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Minimal Binary Linear Codes
Cunsheng Ding , Senior Member, IEEE, Ziling Heng , and Zhengchun Zhou

Abstract— In addition to their applications in data communi-
cation and storage, linear codes also have nice applications in
combinatorics and cryptography. Minimal linear codes, a special
type of linear codes, are preferred in secret sharing. In this
paper, a necessary and sufficient condition for a binary linear
code to be minimal is derived. This condition enables us to
obtain three infinite families of minimal binary linear codes with
wmin/wmax ≤ 1/2 from a generic construction, where wmin and
wmax, respectively, denote the minimum and maximum nonzero
weights in a code. The weight distributions of all these minimal
binary linear codes are also determined.

Index Terms— Boolean function, linear code, binary code,
minimal code, secret sharing.

I. INTRODUCTION

LET q be a prime power. Let n, k, d be positive integers.
An [n, k, d] linear code C over GF(q) is a k-dimensional

subspace of GF(q)n with minimum (Hamming) distance d . Let
Ai denote the number of codewords with Hamming weight i in
a code C of length n. The weight enumerator of C is defined by
1+A1z+A2z2+· · ·+Anzn . The sequence (1, A1, A2, · · · , An)
is called the weight distribution of the code C. A code C is
said to be a t-weight code if the number of nonzero Ai in the
sequence (A1, A2, · · · , An) is equal to t .

The support of a vector v ∈ GF(q)n , denoted by Suppt(v),
is defined by

Suppt(v) = {1 ≤ i ≤ n : vi �= 0}.
The vector v is called the characteristic vector or the incidence
vector of the set Suppt(v). A vector u ∈ GF(q)n covers a
vector v ∈ GF(q)n if Suppt(u) contains Suppt(v). We write
v � u if v is covered by u, and v ≺ u if Suppt(v) is a proper
subset of Suppt(u). By definition, the Hamming weight wt(v)
of v satisfies

wt(v) = |Suppt(v)|. (1)

A codeword u in a linear code C is said to be minimal if u
covers only the codeword au for all a ∈ GF(q), but no other
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codewords in C. A linear code C is said to be minimal if every
codeword in C is minimal.

Minimal linear codes could be decoded with the minimum
distance decoding method [1], and have applications in secret
sharing and secure two-party computation [5], [9], [10], [14],
[17], [20]. Hence, constructing minimal linear codes is an
interesting research problem. The following is a sufficient
condition for a linear code to be minimal [1].

Lemma 1 (Aschikhmin-Barg): A linear code C over GF(q)
is minimal if wmin/wmax > (q − 1)/q . Herein and hereafter,
wmin and wmax denote the minimum and maximum nonzero
Hamming weights in C, respectively.

In the literature many minimal linear codes satisfying the
condition wmin/wmax > (q − 1)/q have been reported.
However, no infinite family of minimal linear codes with
wmin/wmax ≤ (q − 1)/q was found until the recent break-
through in [8], where an infinite family of such binary codes
was discovered. The purpose of this paper is to derive a
necessary and sufficient condition for a binary linear code to be
minimal. This condition enables us to obtain three infinite fam-
ilies of minimal binary linear codes with wmin/wmax ≤ 1/2
from a generic construction. To the best of our knowledge,
only one infinite family of such minimal linear codes was
reported in the literature [8]. As a byproduct, we establish the
weight distributions of all the proposed minimal binary linear
codes. Our work is inspired by the idea of [8], though our way
of proving the minimality of binary linear codes is different.

The rest of paper is organized as follows. In Section II,
we introduce basic results on Boolean functions and
Krawtchouk polynomials which will be needed in the sequel.
In Section III, we present general results about minimal binary
linear codes, including a new sufficient and necessary condi-
tion for a binary linear code to be minimal. In Section IV, we
introduce a general construction of linear codes from Boolean
functions and use the Walsh transform of Boolean functions
to characterize minimal binary linear codes. In Section V, we
present three infinite families of minimal linear codes with
wmin/wmax ≤ 1/2 from some specific Boolean functions using
the general construction. Finally, we conclude this paper and
make some comments in Section VI.

II. PRELIMINARIES

A. Boolean Functions and Walsh Transforms

A function f from GF(2)m to GF(2) is called a Boolean
function. For a Boolean function f from GF(2)m to GF(2),
its Walsh transform is defined by

f̂ (w) =
�

x∈GF(2)m

(−1) f (x)+w·x,
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where w ∈ GF(2)m and w · x is the standard inner product of
w and x . Another related Walsh transform of f is defined by

f̃ (w) =
�

x∈GF(2)m

f (x)(−1)w·x,

where f (x) is viewed as a real-valued function taking on
only 0 and 1.

The relation between the two kinds of Walsh spectra is well
known and documented below.

Lemma 2: Let f (x) be a Boolean function on GF(2)m .
Then

f̂ (w) =
�

2m − 2 f̃ (0) if w = 0,

−2 f̃ (w) if w �= 0.
(2)

The support of a Boolean function f (x) on GF(2)m is
defined by

Suppt( f ) = {x ∈ GF(2)m : f (x) = 1}.
For simplicity, let n f = |Suppt( f )| throughout this paper.

