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ABSTRACT state packet identifiers in a routing protocol. In deduplication, on
the other hand, two hosts each have a set of keys, and the task is
to identify the keys in the intersection so that duplicate data can be
deleted and replaced by pointers [16]. Deduplication is a thriving
industry: for example, Data Domain [1, 21] pioneered the use of
deduplication to improve the efficiency of backups.

Both reconciliation and deduplication can be abstracted as the

roblem of efficiently computing theet differencebetween two

sets stored at two nodes across a communication link. The set dif-
ference is the set of keys that are in one set but not the other. In
reconciliation, the difference is used to compute the set union; in
deduplication, it is used to compute the intersection. Efficiency is
measured primarily by the bandwidth used (important when the two
gnodes are connected by a wide-area or mobile link), the latency in
round-trip delays, and the computation used at the two hosts. We
are particularly interested in optimizing the case when the set dif-
ference is small (e.g., the two nodes have almost the same set of
routing updates to reconcile, or the two nodes have a large amount
of duplicate data blocks) and when there is no prior communication
or context between the two nodes.

For example, suppose two users, each with a large collection of
songs on their phones, meet and wish to synchronize their libraries.
They could do so by exchanging lists of all of their songs; however,
the amount of data transferred would be proportional to the total
number of songs they have rather than the size of the difference. An
often-used alternative is to maintain a time-stamped log of updates
together with a record of the time that the users last communicated.

We describe a synopsis structure, the Difference Digest, that allows
two nodes to compute the elements belonging to the set difference
in a single round with communication overhead proportional to the
size of the differencémes the logarithm of the keyspace. While
set reconciliation can be done efficiently using logs, logs require
overhead for every update and scale poorly when multiple users
are to be reconciled. By contrast, our abstraction assumes no prio
context and is useful in networking and distributed systems appli-
cations such as trading blocks in a peer-to-peer network, and syn-
chronizing link-state databases after a partition.

Our basic set-reconciliation method has a similarity with the
peeling algorithm used in Tornado codes [6], which is not surpris-
ing, as there is an intimate connection between set difference an
coding. Beyond set reconciliation, an essential component in our
Difference Digest is a hew estimator for the size of the set differ-
ence that outperforms min-wise sketches [3] for small set differ-
ences.

Our experiments show that the Difference Digest is more effi-
cient than prior approaches such as Approximate Reconciliation
Trees [5] and Characteristic Polynomial Interpolation [17]. We
use Difference Digests to implement a generic KeyDiff service in
Linux that runs over TCP and returns the sets of keys that differ
between machines.

Categories and Subject Descriptors

C.2.2 [Computer-Communication Networks]: Network Proto- When they communicate agaid, can sendB all of the updates
cols; E.4 Coding and Information Theory]: since their last communication, and vice versa. Fundamentally, the
use of logs requires prior context, which we seek to avoid.
General Terms Logs have more specific disadvantages as well. First, the log-
) ) ) ] ging system must be integrated with any system that can change
Algorithms, Design, Experimentation user data, potentially requiring system design changes. Second, if
reconciliation events are rare, the added overhead to update a log
1. INTRODUCTION each time user data changes may not be justified. This is partic-

Two common tasks in networking and distributed systems are ularly problematic for "hot” data items that are written often and
reconciliationanddeduplication In reconciliation, two hosts each ~ May be in the log multiple times. While this redundancy can be
have a set of keys and each seeks to obtain the union of the two setsavoided using a hash table, this requires further overhead. Third, a

The sets could be file blocks in a Peer-to-Peer (P2P) system or link!09 has to be maintained for every other user this user may wish to
synchronize with. Further, two usersand B may have received

the same update from a third uggérleading to redundant commu-
nication. Multi-party synchronization is common in P2P systems
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Difference Digest, which computes the set difference with com-
munication proportional to the size of the difference between the

sets being compared. We implement and evaluate a simple key-

Going forward, we discuss related work in Section 2. We present
our algorithms and analysis for the Invertible Bloom Filter and
Strata Estimator in Sections 3 & 4. We describe our KeyDiff proto-

synchronization service based on Difference Digests and suggestype in Section 5, evaluate our structures in Section 6 and conclude
how it can improve the performance in several contexts. Settings in in Section 7.

which Difference Digests may be applied include:

e Peer-to-peerPeerA andB may receive blocks of a file from
other peers and may wish to receive only missing blocks
from each other.

Partition healing: When a link-state network partitions, routers
in each partition may each obtain some new link-state pack-
ets. When the partition heals by a link joining routérand

B, both A and B only want to exchange new or changed
link-state packets.

Deduplication:If backups are done in the cloud, when a new
file is written, the system should only transmit the chunks of
the file that are not already in the cloud.

Synchronizing parallel activationg\ search engine may use
two independent crawlers with different techniques to har-
vest URLs but they may have very few URLs that are dif-
ferent. In general, this situation arises when multiple actors
in a distributed system are performing similar functions for
efficiency or redundancy.

Opportunistic ad hoc networksThese are often character-
ized by low bandwidth and intermittent connectivity to other
peers. Examples include rescue situations and military vehi-
cles that wish to synchronize data when they are in range.

The main contributions of the paper are as follows:

e |BF Subtraction: The first component of the Difference Di-
gest is an Invertible Bloom Filter or IBF [9, 13]. IBF's were
previously used [9] for straggler detection at a single node, to
identify items that were inserted and not removed in a stream.
We adapt Invertible Bloom Filters for set reconciliation by
defining a new subtraction operator on whole IBF's, as op-
posed to individual item removal.

Strata Estimator:Invertible Bloom Filters need to be sized
appropriately to be efficiently used for set differences. Thus
a second crucial component of the Difference Digest is a new
Strata Estimator method for estimating #iee of the differ-
ence We show that this estimator is much more accurate for
small set differences (as is common in the final stages of a file
dissemination in a P2P network) than Min-Wise Sketches [3,
4] or random projections [14]. Besides being an integral part
of the Difference Digest, our Strata Estimator can be used
independently to find, for example, which of many peers is
most likely to have a missing block.

