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Abstract—Data clouds are newly emerging environments in
which commercial providers manage large volumes of data with
individual quality of service (QoS) guarantees per customer.
These guarantees mainly include keeping several replicas of each
data item in different distributed data centers for availability
purposes. However, as the cost of maintaining several updateable
replicas per data object is very high, cloud providers rather offer
only a limited number of synchronously updated replicas (i.e.,
replicas that are always up-to-date) together with several read-
only replicas that are updated in a lazy way and thus might hold
stale data. QoS agreements may also include the maintenance
of dedicated archives (copies of data which are frozen at some
point in time). Stale data allow cloud providers to offer a variety
of read operations with different semantics, e.g., read the most
recent data, read data not older than / not younger than some
timestamp t, or read data produced between t1 and t2, or read
data exactly as of t. These read operations can be supported by a
read-only site using a stale replica. In this paper we present our
approach to cloud data management, based on a recent protocol
for data grids. We discuss in detail how the refresh of individual
replicas is provided in a completely distributed way. Finally, we
present the results of a performance evaluation in a data cloud
setting.
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I. INTRODUCTION

Over the last years, cloud-based computing has become a
very popular paradigm in industry [1]. It allows companies
to rent hardware and/or software resources and helps them
avoid major investments that would be needed for building
and maintaining computing centers in-house as their ICT
infrastructure can be partially or even completely outsourced
to providers of cloud services. These cloud providers usually
maintain different distributed data centers and offer (shares of)
the resources therein according to dedicated quality-of-service
(QoS) guarantees per customer. Typically, these guarantees
include elastic behavior and a high degree of availability
(replication across different data centers). Current approaches
in cloud settings that deal with concurrent updates of replicas
at different sites either use well-established protocols with
blocking behavior (strict two-phase locking combined with
two-phase commit), or relax ACID properties to increase
the overall performance while reducing the costs of replica
maintenance (e.g., PNUTS [8]). In the latter case, serializable
executions are avoided and clients access stale data – but
without any guarantees on the data staleness / freshness.

∗ The work has been done while the first author worked at the Department
of Computer Science, University of Basel.

A more flexible approach is to offer only a limited number
of synchronously updated replicas (always up-to-date) and
several read-only replicas that are lazily updated (holding stale
data). In particular, keeping several replicas of a data item with
different levels of freshness can be highly beneficial in a data
cloud since freshness can be exploited for replica selection.
From the point of view of cloud providers, stale read-only
replicas allow to trade latency and access time for freshness
and make profitable use of available resources.

Consider the following application. Orinoco, a large global
online bookseller, uses cloud resources to store their business-
related data in the cloud. A contract with the cloud provider
specifies the degree of availability of the data and the al-
lowed access latency for clients independent of their loca-
tion. Clients’ data accesses include browsing book reviews,
checking the availability of books, ordering books using credit
cards, or tracking the progress of an order. Some of these reads
demand the most up-to-date data while others can live with
outdated data (e.g., the exact number of copies of a book in
stock is not relevant; the number as of a few minutes ago
is sufficient for most customers). Rather than keeping the
complete history (versions) of data, and in order to fulfill the
QoS agreements with Orinoco with limited resources, only a
few updateable replicas are kept at different data centers and
managed such that they can serve all operations that need to
access up-to-date data. In addition, several read-only replicas
are provided with as-fresh-as-possible (but not necessarily
the most up-to-date) data for serving requests demanding
moderately stale data (e.g., availability of books). Additional
replicas which are less frequently updated are kept for read
operations that need older data (e.g., time series). Assuming
that these operations are less frequent, only few old replicas
with coarsely distributed, low freshness levels have to be kept.
This is a tradeoff between the potentially necessary and costly
refresh operations, and the cost of keeping a larger number of
replicas. In addition, as old replicas might also be eventually
subject to refresh operations, some selected versions might be
archived.