B. Krawtchouk Polynomials and Their Properties

In this section, we introduce Krawchouk polynomials and
summarize their properties, which will be needed in subse-
quent sections. A proof of these results could be found in
[15, Ch. 2, Secs. 2 and 7].

Let m be a positive integer, and let x be a variable taking
nonnegative values. The Krawtchouk polynomial is defined by

Pk(x, m) =
k�

j=0

(−1) j
�

x

j

��
m − x

k − j

�
(3)

where 0 ≤ k ≤ m. We write Pk(x) := Pk(x, m) for simplicity
whenever there is no ambiguity. It is easily seen that

(1 + z)m−x (1 − z)x =
m�

k=0

Pk(x)zk .

Theorem 3: Let u ∈ GF(2)m with Hamming weight
wt(u) = i . Then

�

wt(v)=k

(−1)u·v = Pk(i).

The next theorem documents further basic properties of the
Krawtchouk polynomials.

Theorem 4: Let symbols and notation be as before. Then
we have the following.

•
�m

k=0

�m−k
m− j

�
Pk(x) = 2 j

�m−x
j

�
.

• Pk(i) = (−1)i Pm−k(i), 0 ≤ i ≤ m.
• Pm(k) = (−1)k .
• Pk(1) = m−2k

m

�m
k

�
.

• Pk(0) = �m
k

�
.

Theorem 5: Let symbols and notation be as before. We have

Pk(x) = (−1)k Pk(m − x).

An upper bound on the absolute value of Krawtchouk
polynomials is presented as follows.

Theorem 6: [6, Lemma 4] Let 1 ≤ k ≤ �m−1
2 � and

1 ≤ i ≤ m − 1. Then

|Pk(i)| ≤ Pk(1).

Theorem 7: [6, Lemma 1] Let i, m, k be integers such that
i, m ≥ 1 and 0 ≤ k ≤ m. Then

k�

j=0

Pj (i, m) = Pk(i − 1, m − 1).

Combining Theorems 4, 5, 6, 7 directly yields the following.
Corollary 8: Let 1 ≤ k ≤ �m−3

2 � and 2 ≤ i ≤ m − 1. Then
we have the following.

•
			
�k

j=1 Pj (i)
			 ≤ 1 + m−1−2k

m−1

�m−1
k

�
.

• �k
j=1 Pj (1) = �k

j=1
m−2 j

m

�m
j

�
.

• �k
j=1 Pj (m) = �k

j=1(−1) j
�m

j

�
.

III. MINIMAL BINARY LINEAR CODES

In this section, we will derive some general results on
minimal binary linear codes. We first prove the following.

Lemma 9: Let a ∈ GF(2)n and b ∈ GF(2)n . Then a � b if
and only if

wt(a + b) = wt(b) − wt (a). (4)

Proof: By definition, the symmetric difference of Suppt(a)
and Suppt(b) is given by

Suppt(a)�Suppt(b)

= [Suppt(a) \ Suppt(b)] ∪ [Suppt(b) \ Suppt(a)].
Note that

wt(a + b) = |Suppt(a)�Suppt(b)|.
By definition, a � b if and only if

Suppt(a) ⊆ Suppt(b),

which is equivalent to

Suppt(a)�Suppt(b) = Suppt(b) \ Suppt(a).

The desired conclusion then follows from Equation (1).
As a consequence of Lemma 9, we deduce the following.
Theorem 10: Let C ⊂ GF(2)n be a binary linear code. Then

C is minimal if and only if for each pair of distinct nonzero
codewords a and b in C,

wt(a + b) �= wt(a) − wt(b). (5)

For two-weight linear codes, we have the following simple
but useful result.

Theorem 11: Let C be a two-weight binary linear code with
length n and weights w1 and w2, where 0 < w1 < w2 < n.
Then the following statements hold.
(1) If w2 �= 2w1, then C is minimal.
(2) If C is minimal and w1 is odd, then w2 �= 2w1.

Proof: Let a and b be two codewords with weight
w1 and w2, respectively. Note that a+b is a nonzero codeword
of C. Obviously,

wt(a + b) = wt(a) + wt(b) − 2|Suppt(a) ∩ Suppt(b)|. (6)
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(1) Assume that w2 �= 2w1. If a ≺ b, then

|Suppt(a) ∩ Suppt(b)| = |Suppt(a)| = wt(a).

It then follows from Equation (6) that

wt(a + b) = wt(b) − wt(a) = w2 − w1.

Clearly, wt(a + b) �= w2. Otherwise, w1 = 0. Consequently,
wt(a + b) = w1. We then deduce that w2 = 2w1, which is
contrary to our assumption. Hence every codeword in C is
minimal.

(2) Assume that C is minimal and w1 is odd. Since
Suppt(a) ∩ Suppt(b) ⊆ Suppt(a), by Equation (6), we deduce

wt(a + b) ≥ wt(b) − wt(a).

The equality holds if and only if a ≺ b. If w2 = 2w1, then
wt(a+b) ≥ w1 which implies wt(a+b) = w1 or wt(a+b) =
w2. Due to Equation (6) and that w1 is odd, wt(a+b) = w2 is
impossible. Then wt(a+b) = wt(b)−wt(a) = w1 and a ≺ b,
which is contrary to our assumption. Hence w2 �= 2w1.