KeyDiff Prototype:We describe a Linux prototype of a generic
KeyDiff service based on Difference Digests that applica-
tions can use to synchronize objects of any kind.

Performance CharacterizationThe overall system perfor-

mance of Difference Digests is sensitive to many parame-
ters, such as the size of the difference, the bandwidth avail-
able compared to the computation, and the ability to do pre-

2. MODEL AND RELATED WORK

We start with a simple model of set reconciliation. For two sets
Sa, Sp each containing elements from a univerge,= [0, u),
we want to compute the set differend@4_ 5 and Dp_ 4, where
Dis_ B Sa — Sp such thatforalls € Da_g, s € Sa and
s ¢ Sp. Likewise,Dp_4 = Sp—Sa. WesaythaD = Da_pU
Dp_4 andd = |D|. Note that sinc€Da_p N Dp_4 = 0,d =
|Da—B| + |Dp-a|. We assume that4 and Sp are stored at
two distinct hosts and attempt to compute the set difference with
minimal communication, computation, storage, and latency.

Several prior algorithms for computing set differences have been
proposed. The simplest consists of hosts exchanging lists, each
containing the identifiers for all elements in their sets, then scan-
ning the lists to remove common elements. This requir¢S O
|Ss|) communication and Q4| x |Sg|) time. The run time can
be improved to QG| + |Sz|) by inserting one list into a hash
table, then querying the table with the elements of the second list.

The communication overhead can be reduced by a constant fac-
tor by exchanging Bloom filters [2] containing the elements of each
list. Once in possession of the remote Bloom Filter, each host can
query the filter to identify which elements are common. Funda-
mentally, a Bloom Filter still requires communication proportional
to the size of the sets (and not the difference) and incurs the risk of
false positives. The time cost for this procedure is( + |Ss|).

The Bloom filter approach was extended using Approximate Rec-
onciliation Trees [5], which requires @{og(|S&|)) recovery time,
and O(Sg|) space. However, givefiy and an Approximate Rec-
onciliation Tree forSg, a host can only comput® 45, i.e., the
elements unique t§ 4.

An exact approach to the set-difference problem was proposed
by Minksy et al. [17]. In this approach, each set is encoded us-
ing a linear transformation similar to Reed-Solomon coding. This
approach has the advantage of/[pDéommunication overhead, but
requires O¢>) time to decode the difference using Gaussian elim-
ination; asymptotically faster decoding algorithms are known, but
their practicality remains unclear. Additionally, whereas our Strata
Estimator gives an accurate one-shot estimate of the size of the dif-
ference prior to encoding the difference itself, Mingkyal. use an
iterative doubling protocol for estimating the size of the difference,
with a non-constant number of rounds of communication. Both the
decoding time and the number of communication rounds (latency)
of their system are unfavorable compared to ours.

Estimating Set-Difference Size.A critical sub-problem is an
initial estimation of the size of the set difference. This can be esti-
mated with constant overhead by comparing a random sample [14]
from each set, but accuracy quickly deteriorates whed thsmall
relative to the size of the sets.

Min-wise sketches [3, 4] can be used to estimate the set similar-
ity (r = [34522}). Min-wise sketches work by selectihgrandom
hash functionsry, . .., m, which permute elements withid. Let
min(m;(S)) be the smallest value produced fywhen run on the
elements ofS. Then, a Min-wise sketch consists of thevalues
min(m1(S)), ..., min(mx(S)). For two Min-wise sketches)/ 4

computation. We characterize the parameter regimes in whichand Mg, containing the elements &f4 and Sg, respectively, the
Difference Digests outperform earlier approaches, such as set similarity is estimated by the of number of hash function return-

MinWise hashes, Characteristic Polynomial Interpolation [17],

and Approximate Reconciliation Trees [5].

ing the same minimum value. §4 andSs have a set-similarity,
then we expect that the number of matching cellddn and Mg



will be m = rk. Inversely, given thain cells of M4 and Mg do
match, we can estimate that= 7. Given the set-similarity, we
can estimate the difference ds= 1= (|Sa| + [S&|).

As with random sampling, the accuracy of the Min-wise esti-
mator diminishes for smaller values bfand for relatively small
set differences. Similarly, Cormods al.[8] provide a method for

a count,count , is incremented in each hashed location. Deletion
of K is similar except thatount is decremented. A check for
whether K exists in the filter returns true if all locations that
hashes to have non-zetount values.

An IBF has another crucial field in each cell (array location) be-
sides the count. This is thedSum the XOR of all key IDs that

dynamic sampling from a data stream to estimate set sizes using ahash into that cell. Now imagine that two peers, Peer 1 and Peer 2,

hierarchy of samples, which include summations and counts. Like-
wise, Cormode and Muthukrishnan [7] and Schwedéesl. [20]

describe sketch-based methods for finding large differences in traf-

fic flows. (See also [19].)

An alternative approach to estimating set-difference size is pro-
vided by [11], whose algorithm can more generally estimate the
difference between two functions with communication complex-
ity very similar to our Strata Estimator. As with our results, their
method has a small multiplicative error even when the difference is
small. However, it uses algebraic computations over finite fields,
whereas ours involves only simple, and more practical, hashing-
based data structures.

While efficiency of set differencestimationfor small differ-
ences may seem like a minor theoretical detail, it can be important

doing set reconciliation on a large file of a million blocks indepen-
dently compute IBF'sB; andB:, each with 100 cells, by inserting

an ID for each block they possess. Note that a standard Bloom fil-
ter would have a size of several million bits to effectively answer
whether a particular key is contained in the structure. Observe also
that if each ID is hashed to 3 cells, an average of 30,000 keys hash
onto each cell. Thus, eactount will be large and thé dSumin

each cell will be the XOR of a large number of IDs. What can we
do with such a small number of cells and such a large number of
collisions?

