 

sentence with “troops”, “victim”, “bloody” and “soldier” might be more likely to 

contain an Attack event, even if these words might not be elements of the event. 
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These bag-of-words features are not particularly helpful for the original task of 

identifying an event (trigger and arguments) – they don’t pinpoint a particular 

word as the trigger.  But that’s not a problem if the data selection for AL is 

operating at a coarser level.20 

6.2.4 Pseudo Co-Testing 
The sentence-level bag-of-words classifier is far from perfect – the predictions 

at the sentence level are somewhat noisy. But considering that only 6.5% of the 

sentences in the ACE data contain an Attack event, returning a possibly relevant 

sentence is much more useful than returning a totally irrelevant sentence. If a 

sentence S in the sample pool shares many words with another sentence in the 

training data known to contain an event, and the event tagger does not find a 

trigger word in S, there is a good chance that S contains a new (previously unseen) 

trigger word and new local structure, because the two sentences may be describing 

the same event, but using different verbs and word sequences.  

Thus, we apply a pseudo co-testing algorithm with one view from an event 

tagger based on local information, and another view, which aimed to solve an 

approximate task: whether there is a possible event in a sentence.  

	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  
20 Note that some active learners for tasks such as named entities and part-of-speech which 

also train token-level annotators choose to present data to the user at the sentence level, 

because it is more convenient and efficient for the user. These taggers could select data at the 

token level  using two views based on the identity of a token and its immediate context. We 

share these user considerations, but in addition selecting data at the sentence level enables us 

to create effective complementary views for event extraction not available at a finer (token) 

level. 
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We call this algorithm “pseudo co-testing” because one of the views is not 

sufficient to solve the target problem, but is sufficient to solve a subproblem at a 

coarser granularity, in contrast to traditional co-testing. People might argue that 

when a pseudo contention point is found in this algorithm, it means that at least 

one of the classifiers is wrong, but we do not know (until we query the oracle) 

which one. If it is the event tagger, this sample is informative for the event tagger 

and adding this sample will improve the performance; if it is the sentence 

classifier, it is not guaranteed that this sample is informative for the event tagger. 

However, since the updated sentence classifier will serve to select subsequent 

queries, samples informative for the sentence classifier should accelerate 

subsequent active learning. Furthermore, the event tagger and the sentence 

classifier each have their own advantages in finding an event to query. The event 

tagger prefers sentences with already-known local patterns, like a trigger and its 

arguments, although the overall sentence (the choice of words and wider structure) 

might be very different. The sentence classifier prefers sentences sharing the same 

words, but which may have different local structures. Together they offer the 

potential for finding new triggers that do not appear in the existing training data 

(via the sentence classifier) and then acquiring event and non-event exemplars of 

these triggers (through the event tagger). 

In pseudo co-testing, we use the probabilities from the event tagger and 

sentence classifier to build a contention set consisting of those sentences where the 

event tagger and sentential event recognizer make different predictions. Among 

these sentences, we assume that the larger the margin between the event tagger and 



	   77	  

sentential event recognizer, the less certain the sample is. So, instead of randomly 

choosing samples from the contention set, we order the samples by their margins 

between the event tagger and sentential event recognizer, and pick the ones with 

largest margin: 

co_ Info(Si ) = Max
wj∈Si&isCP

prob_ e(wj )− prob_ s(Si )  

where prob_s(Si) is the probability from the sentence classifier; while 

prob_e(wj) is the trigger probability from the event tagger for the word wj in 

sentence Si, and wj is a contention point (CP) where the event tagger’s prediction is 

opposite that of the sentence classifier. 

6.3 Multi-criteria-based AL 

Normally active learning only considers the informativeness of the sample. In 

uncertainty-based query, informativeness is represented by the least confident 

sample; in committee-based querying, it is represented by the samples on which 

the committee vote is the most equally split; in co-testing, it is represented by the 

contention sample. Shen et al. (2004) pointed out that we should maximize the 

contribution of the selected instances based on multiple criteria besides 

informativeness. For example, the representativeness and diversity of the sentence 

should also be considered. In this way, we not only consider whether the current 

model contains enough information to classify this sentence (as containing an 

event), but also consider the distribution of this sample in the whole sampling pool 
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(representativeness), and moreover, insure that we select different kind of samples 

in a batch to make the selection more diverse (diversity).  