For three-weight codes, we have the following.
Theorem 12: Let C be a three-weight binary linear code

with length n and weights w1, w2 and w3, where 0 < w1 <
w2 < w3 < n. Then C is minimal provided that

w2 �= 2w1, w3 �= 2w1, w3 �= 2w2 and w3 �= w2 + w1. (7)

Proof: Suppose that

wt(a + b) + wt(b) = wt(a) (8)

for two distinct nonzero codewords a and b in C. In this case,
wt(a) �= wt(b). Otherwise, wt(a + b) = 0 and consequently,
a = b, which is contrary to our assumption that a �= b.
Note that wt(b) �= 0 and wt(a) �= 0. It then follows that
wt(a + b) < wt(a) and wt(b) < wt(a).

By (8), wt(a) cannot be w1. If wt(a) = w2, Then
wt(a + b) = wt(b) = w1. In this case, w2 = 2w1, which is
contrary to one of the conditions in (7). If wt(a) = w3, then
there are two possibilities. The first case is that wt(a + b) =
wt(b). In this case, we have either w3 = 2w1 or w3 = 2w2,
which is contrary to one of the conditions in (7). The second
case is that wt(a + b) �= wt(b). In this case, we arrive at the
conclusion that w3 = w2 + w1, which is contrary to one of
the conditions in (7).

Summarizing the conclusions in all the cases above, we see
that (8) is impossible. The desired conclusion follows from
Theorem 10.

Clearly, Lemma 1 for q = 2 is a direct consequence of
Theorem 10. It has been the tool for proving that a binary
linear code is minimal in the literature. However, it will be
shown later that the condition wmin/wmax > 1/2 is too strong.
Some binary codes are indeed minimal, but do not satisfy this
condition.

IV. A GENERAL CONSTRUCTION OF MINIMAL BINARY

LINEAR CODES FROM BOOLEAN FUNCTIONS

A. The General Construction of Binary Linear Codes From
Boolean Functions

In this section, we introduce a construction of binary
codes from Boolean functions, which was considered

in [4], [8], [18], and [19]. Though the construction is simple,
interesting codes could be obtained.

Let f (x) be a Boolean function from GF(2)m to GF(2)
such that f (0) = 0 but f (b) = 1 for at least one b ∈ GF(2)m .
We now define a linear code by

C f =
�
(u f (x) + v · x)x∈GF(2)m\{0} : u ∈ GF(2)

v ∈ GF(2)m



. (9)

The following theorem should be well known [4], [8], [18],
[19]. However, for completeness we will sketch a proof of it.

Theorem 13: The binary code C f in (9) has length 2m − 1
and dimension m + 1 if f (x) �= w · x for all w ∈ GF(2)m .
In addition, the weight distribution of C f is given by the
following multiset union:

{2m−1 + f̃ (w) : w ∈ GF(2)m \ {0}} ∪ { f̃ (0)} ∪
{2m−1 : w ∈ GF(2)m \ {0}} ∪ {0}

= {(2m − f̂ (w))/2 : w ∈ GF(2)m} ∪
{2m−1 : w ∈ GF(2)m \ {0}} ∪ {0}.

Proof: By Lemma 2,

f̂ (w) =
�

x∈GF(2)m

(−1) f (x)+w·x

=
�

2m − 2 f̃ (0) if w = 0,

−2 f̃ (w) if w �= 0.

On the other hand,

f̂ (w) =
�

x∈GF(2)m

(−1) f (x)+w·x

= 2m − 2|{x ∈ GF(2)m \ {0} : f (x) + w · x = 1}|.
Combining the two equations above and the definition of the
Hamming weight of a codeword yields the desired conclusion
on the weight distribution. Since f is not a linear function,
the dimension of the code C f must be m + 1.

Let f (x) be a Boolean function from GF(2m) to GF(2)
such that f (0) = 0 but f (b) = 1 for at least one b ∈ GF(2m).
We now define a linear code by

C f =
�
(u f (x) + Tr(vx))x∈GF(2m)\{0} : u ∈ GF(2)

v ∈ GF(2m)



. (10)

One can similarly prove the following.
Theorem 14: The binary code C f in (10) has length 2m −1

and dimension m + 1 if f (x) �= Tr(wx) for all w ∈ GF(2m).
In addition, the weight distribution of C f is given by the
following multiset union:

{2m−1 + f̃ (w) : w ∈ GF(2m)∗} ∪ { f̃ (0)} ∪
{2m−1 : w ∈ GF(2m)∗} ∪ {0}

= {(2m − f̂ (w))/2 : w ∈ GF(2m)} ∪
{2m−1 : w ∈ GF(2m)∗} ∪ {0}.

B. When Are These Codes Minimal?

One main result of this paper is stated in the next theorem.
Theorem 15: Let C f be the code of Theorem 13. Then C f

is minimal if and only if

f̂ (h) + f̂ (�) �= 2m (11)
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and

f̂ (h) − f̂ (�) �= 2m (12)

for every pair of distinct vectors h and � in GF(2)m .
Proof: Denote (GF(2)m)∗ = GF(2)m\{0}. We define the

following linear code

Sm = {(u · x)x∈(GF(2)m)∗ : u ∈ GF(2)m}.
This code is the Simplex code with parameters [2m − 1,
m, 2m−1]. Clearly, every nonzero codeword in Sm has weight
2m−1.