Assume that Peer 1 senf#s to Peer 2, an operation only requir-
ing bandwidth to send around 200 fields (100 cell2 fields/cell).
Peer 2 then proceeds to “subtract” its 1B from B;. It does this
cell by cell, by subtracting theount and XORing thé dSumin

in many contexts. Consider, for instance, the endgame of a P2P filethe corresponding cells of the two IBF’s.

transfer. Imagine that a BitTorrent node has 100 peers, and is miss-

ing only the last block of a file. Min-wise or random samples from

the 100 peers will not identify the right peer if all peers also have
nearly finished downloading (small set difference). On the other
hand, sending a Bloom Filter takes bandwidth proportional to the
number of blocks in file, which can be large. We describe our new
estimator in Section 3.2.

3. ALGORITHMS

In this section, we describe the two components of the Differ-
ence Digest: an Invertible Bloom Filter (IBF) and a Strata Estima-
tor. Our first innovation is taking the existing IBF [9, 13] and in-
troducing a subtraction operator in Section 3.1 to compie g
and Dp_ 4 using a single round of communication of sizedD(
Encoding a sefS into an IBF requires QF|) time, but decoding
to recoverD4_p and Dg_ 4 requires only Q) time. Our sec-
ond key innovation is a way of composing several sampled IBF’s
of fixed size into a new Strata Estimator which can effectively esti-
mate the size of the set difference using O(J&ij)) space.

3.1 Invertible Bloom Filter

We now describe the Invertible Bloom Filter (IBF), which can si-
multaneously calculat® 4, and D _ 4 using O@) space. This
data structure encodes sets in a fashion that is similar in spirit to
Tornado codes’ construction [6], in that it randomly combines ele-
ments using the XOR function. We will show later that this simi-

larity is not surprising as there is a reduction between set difference
and coding across certain channels. For now, note that whereas Tor
nado codes are for a fixed set, IBF’s are dynamic and, as we show.

even allow for fast set subtraction operations. Likewise, Tornado

codes rely on Reed-Solomon codes to handle possible encoding

errors, whereas IBF's succeed with high probability without rely-
ing on an inefficient fallback computation. Finally, our encoding is
much simpler than Tornado codes because we use a simple unifor

random graphs with non-uniform degree distributions.

We start with some intuition. An IBF is named because it is sim-
ilar to a standard Bloom Filter—except that it can, with the right
settings, beanvertedto yield some of the elements that were in-
serted. Recall that in a counting Bloom Filter [10], when a key
K is inserted,K is hashed into several locations of an array and

Intuitively, if the two peers’ blocks sets are almost the same (say,
25 different blocks out of a million blocks), all the common IDs
that hash onto the same cell will be cancelled fiottSum leaving
only the sum of the unique IDs (those that belong to one peer and
not the other) in thé dSumof each cell. This follows assuming that
Peer 1 and Peer 2 use the same hash function so that any common
element,, is hashed to the same cells in bdéth and B2. When
we XOR thei dSumin these cells¢ will disappear because it is
XORed twice.

In essense, randomly hashing keys to, say three, cells, is identical
to randomly throwing three balls into the same 100 bins for each of
the 25 block ID’s. Further, we will prove that if there are sufficient
cells, there is a high probability that at least one cell is “pure” in
that it contains only a single element by itself.

A “pure” cell signals its purity by having itsount field equal
to 1, and, in that case, thedSumfield yields the ID of one ele-
ment in the set difference. We delete this element from all cells it
has hashed to in the difference IBF by the appropriate subtractions;
this, in turn, may free up more pure elements that it can in turn be
decoded, to ultimately yield all the elements in the set difference.

The reader will quickly see subtleties. First, a numeragalint
value of 1 is necessary but not sufficient for purity. For example, if
we have a cell in one IBF with two key& andY and the corre-
sponding cell in the second IBF has kBy then when we subtract
we will get a count of 1, but dSumwill have the XOR of X, Y
and Z. More devious errors can occur if four ID¥, X, Y, Z sat-
isfy W+ X =Y + Z. To reduce the likelihood of decoding errors
to an arbitrarily small value, IBF's use a third field in each cell as

a checksum: the XOR of the hashes of all IDs that hash into a cell,

'but using a different hash functiafi. than that used to determine

the cell indices. If an element is indeed pure, then the hash sum
should beH (i dSum).

A second subtlety occurs if Peer 2 has an element that Peer 1
does not. Could the subtractid®y — B> produce negative values

i ; i ? i i i
random graph for encoding while Torado codes use more compleg}or' dSumandcount ? Indeed, it can and the algorithm deals with

this: for example, in dSumby using XOR instead of addition and

subtraction, and in recognizing purity spunt values of lor -1.

While IBF’s were introduced earlier [9, 13], whole IBF subtraction

is new to this paper; hence, negative counts did not arise in [9, 13].
Figure 1 summarizes the encoding of aSeind Figure 2 gives

a small example of synchronizing the sets at Peer 1 (who has keys



S =<5,,5, 53 ... > Bi=<V,W,X,Y>

idSum: V4 X+Y V4 W+ X X V+W+Y W+ Y
hashSum: | H(V)+H(X)+H(Y) [H(V)+H(W)+H(X) H(X) HV)+HW)+HM | HW) + HeY)
B: count: 3 3 1 3 2
B,=<W,Y,Z>

. idSum +=s;
B[]] hashSum += Hc(s,;)

count++

- - 1 [E G
Figure 1: IBF Encode. Hash functions are used to map each s . .
1 um:
element of the set tak cells of the IBF table. hashSum: H(YY) H(v:,/\; 1 i(Z) H(ZZ) H(V\\/A;:II(Y) H(Wv)v++|—i;{Y)++ﬁ(Z)
count: 1 2 1 2 3