6.3.1 Features used in Similarity of Samples 
To evaluate the representativeness and diversity, we first need to calculate the 

similarity between two samples, in our case, two sentences. In general, a sentence 

will be represented as a vector of features 

€ 

S1 = { f11, f12, f13,....., f1n}  and the 

similarity is calculated based on the feature vectors of the two sentences. Thus, the 

essential problem becomes how to build the feature vector for a sentence. Since 

there are two classifiers in the pseudo co-testing, we use features from both 

classifiers, and measure the similarity using a cosine measure, following Shen et al 

(2004): 

€ 

Sim(S1,S2) =

sim( f i, f j )
f j ∈S2

∑
fi∈S1

∑

| S1 | | S2 |
 

where 

€ 

sim( f i, f j ) is 1 when 

€ 

fi and 

€ 

f j  are the same,  otherwise 0. 

6.3.2 Representativeness 
A few prior studies have considered this selection criterion (McCallum and 

Nigam 1998; Tang et al. 2002; Shen et al. 2004). The representativeness of a 

sample can be evaluated based on how many samples are similar to this sample. 

Adding samples which are more representative to the training set will have an 

effect on a larger number of unlabeled samples.  

For every sentence in the sampling pool, we measure its representativeness 

based on its average similarity to other sentences in the sampling pool: 



	   79	  

€ 

Represent(Si) =

sim(Si,S j )
S j ∈P,i≠ j
∑

|P |−1
 

where P is the current sampling pool. In this way, we will filter out the samples 

that are rare in the whole sampling pool, and focus our effort on the samples that 

appear more frequently in the whole corpus. 

In addition to favoring the most informative example, we also prefer the most 

representative example. To combine scores from informativeness and 

representativeness, we followed Shen et al (2004)’s metric: 

Score(Si ) = λ ⋅co_ Info(Si )+ (1−λ)Represent(Si )  

where the relative importance of each criterion is determined by the parameter 

λ ( 10 ≤≤ λ ). In our experiment, λ  is set to 0.7. 

6.3.3 Diversity 
The role of the diversity criterion is to maximize the training utility of a batch 

of samples. As we add a batch of samples into the training data in one iteration (for 

efficiency in updating the model), we want to make sure we provide various types 

of sentences, which provide the most information as a whole, and avoid selecting 

very similar sentences for a single batch. To this end, after we rank the sentences 

in the sampling pool, based on the different strategies mentioned above, we skip 

over any sentence whose similarity to one already selected in the same batch 

exceeds a threshold (see Figure 6.1).  

The diversity metric is involved in selecting a batch of instances, as follows: 
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Figure 6.1 - Diversity criterion in batch-based active learning  
	  

6.4 Experiments 

In the following sections, we compare the performance of the query strategies 

mentioned above – uncertainty-based query (Uncertainty), pseudo co-testing (pCT), 

and multi-criteria pseudo co-testing (multi_pCT). We employ a random sampling 

(Random) method as a baseline, where samples are selected randomly to add to the 

training data. Also, to assess the benefit of active learning, we report the 

performance from the event tagger trained on the entire ACE2005 data except for 

the test set (Full_Corpus). 

We use the ACE 2005 training corpus, which contains in total 598 annotated 

documents, to simulate the active learning process. For evaluation, we conduct a 

blind test on a set of 54 randomly chosen documents. For each active learning 

strategy, we make 4 runs and use the average scores as our final results. For each 

run, 10 documents are randomly chosen as the initial training data, and the rest 

(534 documents) are used to build the sampling pool. Overall, the average initial 



	   81	  

training set contains 369 sentences, and the sampling pool contains an average of 

12074 sentences.  

A Maxent model based on bag-of-words features serves as the sentence 

classifier. To reduce data sparseness, all inflected words are changed to their 

lemma form (e.g. “attackers”→“attacker”). A list of stop words is also applied. 