In our previous work we have developed the Re:GRIDiT
system which proposes new protocols for the provably correct
synchronization of concurrent updates to different updateable
replicas in a data grid and their subsequent propagation to
read-only replicas in a completely distributed way. For this, we
employ a combination of eager and lazy replication protocols
that take into account different levels of freshness. At the same
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time, Re:GRIDiT takes into account different semantics of
data: mutable data can be subject to updates; immutable data,
in turn, cannot be changed once created, but may be under
version control. Furthermore, new replicas (updateable or read-
only) may be created and/or removed on demand, according to
current load and freshness metrics. The Re:GRIDiT protocols
have described the details of distributed synchronization of
updates [24], [25] and dynamic reconfigurations [23]. Data
grids have the potential to provide valuable support for cloud
data management problems and may act as starting point for
novel data cloud infrastructures [22]. In this paper we take
one step further and present Re:FRESHiT, a novel protocol
capable of handling the propagation of updates to read-only
nodes and the freshness-aware routing of requests in data
clouds. Re:FRESHiT’s unique features include the possibility
to access up-to-date data as well as data with any freshness
level – without keeping a complete history of all versions
that have been created. Read-only sites are organized in an
overlay tree structure, based on freshness. This paper discusses
in detail how the trees are built and maintained, and how the
refresh of replicas is provided in a completely distributed way.
Finally, we present the results of a performance evaluation in
a data cloud setting.

The remainder of the paper is organized as follows. In
Section II we explain our system model. Section III gives
details of the Re:FRESHiT protocol for freshness-aware read-
only access to data, and Section IV presents the experiments
that evaluate the performance of our protocol. Section V
discusses related work and Section VI concludes.

II. SYSTEM MODEL

The Re:GRIDiT suite of protocols targets problematic as-
pects of infrastructures that deal with huge data volumes.
Our first focus has been on the complex and general case
of distributed update transactions on replicated data. We have
devised a protocol for the correct synchronization of concur-
rent updates to different updateable replicas that ensures their
subsequent propagation to read-only replicas in a completely
distributed way [24], [25]. This approach has been enhanced
with efficient algorithms for selecting optimal replica place-
ment locations so that the replica load is balanced [23].

The combination of these two protocols dictates how update
sites behave and from a user’s point of view the clients always
access the most up-to-date data. We now refine this approach
and introduce the Re:FRESHiT protocol, which allows to
effectively trade freshness for performance and addresses
freshness issues, without losing consistency.

A. Overview of the System Model

We assume Re:FRESHiT to be part of the middleware
present on each site. The sites hold data objects, replicated
in the network, and operations through which the data objects
can be accessed. Depending on the access to data, the sites are
divided between update and read-only sites [3], [17]. Read-
only sites only allow read access to data. Updates occur on the
update sites and are synchronized among the update sites and
finally propagated to the read-only sites. We assume an eager

replication among update sites and in addition we apply lazy
replication mechanisms between update and read-only sites
that take into account different levels of freshness.

A data object can be stored in a file on the local file system,
or inside a database on the local database management sys-
tem. Re:FRESHiT is capable of supporting arbitrary physical
layouts ranging from full replication at the granularity of com-
plete databases to partial replication. The partial replication
scheme does not require all data to be replicated on each site.
Smaller subsets of the entire set of data are replicated on the
different sites — sites may contain different partitions which
may even be overlapping. We refer to sites in the network as
update and read-only sites. In theory, a site can be an update
site for some data and read-only site for other data. In practice,
for performance reasons, update sites should be considered
updateable for all data at those sites (although our replication
protocol makes no assumption in this respect).

Data are partially replicated in the network and updated
accordingly as user update transactions are propagated through
the network (eager synchronization between update sites and
lazy propagation to read-only sites). We call these data active
replicas. In addition, each site holds several archived copies of
data used to support “as of” queries (called archived replicas).
We make no assumptions about the archive creation (mainly
motivated by legal reasons); we take for granted that sites hold
one to several archived replicas in addition to active replicas.

Each site offers a set of semantically rich operations [21]
which can be invoked within transactions. We consider the
following update operations (shortly referred to as updates)
available through the interface of update sites: insert, delete
and replace. We consider specific read operations that are
supported by read-only sites (see Section III).