Let the vector f be defined as

f = ( f (x))x∈(GF(2)m)∗ .

By definition, every codeword a in C f can be expressed as

a = uaf + sa,

where ua ∈ {0, 1} and sa is a codeword in Sm . We next
consider the coverage of codewords in C f by distinguishing
the following cases.

Case I: Let a and b be two distinct nonzero codewords
in Sm . Since wt(a) = wt(b) = 2m−1. Consequently, one
cannot cover the other.

Case II: Let a = f + sa and b = f + sb , where sa and sb

are two distinct codewords in Sm . Note that a + b = sa + sb

is a nonzero codeword in Sm . It then follows from Lemma 9
that

a � b ⇐⇒ wt(b) − wt(a) = 2m−1

and

b � a ⇐⇒ wt(a) − wt(b) = 2m−1.

Case III: Let a = f + sa and let b be a nonzero codeword
in Sm , where sa is a codeword in Sm . In this case, a + b =
f +sa +b which is not a codeword in Sm . It then follows from
Lemma 9 that

a � b ⇐⇒ wt(f + sa + b) = 2m−1 − wt(f + sa)

and

b � a ⇐⇒ wt(f + sa + b) = wt(f + sa) − 2m−1.

Combining the discussions in the three cases above and the
proof of Theorem 13 proves the desired conclusion.

V. THREE FAMILIES OF MINIMAL BINARY LINEAR

CODES FROM THE GENERIC CONSTRUCTION

In this section, we shall present three families of minimal
binary linear codes with wmin/wmax ≤ 1/2 from some specific
Boolean functions using the general construction documented
above.

A. The First Family of Minimal Binary Linear Codes

In this subsection, we assume that m is a positive even
integer with m ≥ 6 and we let t = m

2 . A partial spread of order
s (an s-spread) in GF(2)m is a set of s t-dimensional subspaces
E1, E2, · · · , Es of GF(2)m such that Ei ∩ E j = {0} for all
1 ≤ i < j ≤ s. Clearly, the order of a partial spread is less
than or equal to 2t + 1. Let {E1, E2, · · · , Es} be an s-spread
in GF(2)m . It is well-known that partial spreads can be used
to construct Bent functions [11]. In the sequel, we shall use
partial spreads to obtain a class of Boolean functions which
can generate a family of minimal binary linear codes with
wmin/wmax ≤ 1/2.

Let fi : GF(2)m → GF(2) be the Boolean function with
support Ei \ {0}, i.e.,

fi (x) =
�

1, if x ∈ Ei \ {0},
0, otherwise.

Lemma 16: Let f be the Boolean function over GF(2)m

defined by

f =
s�

i=1

fi . (13)

Then

f̂ (w) =
⎧
⎨

⎩

2m − 2s(2t − 1), 1 time,
2s, (2t + 1 − s)(2t − 1) times,
−2t+1 + 2s, s(2t − 1) times.

Proof: It is easily verified from the definitions of f and fi

that

f̃ (w)

=
⎧
⎨

⎩

s(2t − 1), if w = 0,

−s, if w �∈ E⊥
i for all 1 ≤ i ≤ s,

2t − s, if w �= 0 and w ∈ E⊥
i for some 1 ≤ i ≤ s,

(14)

where E⊥
i denotes the dual space of Ei . The conclusion

then follows from Equations (2) and (14) and the definitions
of Ei ’s.

Lemma 17: Let s be any integer with 1 ≤ s ≤ 2t + 1, and
f be the Boolean function defined in Equation (13). When
s �∈ {1, 2t , 2t + 1}, we have

f̂ (h) + f̂ (�) �= 2m

and

f̂ (h) − f̂ (�) �= 2m

for every pair of distinct vectors h and � in GF(2)m .
Proof: The conclusions follow directly from

Lemma 16.
Theorem 18: Let s be any integer with 1 ≤ s ≤ 2t + 1 and

s �∈ {1, 2t , 2t + 1}, and f be the Boolean function defined in
Equation (13). Then the code C f in Equation (9) is a [2m −
1, m + 1] minimal linear code with the weight distribution
in Table I. Furthermore,

wmin

wmax
≤ 1

2

provided that s ≤ 2t−2.
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TABLE I

THE WEIGHT DISTRIBUTION OF C f IN THEOREM 18

Proof: The conclusions follow directly by combining
Theorem 13, Lemmas 16 and 17.

Remark 19: It can be seen from Table I that the code C f in
Theorem 18 has at most four weights. It is easy to check that
C f is a three-weight linear code when s ∈ {2t−1, 2t−1 + 1},
and otherwise a four-weight linear code.

The following numerical data is consistent with the conclu-
sions of Theorem 18.

Example 20: Let m = 6 and s = 2. Then the set C f in
Theorem 18 is a minimal code with parameters [63, 7, 14]
and weight enumerator

1 + z14 + 49z30 + 63 z32 + 14 z38.

Obviously, wmin/wmax = 14/38 < 1/2.
Example 21: Let m = 8 and s = 4. Then the set C f in

Theorem 18 is a minimal code with parameters [255, 9, 60]
and weight enumerator

1 + z60 + 195z124 + 255 z128 + 60 z140.