In each iteration, we picked 50 sample sentences at the top of the ranked list 

based on different query strategies. To simulate the user queries, annotations 

extracted from the key annotations are returned as user feedback, and added into 

the training data.  

The performances (F-measure) of different strategies are evaluated based on 

three metrics: argument/role labeling (Figure 6.2, Figure 6.3) and trigger labeling 

(Figure 6.4). 

 

 
 

Figure 6.2 - Performance (F-Measure) of argument labeling 
	  



	   82	  

 
 

Figure 6.3 - Performance (F-Measure) of role labeling  
	  

Uncertainty-based querying (Uncertainty) yields poorer results than the other 

active learning strategies, because of the event tagger’s relatively rigid matching 

procedure. Thus, it lacks the ability to recognize new potential triggers or patterns. 

For example, if we have pattern A which is very similar to some event-bearing 

patterns in the training data, and pattern B which is quite different from any pattern 

in the training data, the event tagger will treat them the same. However, the 

sentence classifier provides more graded matching, and gives the sentence 

containing pattern A higher score because they share a lot of words. Thus, the 

pseudo co-testing (pCT) would give a higher score to pattern A, and achieve better 

performance. Also, we observed that multi-criteria pseudo co-testing (multi_pCT) 

performs best in all three evaluations. 
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Figure 6.4 - Performance (F-Measure) of trigger labeling 
	  

The differences between the approaches are particularly marked for trigger 

labeling after just a few iterations. Consider how much data must be annotated to 

get to 95% of full corpus score for trigger labeling (F-Measure 67.5%): multi_pCT 

only takes 7 iterations; pCT takes 17 iterations; Uncertainty takes 38 iterations. In 

other words, 5.8%, 9.8%, 18.2% of the whole corpus needs to be annotated to 

reach the same performance. Thus, using pCT is almost twice as fast as 

Uncertainty to reach a reasonable performance, while multi_pCT will shorten this 

process by half again. The benefits of better query selection are clearest for the 

first few batches of queries, which may be the range of greatest practical import for 

developers wanting to quickly add new event types. 

Overall, we observe that pseudo co-testing performs better on all three 

evaluation metrics than uncertainty-based active learning. Uncertainty-based active 

learning requires more than 100 iterations before it reaches the level of 
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performance on all three measures achieved by the supervised system, trained on 

the entire corpus (Full_Corpus). pCT takes 41 iterations to reach this level. At this 

point, there are in total 369+2050 = 2419 sentences in the training data; this 

represents a reduction in labor over sequential annotation of 80.6%. Applying the 

multi-criteria-based strategy (multi_pCT), we can reach this point even earlier, in 

iteration 23, where the labor is reduced by 87.8%21. 

Chapter 7  

Conclusion 

In this thesis, we analyzed the effect of wider scope features on event 

extraction. We mainly focused on using wider scope features to improve 

supervised event extraction systems. The first feature we explored is the 

supervised cross-event feature, which significantly improves the performance of a 

closed evaluation on ACE05 data. Then we explored the unsupervised topic 

features, which are especially useful when the testing data is a super-set of the 

training data, and the statistics from the training data is not accurate. Moreover, we 

	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  
21 We observe that the AL can perform better than training on the whole corpus; we believe 

that this is a result of AL selecting more positive training data. After 50 iterations of multi-

pcT, 31.4% of the selected sentences have positive Attack examples, whereas only 6.1% of the 

entire corpus has such positive examples. Separate experiments suggest that using a corpus 

richer in positive examples can produce a small improvement in performance. 
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investigated how the wider scope can help semi-supervised and active learning 

approaches.  

From the above studies, we can conclude that information from wider scope can 

aid event extraction based on local features, including different learning methods: 

supervised, semi-supervised, or active learning. Also, there are different ways to 

extract wider scope information from different levels, which need to be further 

explored. For example, can the different features be combined together, and which 

combination is the best? Can wider scope features help other NLP tasks, like 

relation extraction, named entity extraction, etc.? 
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