With respect to transactions submitted by clients we dis-
tinguish between read-only and update transactions [3]. A
read-only transaction only consists of read operations. Read
operations within a single read-only transaction may run at
several different read-only sites. An update transaction con-
tains at least one update operation. Propagation transactions
are performed during the idle time of a site in order to propa-
gate changes to the read-only replicas. They are continuously
scheduled as long as there is no running read or refresh
transaction. Copies at read-only sites are kept as up-to-date as
possible such that the work of refresh transactions (whenever
needed) is reduced and the overall performance is increased.
Decoupled refresh transactions propagate updates through the
system on demand. A refresh transaction aggregates one or
several propagation transactions into a single bulk transaction
and is comprised of update operations. A refresh transaction
is processed when a read-only transaction requests a version
that is younger than the version stored at the read-only site.
The refresh requires the updates to be propagated from the
update site and may act on either active or archived replicas.

Update sites may have any number of read-only children
to which updates are propagated. Read-only sites may further
propagate their changes to other read-only sites, thus maintain-
ing different levels of freshness in the system. We introduce
the following naming convention, which defines a virtual tree
structure (defined per data object). Since there are many update
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Fig. 1. System Model Architecture at the Middleware Level.

sites per data, the result is a forest of trees (see Figure 1).
• Level 1 sites are update sites where data are synchronized

(eager update everywhere replication). We assume a clock
synchronization, needed for the calculation of freshness.

• Level 2 sites are read-only sites where data are kept as up-
to-date as possible. There is a 1-to-n relationship between
Level 1 and Level 2 sites.

• Level 3 sites are read-only sites where data are not fre-
quently updated. There is an 1-to-n relationship between
Level 2 and Level 3 sites. Level 3 sites are optional,
but provide a definite advantage if the number of read-
only sites in the system is considerably bigger than the
number of update sites (trade-off between consistency and
performance). Level 3 read-only sites may themselves
be hierarchically structured, forming tree structures of
different depths.

B. Distributed Repositories

Each site uses a set of tools to obtain partial, sometimes
even out-dated information about the state of the system.
We introduce to following components that facilitate the
scheduling of read-only transactions and replica management
decision. The components are not centrally materialized, but
contain information that is globally distributed and replicated:

Replica catalog: used to determine the available replicas
in the network. Update replicas contain distributed replicated
information about the other update sites in the network and
about their corresponding tree(s). In order to minimize the ex-
change of information and yet ensure that any update site can
eventually reach any other update site (for example, for update
transactions that include two or more data objects), update
replicas need be aware of only one update site for each data
object in the network. Read-only sites are aware of their parent
and children in the tree. We replicate this information during
replica synchronization to reduce communication overhead.

Freshness repository: used to collect the freshness of
data periodically or on-demand. The freshness emphasizes the
divergence of a replica from the up-to-date copy. Update sites
will always have the highest freshness, while the freshness of
the read-only sites will measure the staleness of their data. The
sites at the leaves of the tree have the stalest data. Irrespective
of their level, sites are aware of the freshness levels of the
sites to which they propagate changes (see Figure 1).

Load repository: used to determine an approximate load
information. This information can then be used to balance
the load while routing read-only transactions to the sites or
for the replica selection algorithm [23]. Update sites receive
information regarding the load levels of other update sites
and their subordinate children during replica synchronization.
Read-only sites are only aware of their own load levels.

Propagation queues: used to enqueue changes to be ap-
plied to subordinate sites in the tree. The changes are bulked
into propagation transactions and applied to the sites whenever
possible. The propagation transactions execute changes from
the local propagation queues in order. The queues are contin-
uously updated as new updates arrive at the update sites.

C. Freshness Metrics

Freshness measures are closely related to the notion of
coherence for which several ideas have been proposed in the
literature [7], [14], [17]. We use the notions of absolute and
delay freshness to characterize our freshness function.

Definition 2.1: (Absolute Freshness) The absolute fresh-
ness of a data object d is defined by means of the timestamp
τ(d) of the last committed update transaction that has updated
d. These timestamps can be used by the clients in order to
define their freshness requirements. A site s has a fresh copy
of the data object d if the site timestamp associated to d, τs(d)
is younger than the client timestamp requested for d, τc(d),
i.e. if the following condition holds: τs(d) < τc(d). 2

Using the absolute freshness implies that the younger the
timestamp, the fresher the data.