V,W,X andY) and Peer 2 (who has key®%,Y and Z). Each Bs=B;- B,
element is hashed into 3 locations: for examptejs hashed into
buckets 1, 2 and 3. Whil& is by itself in bucket 3, after sub-

ki
traction Z also enters, causing tl@unt field to (incorrectly) be . . .
zero. Fortunately, aft’er subtraction, buckebecomes pure ag . .
[2]
\

is by itself. Note that buckei is also pure withZ by itself, and

is signaled by a count of -1. Decoding proceeds by first deleting idsum: VX Vix+z X+2 Z
eitherV/ or Z, and then iterating until no pure cells remain. R e R il TR - "y

Into how many cells should each element be hashed? We refer
to this parameter as theash_count . If the hash_count is Figure 2: IBF Subtract. IBF Bj results from subtracting IBF

too small, say 1, then there will be a high probability of finding B, from IBF B, cell by cell. To subtract cells, thei dSumand

pure cells initially, but once a pure element has been recorded andhashSumfields are XOR’ed, andcount fields are subtracted.
removed there are no other cells from which to remove it. Thus, The elements common taB; and B (shown shaded) are can-

two or more keys that have been hashed into the same cell cannotelled during the XOR operation.

be decoded. On the other handhidsh_count is too big, it

is unlikely that there will be a pure element by itself to begin the

process. We will show thdtash_count values of 3 or 4 work to a new IBF of the same size. We present a non-destructive version

well in practice. in Algorithm 2. Intuitively, this operation eliminates common ele-
Encode. First, assume that we have an oracle which, gi¥an ments from the resulting IBF as they cancel from itltEsSumand

and S, returns the size of the set differenee, We will describe hashSumfields as shown in Figure 2.

the construction of such an oracle in Section 3.2. We allocate an

IBF, which consists of a tabl® with n = ad cells, wherex > 1. Algorithm 2 IBF Subtract Bs = B — Bs)

Each cell of the table contains three fieldsilGum hashSumand foriin0,...,n—1 do

count.).all initialized to zero. . Bs[i]i dSum= B [i].i dSumeBs[i].i dSum
Additionally, hosts agree on two hash functiof&,and Hy,, that Bs[i].hashSum= B;[i].hashSumaB,[i.hashSum

map elements ifJ uniformly into the spacé0, h), whereh < u.
Additionally, they agree on a valué&, called thehash_count
which is the number of times each element is hashed. The algo-

Bs[i].count = Bjli].count - Bs[i].count

rithm for encoding a sef into an IBF is given in Algorithm 1 and Decode. We have seen that to decode an IBF, we must recover
illustrated in Figure 1. For each element$nwe generaté: dis- “pure” cells from the IBF's table. Pure cells are those whod8um
tinct random indices intd3. To do this we recursively calt/() matches the value of an elemernin the set difference. In order to
with an initial input of s; and take the modulus by until % dis- verify that a cell is pure, it must satisfy two conditions: twunt

tinct indices have been generated. More simply, an implementation field must be either 1 or -1, and tieshSumfield must equal
could choose to usk independent hash functions. Regardless, for H.(i dSum). For example, if a cell is pure, then the sign of the

each index returned, we XOR; into B[j].i dSum XOR H.(s;) count field is used to determine which seis unique to. If the
into B[j].hashSum and incremenfB[j].count . IBF is the result of subtracting the IBF fdfs from the IBF for
Sa, then a positiveount indicatess € D 4_, while a negative
Algorithm 1 IBF Encode countindicates € Dp—a. . .
for s, € S do Decoding begins by scanning the table and creating a list of

all pure cells. For each pure cell in the list, we add the value
s =i dSumto the appropriate output séd(1_ s or Dg_ 4) and re-
moves from the table. The process of removal is similar to that of
insertion. We compute the list of distinct indices wheie present,
then decremertount and XOR the dSumandhashSumby s
andH.(s), respectively. If any of these cells becomes pure after
Subtract. For each index in two IBF’s, By and B2, we subtract is removed, we add its index to the list of pure cells.
Bo[i] from B [i]. Subtraction can be done in place by writing the Decoding continues until no indices remain in the list of pure
resulting values back t6,, or non-destructively by writing values  cells. At this point, if all cells in the table have been cleared (i.e. all

for j in HashToDistinctindicesg, k, n) do
Bl[j].i dSum= B[j].i dSumés;
B[j].hashSum= B[j].hashSum®H,(s;)
B[j].count = B[j].count +1




Algorithm 3 IBF Decode B — Da_p,Dp_4)

fori=0ton —1 do
if B[i] is purethen
Add i to pureList
while pureList# () do
i=pureList.dequeue()
if B[i] is not purethen
continue
s=B[i].i dSum
c¢=BlJi].count
if ¢ > 0then
addstoDa_p
else
addsto Dg_ 4
for j in Distinctindices§, k, n) do
Blj].i dSum= BJ[j].i dSumés
B[j].hashSum= B[j].hashSum®H.(s)
Bl[j].count = B[j].count - ¢
fori=0ton —1 do
if B[i].i dSum= 0 OR B[i|.hashSums# 0 Bli].count # 0
then
return FAIL
return SUCCESS

fields have value equal to zero), then the decoding process has suc

cessfully recovered all elements in the set difference. Otherwise,

some number of elements remain encoded in the table, but insuffi-

cient information is available to recover them. The pseudocode is
given in Algorithm 3 and illustrated in Figure 3.

3.2 Strata Estimator

To use an IBF effectively, we must determine the approximate
size of the set differencé, since approximately.5d cells are re-
quired to successfully decode the IBF. We now show how to es-
timate d using O(log(u)) data words, where is the size of the
universe of set values. If the set difference is large, estimatols suc
as random samples [14] and Min-wise Hashing [3, 4] will work

rate for large differences. Note that 32 Kbytes is still inexpensive
when compared to the overhead of naively sending a million keys.