Clearly, wmin/wmax = 60/140 < 1/2.

B. The Second Family of Minimal Binary Linear Codes

In this section, we propose a family of minimal binary linear
codes with wmin/wmax ≤ 1/2 from the Boolean functions
belonging to the general Maiorana-McFarland class. Let m be
an arbitrary positive integer and s, t be two positive integers
such that s + t = m. The function in this class has the form

f (x, y) = φ(x) · y + g(x), (15)

where x ∈ GF(2)s, y ∈ GF(2)t , φ is an arbitrary mapping
from GF(2)s to GF(2)t , and g is an arbitrary Boolean function
in s variables. It is known that the construction in (15) has been
widely used to generate Boolean functions with interesting
cryptographic properties (see [3], [7], [11], and [16] for more
details).

For the Boolean function defined by (15), it is easy to verify
that

f̂ (h1, h2) =
⎧
⎨

⎩
2t �

x∈φ−1(h2)

(−1)g(x)+h1·x , h2 ∈ Imφ,

0, h2 �∈ Imφ,
(16)

for any (h1, h2) ∈ GF(2)s × GF(2)t .
Lemma 22: Let U and V respectively be subsets of GF(2)s

and GF(2)t such that 2s −|U | ≤ 2t −|V |. Let φ be an injection
from GF(2)s \U to GF(2)t \V . Then, for the Boolean function

TABLE II

THE WEIGHT DISTRIBUTION OF C f IN THEOREM 23 FOR ODD s

TABLE III

THE WEIGHT DISTRIBUTION OF C f IN THEOREM 23 FOR EVEN s

in Equation (15),

f̂ (h1, h2)

=

⎧
⎪⎪⎨

⎪⎪⎩

2t �

x∈φ−1(h2)

(−1)g(x)+h1·x , h2 ∈ Imφ ∩ V ,

2t (−1)g(φ−1(h2))+h1·φ−1(h2), h2 ∈ Imφ \ V ,
0, h2 �∈ Imφ.

(17)

Proof: The conclusion follows directly from
Equation (16).

Theorem 23: Let m ≥ 7 be an odd integer, s = (m + 1)/2,
and t = (m − 1)/2. Let U = {x ∈ GF(2)s : wt(x) ≥ 2}
and V = {0}. Let f be the Boolean function defined in
Equation (15), where g ≡ 1, and φ is an injection from
GF(2)s\U to GF(2)t\V and φ(x) = 0 for any x ∈ U . Then the
code C f in Equation (9) is a [2m −1, m+1, 2m−1−2t−1(s−1)]
binary minimal code with

wmin/wmax ≤ 1/2.

Furthermore, the weight distribution of C f is given by Table II
when s is odd and Table III when s is even.

Proof: According to Theorem 3 and the fact that
|U | = 2s − s − 1, we have

�

x∈U

(−1)h1·x =
�

2s − s − 1, if h1 = 0,
−(P1(i) + 1), if wt(h1) = i,

where P1(i) = P1(i, s) = s − 2i due to Equation (3). It then
follows from Equation (17) in Lemma 22 that

f̂ (h1, h2)

=

⎧
⎪⎪⎨

⎪⎪⎩

−2t (2s − s − 1), if h1 = 0 and h2 = 0,
2t (s + 1 − 2i), if h1 �= 0,wt(h1) = i and h2 = 0,

−2t (−1)h1·φ−1(h2), if h2 ∈ Imφ \ {0},
0, if h2 �∈ Imφ,

(18)

where i runs from 1 to s. It is clear from Equation (18)
that f̂ (h1, h2) ± f̂ (�1, �2) �= 2m for any pair of distinct
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TABLE IV

WEIGHT DISTRIBUTION

(h1, h2), (�1, �2) ∈ GF(2)s × GF(2)t . By Theorem 15, C f is
minimal. The parameters and weight distribution of C f then
follow by combining Theorem 13, Equation (18), and the facts
that |Imφ| = s + 2 and φ−1(h2) �= 0 for any h2 ∈ Imφ \ {0}.
From the weight distribution of C f , we know that wmin =
2m−1 − 2t−1(s − 1) and wmax = 2m−1 + 2t−1(2s − s − 1). It is
clear that wmin/wmax ≤ 1/2. This completes the proof of this
theorem.

The results above tell us that minimal binary linear codes
with wmin/wmax ≤ 1/2 can be obtained if the subsets U and V
are suitably chosen. It would be possible to construct more
minimal binary linear codes with wmin/wmax ≤ 1/2 from other
subsets U and V .

The following numerical data is consistent with the conclu-
sion of Theorem 23.

Example 24: Let m = 7. Then the set C f in Theorem 23
is a minimal code with parameters [127, 8, 52] and weight
enumerator

1 + 4z52 + 54z60 + 159 z64 + 36 z68 + z76 + z108.

Obviously, wmin/wmax = 52/108 < 1/2.
Example 25: Let m = 9. Then the set C f in Theorem 23 is

a minimal code with parameters [511, 10, 224] and weight
enumerator

1 + 5z224 + 10z240 + 112 z248 + 809 z256 + 80z264

+5z272 + z288 + z464.

It is clear that wmin/wmax = 224/464 < 1/2.