Definition 2.2: (Delay Freshness) A delay freshness de-
fines how late in time a certain read-only site is compared to
an update site that holds a copy of the same data object. We
define τ(d) to be the commit time of the last refresh transaction
that updates a copy of a data object d on a read-only site, and
τ(d0) the commit time of the most recent update transaction
on the update site that updates d. Then the freshness function
is defined as f(d) = τ(d)

τ(d0)
, with f(d) ∈ [0, 1]. 2

Each update site assigns to every committed transactions
a unique timestamp greater than all timestamps assigned to
previously committed transactions. Note that since we assume
some clock synchronization between the update sites, clock
skew can be ignored. Together with load information, each site
propagates the freshness timestamps (of the last propagated
update from the update site), such that all sites are aware of
the load and freshness of their predecessors and/or successors.

A read-only site s is said to hold a copy of a data object
d which fulfills a freshness level required by a client c, if
τs(d) < τc(d). Refresh transactions are used to bring all sites
which hold data objects required by the client transaction to
the same freshness level by executing a sequence of updates.

The freshness function is monotonically decreasing in the
tree, from root to leaves. The further down the path in
the tree, the less accurate the freshness function. This is
an important observation upon which we base our routing
strategy. Read-only sites are able to determine using their own
local knowledge whether the current version of the data can
be used to serve a user request or if this needs to be routed
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to a predecessor / successor in the tree. In other words, read-
only sites are able to autonomously decide whether or not
they satisfy a required freshness level and where to route the
request, if necessary.

III. RE:FRESHIT PROTOCOL

Re:FRESHiT uses decoupled refresh transactions to propa-
gate updates through the system on-demand, in order to bring
read-only replicas to the freshness level specified by the read-
only transactions [3], [17]. Re:FRESHiT exploits the sites’
idle time by continuously scheduling propagation transactions
as update transactions at the update sites commit, as long as
there is no running read or refresh transaction.

A. Freshness-aware Read Access

The update sites are eagerly synchronized to produce a
globally serializable schedule (although no central scheduler
exists and thus no schedule is materialized in the system)
[24]. Moreover, the update transactions’ serialization order
is their commit order. Each propagation transaction inherits
the timestamp of the committed update transaction and this
timestamp is propagates to all read-only sites. The extension
required by Re:FRESHiT to support freshness without losing
consistency are summarized in Algorithm 3.1.

Algorithm 3.1: Scheduling Thread
(1) begin
(2) while true do
(3) // user request read(d, t1, t2)
(4) // for data object d with t1 and t2 timestamps
(5) if (d @ locally)
(6) then
(7) // find a site sout from the replica catalog
(8) // which contains d
(9) route request to sout

(10) else
(11) case: t1 is null and t2 is null
(12) // read the latest data
(13) readLatestData()
(14) case: t1 is null
(15) // read data not older than t2
(16) // transform timestamp into freshness;
(17) // cf. Def. 2.2
(18) transform(t2) = fclient = t2(d)

τ(d0)

(19) readNotOlderThan(fclient)
(20) case: t2 is null
(21) // read data not younger than t1
(22) // transform timestamp into freshness;
(23) // cf. Def. 2.2
(24) transform(t1) = fclient = t1(d)

τ(d0)

(25) readNotOlderThan(fclient)
(26) case: none is null
(27) // read data between t1 and t2
(28) readBetween(t1, t2)
(29) fi
(30) od
(31) end

Algorithm 3.2: Read Latest Data
(1) funct readLatestData(fclient) ≡
(2) readNotOlderThan(1)
(3) .