Proceeding formally, we stratifyy into L = log(u) partitions,

Py, ..., P, such that the range of thigh partition coversl /2°**

of U. For a set,S, we encode the elements §fthat fall into par-

tition P; into theith IBF of the Strata Estimator. Partitionirig

can be easily accomplished by assigning each element to the par-
tition corresponding to the number of trailing zeros in its binary
representation.

A host then transmits the Strata Estimator for its set to its remote
peer. For each IBF in the Strata Estimator, beginning at stratum
L and progressing toward stratubn the receiving host subtracts
the corresponding remote IBF from the local IBF, then attempts to
decode. For each successful decoding, the host adds the number
of recovered elements to a counter. If the pair of IBF’s at index
fails to decode, then we estimate that the size of the set difference
is the value of the counter (the total number of elements recovered)
scaled by2i*1. We give the pseudocode in Algorithms 4 and 5.

We originally designed the strata estimator by starting with stra-
tum 0 and finding the first value of > 0 which decoded success-
fully, following the Flajolet-Martin strategy and scaling the amount
recovered by’. However, the estimator in the pseudocode is much
better because it uses informatioraith strata that decode success-
fully and not just the lowest such strata.

In the description, we assumed that the element$rand Sp
were uniformly distributed througholt. If this condition does not
hold, the partitions formed by counting the number of low-order
zero hits may skew the size of our partitions such that sirdtes
not hold roughly|S|/2*"*. This can be easily solved by choosing
some hash functiorf{ ., and inserting each elemeast,into the IBF
corresponding to the number of trailing zerosHn(s).

Algorithm 4 Strata Estimator Encode using hash functién
for s € S do
i = Number of trailing zeros i . (s).
Inserts into thei-th IBF

well. However, we desire an estimator that can accurately estimateAlgorithm 5 Strata Estimator Decode

very small differences (saj0) even when the set sizes are large
(say million).

Flajolet and Martin (FM) [12] give an elegant way to estimate
set sizes (not differences) usihgg(u) bits. Each biti in the esti-
mator is the result of sampling the set with probabilit2?; bit i
is setto 1, if at least 1 element is sampled when sampling with this
probability. Intuitively, if there ar@* = 16 distinct values in the
set, then when sampling with probability 16, it is likely that bit
4 will be set. Thus the estimator returd§ as the set size, whete
is the highest strata (i.e., bit) such that bis set.

While FM data structures are useful in estimating the size of two
sets, they do not help in estimating the size of the difference as
they contain no information that can be used to approximate which
elements are common. However, we cample the set difference

count= 0
for ¢ = log(u) down to—1 do
if ¢ < 0 orIBF.[i] — IBF2[i] does not decodihen
return 2°7!x count
count +=number of elements in IBE] — IBF[{]

The obvious way to combine the Strata Estimator and IBF is to
have nodeA request an estimator from nodg use it to estimate
d, then request an IBF of siz@(d). This would taketwo rounds
or at least two round trip delays. A simple trick is to instead have
A initiate the process by sending its own estimatoBtoAfter B
receives the Strata Estimator frofp it estimates! and replies with
an IBF, resulting ironeround to compute the set difference.

using the same technique as FM. Given that IBF’s can compute set

differences with small space, we use a hierarchy of IBF’s as strata.

Thus Peed computes a logarithmic number of IBF’s (strata), each
of some small fixed size, say 80 cells.

Compared to the FM estimator for set sizes, this is very expen-
sive. Using 32 strata of 80 cells is around 32 Kbytes but is the only

4. ANALYSIS

In this section we review and prove theoretical results concerning
the efficiency of IBF's and our stratified sampling scheme.

THEOREM 1. LetS andT be disjoint sets witl total elements,

estimator we know that is accurate at very small set differences andand let B be an invertible Bloom filter witl' = (k + 1)d cells,

yet can handle set difference sizes upetd. In practice, we build

wherek = hash_count is the number of random hash functions in

a lower overhead composite estimator that eliminates higher strataB, and with at leasf2(k log d) bits in each hashSum field. Suppose

and replaces them with a MinWise estimator, which is more accu-

that (starting from a Bloom filter representing the empty set) each
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Figure 3: IBF Decode. We first scan the IBF for pure cells and add tkese indices (3&4) to the Pure list (Step 1). In Step 2, we dequeue
the first index from the Pure list, then add the value of thei dSumto the appropriate output set (V. — Da_g). We then remove V
from the IBF by using the & hash functions to find where it was inserted during encoding and subbacting it from these cells. Finally,

if any of these cells have now become pure, we add them to the Puretl{Step 4). We repeat Steps 2 through 4 until no items remain
in the Pure list.

item in S is inserted intoB, and each item iA" is deleted fromB. PROOF LetY; be the size of the union of strata numbered
Then with probability at mosD(d~") the IBFDecode operation or greater forj = 0,1,...,4, and letu; be its expectation, that
will fail to correctly recoverS andT'. is, u; = E(Y;) = m/2’. By standard Chernoff bounds (e.g.,

PrROOF The proof follows immediately from the previous anal- see [18]), for > 0,

ysis for invertible Bloom filters (e.g., see [13])[] Pr(Y; > (1+06)u;) < o Hid2/4
We also have the following. and

—ui62/4

COROLLARY 1. LetS andT be two sets having at mostele- Pr(Y; < (1=0)u;) <e ™77
ments in their symmetric difference, and ¢ and Br be invert- By takingd = /4(s + 2)(2¢/m) In 2, which isO(\/W) we
ible Bloom filters, both with the parameters as stated in Theorem 1, have that the probability that a parti’culﬁj is not within a rr;ulti-

with Bs representing the se anngT representing the sef’. plicative factor ofl + § of its expectation is at most
Then with probability at mos©(d™") we will fail to recoversS

and T by applying the IBFSubtract operation #s and Br and 9p—Hi8?/4 < 9~ (s+1)2°77
then applying the IBFDecode operation to the resulting invertible
Bloom filter. Thus, by a union bound, the probability that dryis not within a

multiplicative factor ofl + § of its expectation is at most

=0

whichisatmose™°. [

ProoOF DefineS’ =S — T andT’ =T — S. ThenS’ andT”’
are disjoint sets of total size at mastas needed by Theorem 1[]