C. The Third Family of Minimal Binary Linear Codes

For a positive integer k with 1 ≤ k ≤ m, let S(m, k) denote
the set of all vectors in GF(2)m with Hamming weight at
least 1 and at most k. Let g(m,k) be the Boolean function of m
variables with support S(m, k). In the following, we consider
the linear code Cg(m,k) in Equation (9).

Theorem 26: The code Cg(m,k) has length 2m −1, dimension
m + 1, and the weight distribution in Table IV.

Proof: Let w ∈ GF(2)m with Hamming weight i .
By definition and Theorem 3,

g̃(m,k)(w) =
�

x∈S(m,k)

(−1)w·x =
k�

j=1

Pj (i). (19)

The desired conclusions then follow from Theorem 13.

Theorem 27: Let 1 ≤ k ≤ m. Then Cg(m,k) is minimal if and
only if

k�

j=1

Pj (i1) +
k�

j=1

Pj (i2) �= −2m−1 and

k�

j=1

Pj (i1) −
k�

j=1

Pj (i2) �= 2m−1 (20)

for all pairs (i1, i2) with 1 ≤ i1 ≤ m and 1 ≤ i2 ≤ m, and

k�

j=1

Pj (i) �= ±
k�

j=1

�
m

j

�
(21)

for all 1 ≤ i ≤ m.
Proof: By Equations (2), (19) and Theorem 4, we deduce

f̂ (w) =
�

2m − 2
�k

j=1

�m
j

�
if w = 0,

−2
�k

j=1 Pj (i) if w �= 0,

where w ∈ GF(2)m has Hamming weight i . Then the desired
conclusion follows from Theorem 15.

Before giving a class of minimal linear codes with
wmin/wmax ≤ 1/2, we firstly present a few lemmas below.

Lemma 28: The following equations hold.
(1) For 1 ≤ k ≤ �m−3

2 �,

k�

j=1

�
m

j

�
= 2m−1 − 1 −

m−k−2�

j=k

�
m − 1

j

�
.

(2) If m is odd, then
m−1

2�

j=1

�
m

j

�
= 2m−1 − 1.

(3) If m is even, then
m−2

2�

j=1

�
m

j

�
= 2m−1 − 1 −

�
m − 1

m−2
2

�
.

Proof: (1) Note that

k�

j=1

�
m

j

�

=
k�

j=1

��
m − 1

j − 1

�
+

�
m − 1

j

��

=
k−1�

j=0

�
m − 1

j

�
+

k�

j=1

�
m − 1

m − 1 − j

�

=
k−1�

j=0

�
m − 1

j

�
+

m−2�

j=m−k−1

�
m − 1

j

�

=
m−1�

j=0

�
m − 1

j

�
−

�
m − 1

m − 1

�
−

m−k−2�

j=k

�
m − 1

j

�

= 2m−1 − 1 −
m−k−2�

j=k

�
m − 1

j

�
.
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The proof is then completed.
(2) If m is odd, then

m−1
2�

j=1

�
m

j

�
=

m−1
2�

j=1

��
m − 1

j − 1

�
+

�
m − 1

j

��

=
m−3

2�

j=0

�
m − 1

j

�
+

m−1
2�

j=1

�
m − 1

m − 1 − j

�

=
m−3

2�

j=0

�
m − 1

j

�
+

m−2�

j= m−1
2

�
m − 1

j

�

=
m−1�

j=0

�
m − 1

j

�
−

�
m − 1

m − 1

�

= 2m−1 − 1.

(3) The proof is similar to that of (2) above, and is
omitted.

Lemma 29: Let 2 ≤ k ≤ �m−3
2 � and m ≥ 7. Then we have

the followings.

(1) The equation

k�

j=1

m − 2 j

m

�
m

j

�
=

�
m − 1

k

�
− 1

holds.
(2) If k is even, then

k�

j=1

(−1) j
�

m

j

�
=

�
m − 1

k

�
− 1.

If k is odd, then

k�

j=1

(−1) j
�

m

j

�
= −

�
m − 1

k

�
− 1.

Proof: (1) The proof is completed by noting that

k�

j=1

m − 2 j

m

�
m

j

�

=
k�

j=1

�
m

j

�
− 2

k�

j=1

j

m

�
m

j

�

=
k�

j=1

�
m

j

�
− 2

k�

j=1

�
m − 1

j − 1

�

=
k�

j=1

��
m − 1

j

�
+

�
m − 1

j − 1

��
− 2

k�

j=1

�
m − 1

j − 1

�

=
k�

j=1

�
m − 1

j

�
−

k�

j=1

�
m − 1

j − 1

�

=
�

m − 1

k

�
− 1.

(2) Note that
k�

j=1

(−1) j
�

m

j

�

=
k�

j=1

(−1) j
��

m − 1

j − 1

�
+

�
m − 1

j

��

= −
��

m − 1

0

�
+

�
m − 1

1

��
+

��
m − 1

1

�
+

�
m − 1

2

��
+ · · · +

(−1)k−1
��

m − 1

k − 2

�
+

�
k − 1

j

��
+

(−1)k
��

m − 1

k − 1

�
+

�
m − 1

k

��

=
� �m−1

k

� − 1 if k is even,

−�m−1
k

� − 1 if k is odd.