Algorithm 3.3: Read Not Older Than
(1) funct readNotOlderThan(fclient) ≡
(2) if f(d) >= fclient(d) ∧ s /∈ overload
(3) then
(4) execute read
(5) else f(d) >= fclient(d) ∧ s ∈ overload
(6) // find a child which is best replica
(7) if child /∈ overload ∧ fchild(d) >= fclient(d)
(8) then
(9) route request to child

(10) else
(11) //no site to route
(12) snew = createNewReplica(d, f(d))
(13) route request to snew
(14) fi
(15) else f(d) < fclient(d)
(16) route request to parent
(17) if (@ parent ∨ parent ∈ overload)
(18) //no site to route
(19) then
(20) refresh(d)
(21) rotate(tree)
(22) fi
(23) fi
(24) .

We use freshness locks [3], [17] in order to prevent propaga-
tion and/or refresh transactions to update a data object above
the freshness level required by a running read-only transaction.
A freshness lock placed on a data object d at a site s with an
associated absolute freshness, required by a running read-only
transaction, will not allow an update operation on the data
object d at site s to bring it to a younger absolute freshness. As
proven in [3], the freshness locks ensure one-copy serializable
executions. We build on the same assumptions, and thus
guarantee consistent access to data. Defresh transactions act
on archived replicas and do not require freshness locks.

We allow users to directly query any read-only site in
the system and to specify freshness requirements as QoS
constraints. However, these requirements might be implicitly
changed by the middleware if none of the objects involved in
the transaction satisfies the required freshness level.

We foresee the following situations which may occur during
the lifetime of a read-only site, s:

1. Read requests for data above a certain freshness
level: A read-only transaction Tj submits a read operation
rj(d, null, t2) to a read-only site s that stores an active replica
of d. The following rules apply:

• If fs(d) ≥ fTj
(d) and s is not in an overload situation,

then the read operation is executed (for example, Figure 2
(b)). If fs(d) ≥ fTj

(d) and s is in an overload situation,
then the read operation is routed downward in the tree
until the best site sl is found which fulfills the condition
fsl

(d) ≥ fTj
(d) and sl is not in an overload situation

(for example, Figure 2 (c)). We use the definition of best
replica previously introduced in [23]. Accordingly, the
best site fulfills the required freshness level and is not in
an overload situation. Very importantly, the query routing
is possible as each site knows the freshness of its children.
If there is no site among the transitive children of s which
is not in an overload situation where the request can be
routed, a new replica of d is created. The details on replica
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Fig. 2. Query Routing for Read-Only Sites.

creation are presented in Section III-B.
• If fs(d) < fTj

(d), then the read operation is routed
upward in the tree until the best site sm is found among
the (transitive) parents of s which fulfills the condition
fsm(d) ≥ fTj (d) and sm is not in an overload situation
(for example, Figure 2 (a)). If no such site is found, s
requests a refresh transaction until fs(d) ≥ fTj

(d). The
read operation can be processed at s after the refresh
transaction has been executed. The dynamic tree rotation,
associated with a refresh, is detailed in Subsection III-C.

2. Read requests for data below a certain freshness
level: A read-only transaction Tj submits a read operation
rj(d, t1, null) to a read-only site s that stores an active replica
of d. The following rules apply:

• If fs(d) ≤ fTj (d) and s is not in an overload situation,
then the read operation is executed. If fs(d) ≥ fTj

(d) or
s is in an overload situation, then the read operation is
routed downward in the tree until the best site sl is found
which fulfills the condition fsl

(d) ≤ fTj (d) and sl is not
in an overload situation.

3. Read requests for data that are not replicated locally: A
read-only transaction Tj submits a read operation rj(d) to a
read-only site s that does not store a copy of d. Then the read
operation is re-routed to a site in the tree that contains a copy
of that data object, from the replica repository.

4. No read requests: In this case only propagation transac-
tions can occur at s. Propagation transactions execute changes
from the local propagation queues (where updates propagated
downwards from the update sits are stored). S delays a
propagation transaction P until all propagation transactions
with smaller freshness levels than P have committed at s.
A propagation transaction is dropped if the site has already
seen and processed a propagation transaction with the same
or higher freshness level or a refresh transaction.

Algorithm 3.4: Create New Replica
(1) funct createNewReplica(x, f(x)) ≡
(2) // this happens if local site and all children are in overload
(3) // determine sites in the geographic neighborhood, S∗

(4) for s ∈ S∗ do
(5) if s /∈ overload
(6) then
(7) copy x to s
(8) exit
(9) fi

(10) od
(11) .