The corollary implies that in order to decode an IBF that uses 4
independent hash functions with high probability, then one needs
an overhead of 4+ 1 = 5. In other words, one has to usé cells,
whered is the set difference. Our experiments later, however, show
that an overhead that is somewhat less thanffices. This gap is

narrowed in [13] leveraging results on finding a 2-core (analogous  1,corem 2. Let € and § be constants in the intervdD, 1)

to aloop) in randor_n hypergraphs. o . . and letS and T" be two sets whose symmetric difference has car-
Let us next consider the accuracy of our stratified size estimator. dinality d. If we encode the two sets with our strata estimator, in

Suppose that a séthas cardinalityn, and let; be any natural num-
ber. Then theth stratum of our strata estimator f§rhas expected
cardinalitym /2°. The following lemma shows that our estimators
will be close to their expectations with high probability.

Putting these results together, we have the following:

which each IBF in the estimator h@scells usingk hash functions,
whereC' andk are constants depending only eandd, then, with
probability at leastl — ¢, it is possible to estimate the size of the
set difference within a factor df + § of d.

LEMMA 1. For anys > 1, with probabilityl — 27°, and for PROOF By the same reasoning as in Corollary 1, each IBF at
all j < ¢, the cardinality of the union of the strata numbergdr leveli in the estimator is a valid IBF for a sample of the symmetric
greater is within a multiplicative factor af + O(/s2?/m) of its difference ofS andT" in which each element is sampled with prob-

expectation. ability 1/2°7'. By Theorem 1, having each IBF be@f= (k+1)g



cells, wherek = [log1/¢| andg > 2, then we can decode a set of Applicati —
) : | 2 4 . pplication Data
g elements with probability at least— /2. Application Application

We first consider the case wheér< ¢35 =2 log(1/¢), wherecg is A . KevDIff
the constant in the big-oh of Lemma 1. That is, the size of the sym- ﬁ::ﬁ‘o';‘z Ley ) O-\gg?f S (R
metric difference betweefi andT is at most a constant depending Diff( locl, loc2 ) "
only one andé. In this case, if we take Y offe Application

g = max {2, [c50 " log(1/€)]} @L ---------------

andk = [log1/€], then the level-0 IBF, witlC' = (k + 1)d

cells, will decode its set with probability at leaist- ¢/2, and our

estimator will learn the exact set-theoretic difference betwgen  Figure 4: KeyDiff computes the set difference between any two

andT’, without error, with high probability. instances and returns this information to the application.
Otherwise, leti be such thatl/2" ~ c§6%/log(1/¢) and let

g = max {2, [c50 *log(1/€)]} andk = [log1/e€], as above.

+| KeyDiff

A
O,
\

\

So, with probabilityl — ¢/2, using an IBF o' = (k + 1)d cells, The KeyDiff service is implemented using a client-server model
we correctly decode the elements in tttestratum, as noted above. ~ @nd is accessed through an API written in C. When a client re-
By Lemma 1 (withs = [log 1/€] + 1), with probability 1 — ¢/2, quests the difference between its local set and the set on a remote
the cardinality of the number of items included in thieand higher ~ Nost, KeyDiff opens a TCP connection and sends a request contain-
strata are within a multiplicative factor df+ § of its expectation. ~ Ng @n estimator. The remote KeyDiff instance runs the estimation
Thus, with high probability, our estimate faris within a1 + algorithm to determine the approximate size of the difference, then
factor ofd. [ replies with an IBF large enough for the client to decode with high-

probability. All requests and responses between KeyDiff instances
Comparison with Coding: Readers familiar with Tornado codes  travel over a single TCP connection and thief f operation com-

will see a remarkable similarity between the decoding procedure pletes with only a single round of communication.
used for Tornado codes and IBF’s. This follows because set+econ  KeyDiff provides fastedi f f operations through the use of pre-
ciliation and coding are equivalent. Assume that we have a system-computation. Internally, KeyDiff maintains an estimator structure
atic code that takes a set of keys belonging to aSseand codes that is statically sized and updated online as keys are added and re-
it using check word€; throughC,,. Assume further that the code ~ moved. However, computing the IBF requires the approximate size
can correct for up td erasures and/or insertions. Note that Tornado of the difference, a value that is not know until after the estima-

codes are specified to deal only with erasures not insertions. tion phase. In scenarios where computation is a bottleneck, Key-
Then, to compute set differenck could send the check words  Diff can be configured to maintain several IBF’s of pre-determined

C, throughC,, withoutsending the "data words" in s&ty. When sizes online. After the estimation phase, KeyDiff returns the best

B receives the check word€3 can treat its seSp as the data pre-computed IBF. Thus, the computational cost of building the

words. Then, together with the check words,can computes 4 IBF can be amortized across all of the callstbd andr enpve.

and hence the set difference. This will work as longSashas at This is reasonable because the cost of incrementally updating

mostd erasures or insertions with respect to Sgt the Strata Estimator and a few IBF's on key update is small (a few

Thus any code that can deal with erasures and insertions can bgnicroseconds) and should be much smaller than the time for the
used for set difference, and vice versa. A formal statement of this application to create or store the object corresponding to the key.
equivalence can be found in [15]. This equivalence explains why For example, if the application is a P2P application and is synchro-
the existing deterministic set difference scheme, CPI, is analogoushizing file blocks, the cost to store a new block on disk will be at
to Reed-Solomon coding. It also explains why IBF’s are analogous least a few milliseconds. We will show in the evaluation that if the
to randomized Tornado codes. While more complicated Tornado- IBF’s are precomputed, then the latencydoff f operations can be
code like constructions could probably be used for set difference, 100’s of microseconds for small set differences.
the gain in space would be a small constant factor from2sbtp
d + ¢, the increased complexity is not worthwhile because the real . EVALUATION
gain in set reconciliation is going down fro@(n) to O(d), where

nis the size of the original sets. Our evaluation seeks to provide guidance for configuring and

predicting the performance of Difference Digests and the KeyDiff

system. We address four questions. First, what are the optimal pa-

5. THE KEYDIFF SYSTEM rameters for an IBF? (Section 6.1). Second, how should one tune
We now describ&eyDiff, a service that allows applications to  the Strata Estimator to balance accuracy and overhead? (Section 6.2).

compute set differences using Difference Digests. As shown in Third, how do IBF's compare with the existing techniques? (Section 6.3).