Then we complete the proof.
Lemma 30: Let 2 ≤ k ≤ �m−3

2 � and m ≥ 7. For any
1 ≤ i ≤ m, then

						

k�

j=1

Pj (i)

						
≤

�
m − 1

k

�
+ 1.

Proof: By Corollary 8, we have
⎧
⎪⎪⎨

⎪⎪⎩

			
�k

j=1 Pj (i)
			 ≤ 1 + m−1−2k

m−1

�m−1
k

�
if 2 ≤ i ≤ m − 1,

�k
j=1 Pj (i) = �k

j=1
m−2 j

m

�m
j

�
if i = 1,

�k
j=1 Pj (i) = �k

j=1(−1) j
�m

j

�
if i = m.

(22)

Due to Lemma 29, if k is even, then
k�

j=1

Pj (m) =
k�

j=1

Pj (1) =
�

m − 1

k

�
− 1 > 0;

if k is odd, then
k�

j=1

Pj (m) = −
�

m − 1

k

�
− 1

and						

k�

j=1

Pj (m)

						
= 1 +

�
m − 1

k

�

>

						

k�

j=1

Pj (1)

						
=

�
m − 1

k

�
− 1.

From (22), it is clear that
						

k�

j=1

Pj (i)

						
≤ 1 + m − 1 − 2k

m − 1

�
m − 1

k

�
< 1 +

�
m − 1

k

�

for any 2 ≤ i ≤ m−1. From the discussions above, we deduce
that 						

k�

j=1

Pj (i)

						
≤

�
m − 1

k

�
+ 1

for any 1 ≤ i ≤ m, which completes the proof.
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The following theorem describes an infinite class of minimal
codes satisfying wmin/wmax ≤ 1/2 under certain conditions.

Theorem 31: Let 2 ≤ k ≤ �m−3
2 � and m ≥ 7. Then the set

Cg(m,k) in Theorem 27 is a minimal code with parameters
⎡

⎣2m − 1, m + 1,

k�

j=1

�
m

j

�⎤

⎦ .

Furthermore, wmin/wmax ≤ 1/2 if and only if

1 + 2
k�

j=1

�
m

j

�
≤ 2m−1 +

�
m − 1

k

�
.

Proof: If k = 1, then by Theorem 27 we deduce that
Cg(m,k) is not minimal as P1(m) = −P1(0) = −�m

1

�
. In the

following, we assume that 2 ≤ k ≤ �m−3
2 �.

By Lemma 30, for any 1 ≤ i ≤ m, we have
						

k�

j=1

Pj (i)

						
≤

�
m − 1

k

�
+ 1

<

�
m

k

�
+ 1 <

k�

j=1

�
m

j

�
.

Thus Inequality (21) holds. On the other hand, for any
1 ≤ i ≤ m, we have

−
�

m − 1

k

�
− 1 ≤

k�

j=1

Pj (i) ≤
�

m − 1

k

�
+ 1.

Hence, for any pair (i1, i2) satisfying 1 ≤ i1 ≤ m and
1 ≤ i2 ≤ m, one obtains

k�

j=1

Pj (i1) +
k�

j=1

Pj (i2) ≥ −2

�
m − 1

k

�
− 2

and
k�

j=1

Pj (i1) −
k�

j=1

Pj (i2) ≤ 2

�
m − 1

k

�
+ 2.

Note that

2

�
m − 1

k

�
+ 2 = 2

��
m − 1

k

�
+ 1

�

= 2

��
m − 2

k

�
+

�
m − 2

k − 1

�
+ 1

�

< 2
m−2�

j=0

�
m − 2

j

�
= 2m−1.

This implies that the inequalities in (20) hold. We then deduce
that Cg(m,k) is minimal by Theorem 27.

By Table IV and Corollary 8, we derive that all the nonzero
Hamming weights of Cg(m,k) are

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

w1 = �k
j=1

�m
j

�
,

w2 = 2m−1,

w3 = 2m−1 + �k
j=1(−1) j

�m
j

�
,

w4 = 2m−1 + �k
j=1

m−2 j
m

�m
j

�
,

w(i) = 2m−1 + �k
j=1 Pj (i) for 2 ≤ i ≤ m − 1,

where
			
�k

j=1 Pj (i)
			 ≤ 1 + m−1−2k

m−1

�m−1
k

�
for 2 ≤ i ≤ m − 1

and 2 ≤ k ≤ �m−3
2 �. Hence, for 2 ≤ i ≤ m − 1,

2m−1 − 1 − m − 1 − 2k

m − 1

�
m − 1

k

�

≤ w(i)

≤ 2m−1 + 1 + m − 1 − 2k

m − 1

�
m − 1

k

�
. (23)

Since 2 ≤ k ≤ �m−3
2 �, we have w1 = �k

j=1

�m
j

�
< 2m−1 =

w2 by Lemma 28. It is clear that w2 < w4. By Lemma 29,
we deduce w4 ≥ w3. Since

k�

j=1

�
m

j

�
−

k�

j=1

(−1) j
�

m

j

�
=

k�

j=1

(1 − (−1) j )

�
m

j

�

=
�

j is odd,
1≤ j≤k

2

�
m

j

�

<

k+1�

j=1

�
m

j

�
< 2

m−1
,

by Lemma 28 we deduce that

w1 =
k�

j=1

�
m

j

�
< 2m−1 +

k�

j=1

(−1) j
�

m

j

�
= w3.