Algorithm 3.5: Read Between
(1) funct readBetween(t1, t2) ≡
(2) // find x, the closest local archive or replica with tx ≤ t2
(3) if (t1 <= tx <= t2)
(4) then
(5) execute read
(6) else tx < t1
(7) refresh(d) until t1 <= tx <= t2
(8) rotate(tree)
(9) else (no local archive or replica)

(10) // request archive or replica y in the tree
(11) // with (t1 ≤ ty ≤ t2)
(12) if (sremote has y)
(13) then
(14) // route upwards or downwards
(15) route request to sremote
(16) fi
(17) else (no remote archive or replica)
(18) // notify user that archive or replica does not exist
(19) return d with tx(d) closest to tclient(d)
(20) fi
(21) .

B. Tree Dynamics

As mentioned in Section II the virtual trees are created
per data object basis. In order to create a tree, we require
a minimum number of initial update replicas of a data object
(for example, at least three) that are used to bootstrap the tree
and a set of fixed IP addresses of the replicas. These initial IP
addresses point to (some) sites in the system equipped with our
middleware. In the beginning, any new replica will become a
Level 2 read-only site. At later stages, new sites can enter the
replication scheme by becoming read-only sites at all levels.
If a new site s wants to join as read-only site for a data object
d, it selects a site in a tree by using the replica catalog. Let
sk be the selected site. If sk is not in an overload situation s
will join the replication scheme as its child (see Figure 3 (c)).
Otherwise, its join request is forwarded downwards in the tree,
starting from sk, until a subordinate is found which is not in an
overload situation and which will become the parent of s (see
Figure 3 (b)). Hence, depending on local load conditions, the
tree may either grow in breadth or in depth. If a leaf is reached
and no suitable site is found, a new replica will be created in
the geographic vicinity at a site which is not in an overload
situation (Algorithm 3.4). Complex selection algorithms can
be employed by monitoring user access patterns or by selecting
the sites in the geographic vicinity of s which do not hold
copies of d but data previously accessed together with d.

Continuous propagation transactions ensure that new repli-
cas will eventually hold a copy of the data object(s) of interest
with a certain freshness level. The dynamic load balancing
between the replicas presented in [23] and the dynamic tree
changes induced by refresh transactions will ensure that a site
can dynamically move up or down in the tree hierarchy and
be promoted to an update site or again demoted to a read-only
site based on user access patterns.

We rely on local information only to balance the load among
replicas. In widely distributed environments choosing the glob-
ally least loaded replica to forward requests is an impractical
task that requires continuous and complete knowledge about
the entire system. It has been mathematically proven that
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Fig. 3. Breadth vs Depth Expansion of a Tree.

having just two random choices yields a large reduction in the
maximum load over having one choice, while each additional
choice decreases the maximum load by just a constant factor
[11]. Consequently, load balancing is achieved by allowing
join requests to be addressed to any site, which chooses
between itself and its immediate subordinate(s).

C. Replica Refresh

The tree structure changes dynamically. The following ex-
amples illustrate the cases that require changes in its topology.

Consider the example in Figure 4. Assume a user query (of
the type readNotOlderThan, Algorithm 3.3) is sent to the
Level 3 read-only site 2, which contains older data (Figure
4) and is not able to service the request. It will check among
its predecessors in the tree to see if its parent is capable of
serving this request. If no site is found (see Figure 4 (a)), site
2 would request a refresh transaction and it will be updated
with the most up-to-date data from the update site (site 0),
becoming the freshest read-only site in the path. Leaving it in
the current position in the tree would violate the monotony of
the freshness. Consequently, site 2 becomes a direct child of
site 0 and a Level 2 site, by rotating the tree structure in order
to preserve the monotony of the freshness (see Figure 4 (b)).

Similarly, user queries of the type readBetween may re-
quest a refresh transaction, hence the tree structure may change
as shown in Figure 4. Therefore, propagation transactions
always follow the tree paths. Refresh transactions on the other
hand change the tree topology.