Figure 4, the KeyDiff service provides three operatiady, r enove, Finally, for what range of differences are Difference Digests most

anddi f f . Applications can add and remove keys from an instance effective compared to the brute-force solution of sending all the

of KeyDiff, then query the service to discover the set difference be- keys? (Section 6.4).

tween any two instances of KeyDiff. Our evaluation uses " of all 32-bit values. Hence, we allo-
Suppose a developer wants to write a file synchronization appli- cate 12 bytes for each IBF cell, with 4 bytes given to eadBum

cation. In this case, the application running at each host would maphashSumandcount field. As input, we created pairs of sets

files to unique keys and add these keys to a local instance of Key- containingkeysfrom U. The keys in the first sef§ 4, were chosen

Diff. To synchronize files, the application would first run KeyDiff's ~ randomly without replacement. We then chose a random subset of

di f f operation to discover the differences between the set stored S4 and copied it to the second sétz. We exercised two degrees

locally and the set stored at a remote host. The application can thenof freedom in creating our input sets: the number of key§'in

perform the reverse mapping to identify and transfer the files that and the size of the difference betwegn andSg, which we refer

differ between the hosts. to as the experimentdelta For each experiment we created 100
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Figure 5: Rate of successful IBF decoding with 50 cells and 4  Figure 6: Probability of successful decoding for IBF’s with 50
hash functions. The ability to decode an IBF scales with the size  cells for different deltas. We vary the number of hashes used to

of the set difference, not the size of the sets. assign elements to cellsh@sh_count ) from 2 to 6.
2.4
file pairs. As our objective is set reconciliation, we consider an ex- \= Hashont=3 ——
periment successful only if we are able to successfully determine 2.2 P¥E Hash Cnt=5 ---x--
all of the elements in the set difference. , ‘\‘ \ Hash Cnt =6 @
3! T )

6.1 Tuning the IBF > Bl \E .

We start by verifying that IBF size scales with the size of the set % N I m.,
difference and not the total set size. To do so, we generated sets g 16 ‘v\x‘ N\ B
with 100, 1K, 10K, 100K and 1M keys, and deltas between 0 and & " K\x\ L
50. We then compute the set difference using an IBF with 50 cells. 14 \/'\ e e e e T

Figure 5 shows the success rate for recovering the entire set dif- 2
ference. We see that for deltas up to 25, the IBF decodes completely ‘
with extremely high probability, regardless of set size. At deltas of 1
45 and 50 the collision rate is so high that no IBF's are able to 10 100 1000 10000 100000
completely decode. The results in Figure 5 confirm that decoding Set Difference
success is independent of the original set sizes.

Determining IBF size and number of hash functions. Both Figure 7: We evaluate sets containing 100K elements and plot

the number of IBF cells anldash_count (the number oftimesan  the minimum space overhead (IBF cells/delta) required to com-

element is hashed) are critical in determining the rate of successfulpletely recover the set difference with 99% certainty.

decoding. To evaluate the effectltish_count , we attempted to

decode sets with 100 keys and deltas between 0 and 50 using an IBF

with 50 cells anchash_count ’s between 2 and 6. Since the size decode. However, beyond deltas of 1000, the memory overhead

of the sets does not influence decoding success, these results areeaches an asymptote. As before, we shash_count of 4 de-

representative for arbitrarily large sets. We ran this configuration codes consistently with less overhead than 5 or 6, but interestingly,

for 1000 pairs of sets and display our results in Figure 6. hash_count = 3 has the lowest memory overhead at all deltas
For deltas less than 3@ash_count =4 decodes 100% of the greater than 200.

time, while higher and lower values show degraded success rates. . .

Intuitively, lower hash counts do not provide equivalent decode 6.2 Tunmg the Strata Estimator

rates since processing each pure cell only removes a key from a To efficiently size our IBF, the Strata Estimator provides an es-

small number of other cells, limiting the number of new pure cells timate ford. If the Strata Estimator over-estimates, the subsequent

that may be discovered. Higher valueshafsh_count avoid this IBF will be unnecessarily large and waste bandwidth. However, if
problem but may also decrease the odds that there will initially be the Strata Estimator under-estimates, then the subsequent IBF may
a pure cell in the IBF. For deltas greater than BAsh_count not decode and cost an expensive transmission of a larger IBF. To

= 3 provides the highest rate of successful decoding. However, atprevent this, the values returned by the estimator should be scaled
smaller deltas, 3 hash functions are less reliable than 4, with ap-up so that under-estimation rarely occurs.
proximately 98% success for deltas from 15 to 25 and 92% at 30. In Figure 8, we report the scaling overhead required for var-
To avoid failed decodings, we must allocate IBF's with more ious strata sizes such that 99% of the estimates will be greater
thand cells. We determine appropriate memory overheads (ratio of than or equal to the true difference. Based on our findings from
IBF’s cells to set-difference size) by using sets containing 100K el- Section 6.1, we focus on Strata Estimators whose fixed-size IBF’s
ements and varying the number of cells in each IBF as a proportion use ahash_count of 4. We see that the scaling overhead drops
of the delta. We then compute the memory overhead required for sharply as the number of cells per IBF is increased from 10 to 40,
99% of the IBF'’s to successfully decode and plot this in Figure 7. and reaches a point of diminishing returns after 80 cells. With
Deltas below 200 all require at least 50% overhead to completely 80 cells per stratum, any estimate returned by a Strata Estimator