Note that
k�

j=1

�
m

j

�
+ 1 + m − 1 − 2k

m − 1

�
m − 1

k

�

=
k�

j=0

�
m

j

�
+ m − 1 − 2k

m − 1

�
m − 1

k

�

<

k�

j=0

�
m

j

�
+

�
m − 1

k

�

<

k�

j=0

�
m

j

�
+

�
m − 1

k

�
+

�
m − 1

k + 1

�

=
k+1�

j=0

�
m

j

�
.

Due to k ≤ �m−3
2 �, we then obtain that

k�

j=1

�
m

j

�
+ 1 + m − 1 − 2k

m − 1

�
m − 1

k

�

<

m−1
2�

j=0

�
m

j

�
< 2m−1 for odd m

and
k�

j=1

�
m

j

�
+ 1 + m − 1 − 2k

m − 1

�
m − 1

k

�

<

m−2
2�

j=0

�
m

j

�
< 2m−1 for even m
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by Lemma 28. Then by Inequality (23), we have

w1 < w(i) for any 2 ≤ i ≤ m − 1.

In the following, we shall prove that

w4 > w(i) for any 2 ≤ i ≤ m − 1.

Due to Inequality (23), it suffices to prove that

w4 = 2m−1 +
k�

j=1

m − 2 j

m

�
m

j

�

> 2m−1 + 1 + m − 1 − 2k

m − 1

�
m − 1

k

�
,

that is,

k�

j=1

m − 2 j

m

�
m

j

�
> 1 + m − 1 − 2k

m − 1

�
m − 1

k

�
. (24)

By Lemma 29, we have

k�

j=1

m − 2 j

m

�
m

j

�
=

�
m − 1

k

�
− 1

>

�
m − 1

k

�
+ 1 − 2

�
m − 2

k − 1

�

=
�

m − 1

k

�
+ 1 − 2k

m − 1

�
m − 1

k

�

= 1 + m − 1 − 2k

m − 1

�
m − 1

k

�
.

Thus Inequality (24) holds and

w4 > w(i) for any 2 ≤ i ≤ m − 1.

From the discussions above, we deduce that

wmin = w1 =
k�

j=1

�
m

j

�

and

wmax = w4 = 2m−1 +
�

m − 1

k

�
− 1.

Then wmin
wmax

≤ 1
2 if and only if

1 + 2
k�

j=1

�
m

j

�
≤ 2m−1 +

�
m − 1

k

�
,

which completes the proof.
As corollaries of Theorem 31, we have the following.
Corollary 32: Let m ≥ 7. Then Cg(m,2) in Theorem 27 is a

minimal code with parameters
⎡

⎣2m − 1, m + 1,

2�

j=1

�
m

j

�⎤

⎦ .

Furthermore, wmin/wmax < 1/2.
Example 33: The set Cg(7,2) in Theorem 27 is a minimal

code with parameters [127, 8, 28] and weight enumerator

1 + z28 + 35z60 + 56z62 + 127z64 + 28 z68 + 8z78.

Furthermore, wmin/wmax = 14/39 < 1/2. Note that some
weights in Table IV may be the same in certain cases. Hence
the code has at most m + 2 weights. This example shows that
the code has in fact 6 (rather than 9) weights.

Corollary 34: Let m ≥ 9. Then Cg(m,3) in Theorem 27 is a
minimal code with parameters

⎡

⎣2m − 1, m + 1,

3�

j=1

�
m

j

�⎤

⎦ .

Furthermore, wmin/wmax < 1/2.
Example 35: The set Cg(9,3) in Theorem 27 is a minimal

code with parameters [511, 10, 129] and weight enumerator

1 + z129 + z199 + 9 z241 + 126249 + 84z251 + 126255

+511 z256 + 36z259 + 84z261 + 36z269 + 9z311.

Furthermore, wmin/wmax = 129/311 < 1/2.

VI. SUMMARY AND CONCLUDING REMARKS

The main contributions of this paper are the following:
• A necessary and sufficient condition for a binary linear

code to be minimal (Theorem 15).
• A necessary and sufficient condition for a two-weight

binary linear code to be minimal (Theorem 11).
• A set of sufficient conditions for a three-weight binary

linear code to be minimal (Theorem 12).
• Three infinite families of minimal binary linear codes

with wmin/wmax < 1/2 (Theorems 18, 23, and 31).
We remark that constructing infinite families of minimal

binary linear codes with wmin/wmax ≤ 1/2 is a hard problem
in general. It would be nice if more infinite families of such
codes could be found. Another construction of binary linear
codes was surveyed in [12] and [13], which may contain more
infinite families of such binary codes. To the best of our
knowledge, no infinite family of minimal linear codes over
GF(q) with wmin/wmax < (q − 1)/q for q > 2 is reported
in the literature, though a specific example of such code was
presented in [10].

It should be noted that linear codes employed for secret
sharing are preferred to be minimal, in order to make
the access structure of the secret sharing scheme to be
special [14], [20]. Such codes may not have very good error-
correcting capability. The minimal binary codes presented in
this paper are for secret sharing, not for error correction.
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