IV. EXPERIMENTAL EVALUATION

We have implemented a prototype on which we ran a series
of experiments that evaluate the performance of Re:FRESHiT.
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Fig. 5. Average Query Response Time for Different Network Topologies.

A. Experimental Setup

The evaluation has been conducted on 48 sites, and shows
the performance of Re:FRESHiT in different network topolo-
gies and different routing strategies.

Updates at the update sites are continuously propagated
to read-only sites. Hence, in addition to refresh transactions,
which occur on demand (as a consequence of user queries),
changes are bulked into propagation transactions and applied
to the sites whenever possible. We have used a ratio of con-
current update transactions to queries of 1:10. We considered
the update rate at update sites (100 updates per second) as
the unit size of bulked updates. The tests were repeated for
client requests for data with freshness levels in the following
freshness intervals: [0.5;1], [0.7;1] and [0.9;1]. The freshness
belongs to a given interval and is mapped to transaction
timestamps. Since defresh transactions are very infrequent,
their impact has not been evaluated in this paper.

We compared two network topologies in order to evaluate
the advantages of our proposed architectural structure:

• In the first setting we propose a tree structure, where sites
are classified into three levels: Level 1 update sites, Level
2 read-only sites (fresher copies) and Level 3 read-only
sites (staler copies). We call this setting Re:FRESHiT.

• In the second setting, we eliminate Level 3 sites com-
pletely. We call this setting Re:FRESHiT-FLAT1.

In the rest of the experiments, the Re:FRESHiT network
topology has been used. The next set of experiments compared
two query routing strategies:

• In the first setting we route queries according to freshness
and load. We refer to this setting as Re:FRESHiT.

• In the second setting we force requests to be processed
locally, by triggering a refresh instead of routing queries.
We refer to this setting as FORCE-Refresh.

Our third series of experiments evaluated the advantages
of tree rotation whenever refresh transactions occur. We com-
pared two refresh strategies:

• In the first setting we dynamically rotate the tree when-
ever a query that arrives at a site requires a refresh trans-
action. We refer to this general setting as Re:FRESHiT.

1This setting is conceptually equivalent to the PDBRep approach [3].
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Fig. 6. Average Query Response Time for Different Route Strategies.

• In the second setting we modify the Re:FRESHiT proto-
col to refresh the entire tree structure whenever a query
arrives at a site and cannot be serviced locally. We refer
to this setting as Re:FRESHall.

B. Re:FRESHiT Network Topology

Our first experiments show how the network topology and
the freshness requirements influence the query response time
(see Figure 5). The results show the advantages of the tree
topology versus the flat topology. By reducing the number
of Level 2 sites in comparison to Re:FRESHiT-FLAT, we
reduce the propagation time, which explains the increase in
performance. Furthermore, in a high workload, even though
propagation transactions are slower than refresh transactions,
they are still able to keep sites fresh enough for queries with
lower freshness requirements. By taking advantage of the tree
structure, queries have better chance of finding a site that
satisfies a lower degree of freshness, which can be seen by
the increase in query response time for Re:FRESHiT.

C. Re:FRESHiT Query Routing

Our second set of experiments shows how the query re-
routing and the freshness requirements influence the query re-
sponse time (see Figure 6) and the advantages of Re:FRESHiT
versus FORCE-Refresh, when processing queries with a lower
degree of freshness. By routing the queries within the tree
structure we reduce the time required by the refresh transac-
tions. Since the freshness is monotonically decreasing within
a tree, a site is able to properly route a query upwards in
the tree if the client request has a higher timestamp than the
local one, or downward in the tree for a lower timestamp. The
difference in performance is reduced for queries with a higher
freshness levels, as in this case the refresh transactions are
still needed. Re:FRESHiT shows considerable increase in the
query response time for queries with lower freshness levels.

D. Re:FRESHiT Refresh Strategies

Our third set of experiments show how the tree dy-
namic structure and the freshness requirements influence the
query response time (see Figure 7) and the advantages of
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Fig. 7. Average Query Response Time for Different Refresh Strategies.

Re:FRESHiT versus Re:FRESHall, when processing queries
with all degrees of freshness. By dynamically rotating the
tree structure we reduce the time required by the refresh
transactions, as they are applied at one site only rather than
at a subset of sites along a portion of the path. Using our
routing strategy, queries are still routed by benefiting from the
monotony of the freshness. However, by splitting a potentially
long path in the tree in several shorter paths we ensure that
data with higher freshness levels are also available and that
the re-routing of queries takes less time.

V. RELATED WORK

According to Brewer’s CAP theorem [6], Strong Consis-
tency, High Availability and Partition Tolerance are three
requirements that exist in a special relationship when it comes
to designing and deploying applications in a distributed envi-
ronment. In this work we relax the notion on consistency and
allow users to read data with different freshness levels. Previ-
ous work on lazy replication has concentrated on performance
and correctness only. As observed from the example scenario,
today’s applications have different requirements. Older work
on lazy replication like [5], [13], [15], [20] assumed that
transactions execute entirely at the initiation site, which may
not be the case in practical settings. A recent protocol for finer
grained data replication that supports freshness and lazy update
propagation for many read-only nodes has been presented in
[3]. In [2], we explain how we can adapt this protocol to the
Grid. However, this protocol suffers from a strict assumption
on the existence of a central component used to collect and
serialize the updates. In [4], several updateable replicas are
supported but a single, global replication graph is required.
This graph corresponds to a global agreement on the order of
propagating updates in the system.

Another important aspect of the work presented in this
paper relates to temporal aspects in database research. Schema
versioning [9], [10], [16] is a technique used for managing
database evolution in order to preserve versions of schema
and data during the evolution of a database. To provide the
most generality, bi-temporal databases [18], [19] can be used
to realize schema versioning, since they allow both retroactive
and proactive updates to the schema and database. However,
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there is a cost tradeoff between the flexibility of retroactive and
proactive schema changes and the cost of implementing these
mechanisms. The complexity is high because changes not only
affect the current versions of data but also the past and even
the future versions which makes the database conversion much
more complicated than for conventional snapshot databases.
By using archives we eliminate this complexity from our
approach (since archives are essentially frozen versions of the
past that are not affected by current changes). Another way to
implement this functionality is log-only temporal databases
[12]. In contrast to log-only approaches which are write-
optimized and where object retrieval can be a bottleneck, our
archiving mechanism is aimed at improving read performance.

VI. CONCLUSIONS AND OUTLOOK

A core challenge in the context of cloud computing is the
management of very large volumes of data with dedicated
service guarantees. One of the most common QoS guarantees
is the availability of data which requires data to be replicated
across data centers. In this paper we propose Re:FRESHiT, a
protocol that specifically addresses the problems of replication
management in data clouds. Re:FRESHiT organizes read-only
sites in virtual trees based on the sites’ freshness levels,
and introduces a clever routing mechanism for reading data,
while at the same time allowing users to specify their own
freshness requirements. Trees are automatically reorganized
after individual nodes are refreshed or when new replicas join.
For the latter, the sites’ load is taken into account. We provide
an evaluation of our replication protocol and compare it in
different settings with different network topologies and routing
strategies.

In future work, we plan to explore the benefits of trading
access time for data freshness using an economic model
that takes into account the provider’s real costs for replica
management. In addition, we will dynamically adapt the
refreshment policy of replicas to the profiles of clients in the
cloud (schedule propagation transactions less frequently for
users that often access very stale data). Another extension will
address the support for read-only transactions: read operations
will either be supported by a read-only site using a stale
replica, or by exploiting one of the locally managed archives.
In each case, depending on the timestamps specified by a
client, read operations might be served directly, might require
a refresh of a copy which is too old, or a defresh of a copy
which is too recent. For this, we plan to complement the
concept of refresh operations that raise the level of freshness
of a replica with defresh operations that conversely lower the
degree of freshness of a replica (an operation counterpart to
refresh which is introduced to allow users to even further refine
their read requests). As a consequence, also the concept of
archive replica will be extended. As old replicas might also
be eventually subject to refresh operations, selected versions
might be archived in order to limit the possibly high costs of
potential defresh operations if requested by read operations.
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