35 Delta =10 —— oal | Strata (16 strata, 80 cells) ——
Delta = 100 --%-- . 1 Min-wise (3840 hashes) --x--
Delta = 1000 ---%-- Hybrid (7 strata, 2160 hashes) ---x--
3t Delta = 10000 & 22 %
- \ Delta = 100000 —-=-— - \
© \ o] \
[] \ o 2 \
= . <
s 25f1 5 \
5 .\ 6 1.8 )
c c k
o o \
3 2 g 1.6 k
o e \
8 8 14 _*/*\’; :
15 B W . o
e S Ef’*”-!'?:ﬁ-'—ﬁ:;ﬁ;: ————— i 12 . j S —— 'x*
; N 1 TM Rk SEoN
20 40 60 80 100 120 140 160 10 100 1000 10000 100000
IBF Size (in cells) Set Difference

Figure 8: Correction overhead needed by the Strata Estimator Figure 9: Comparison of estimators when constrained to 15.3
to ensure that 99% of the estimates are greater than or equal to KB. We show the scaling overhead to ensure that 99% of esti-
the true value of d when using strata IBF's of various sizes. mates are greater than or equal to the true delta.

should be scaled by a factor of 1.39 to ensure that it will be greater additional Min-wise hashes. From Figure 9 we see that the Strata
than or equal tal 99% of the time. Estimator performs better for deltas under 2000. Thus, we would
Strata Estimator vs. Min-wise. We next compare our Strata  like to keep at mostlog,(2000)| = 10 strata. Since we expect
Estimator to the Min-wise Estimator [3, 4] (see Section 2). For our the most selective strata to contain few elements for a difference
comparison we used sets with 100K elements and deltas ranging®f 2000, we are better served by eliminating them and giving more
from 10 to 100K. Given knowledge of the approximate total set SPace to Min-wise. Hence, we retain 7 strata, and use the remaining
sizes a priori, the number of strata in the Strata estimator can be8640 bytes to allocate a Min-wise estimator with 2160 hashes.
adjusted to conserve communication costs by only including parti-  Results from our Hybrid Estimator are plotted in Figure 9 with
tions that are likely to contain elements from the difference. Thus, the results from the Strata and Min-wise estimators. We see that
we choose the number of strata to [deg, (dmaz) |, Wheredaz the Hybrid Estimator closely follows thg results of the Strata Esti-
is the largest possible difference. Since our largest delta is 100K, mator for all deltas up to 2000, as desired. For deltas greater than
we configure our estimator with 16 strata, each containing 80 cells 2000, the influence of errors from both Strata and Min-wise cause
per IBF. At 12 bytes per IBF cell, this configuration requires ap- the scaling overhead of the Hybrid estimator to drift up to 1.45
proximately 15.3 KB of space. Alternatively, one could allocate a (vVersus 1.39% for Strata), before it progressively improves in ac-
Min-wise estimator with 3840 4-byte hashes in the same space. ~ €uracy, with perfect precision at 100K. While the Hybrid Estimator
In Figure 9, we compare the scaling overhead required such thatSlightly increase our scaling overhead from 1.39 to 1.45 (4.3%), it
99% of the estimates from Strata and Min-wise estimators of the &/S0 provides improved accuracy at deltas larger than 10% where
same size are greater than or equal to the true delta. We see tha@Ver-estimation errors can cause large increases in total data sent.
the overhead required by Min-wise diminishes from 1.35 to 1.0  Difference Digest Configuration Guideline.By using the Hy-
for deltas beyond 2000. Strata requires correction between 1.33 toPrid Estimator in the first phase, we achieve an estimate greater than
1.39 for the same range. However, the accuracy of the Min-wise ©F equal to the true difference size 99% of the time by scaling the
estimator deteriorates rapidly for smaller delta values. In fact, for result by 1.45. In the second phase, we further scale by 1.25t0 2.3
all deltas below 200, the 1st percentile of Min-wise estimates are and sethash_count to either 3 or 4 depending on the estimate

0, resulting in infinite overhead. Min-wise's inaccuracy for small from phase one. In practice, a simple rule of thumb is to construct
deltas is expected as few elements from the difference will be in- @n IBF in Phase 2 with twice the number of cells as the estimated

cluded in the estimator as the size of the difference shrinks. This difference to account for both under-estimation and IBF decoding
makes Min-wise very sensitive to any variance in the sampling pro- Overheads. For estimates greater than 200, 3 hashes should be used

cess, leading to large estimation errors. In contrast, we see that theand 4 hashes otherwise.
Strata Estimator provides reasonable estimates for all delta values . . .
and is particularly good at small deltas, where scaling overheads 6.3 Difference D'QESt vs. Prior Work
range between 1.0 and 1.33. We now compare Difference Digests to Approximate Recon-
Hybrid Estimator. The Strata Estimator outperforms Min-wise ciliation Trees ART) [5], Characteristic Polynomial Interpolation
for small differences, while the opposite occurs for large differ- (CPI Sync) [17], and simply trading a sorted list of keyisi(st ).
ences. This suggests the creation of a hybrid estimator that keepsMe note thatART’s were originally designed to computeost but
the lower strata to accurately estimate small deltas, while augment-not all the keys inS4 — Sp. To address this, the system built
ing more selective strata with a single Min-wise estimator. We par- in [5] used erasure coding techniques to ensure that hosts received
tition our set as before, but if a strata does not exist for a partition, pertinent data. While this approach is reasonable for some P2P
we insert its elements into the Min-wise estimator. Estimates are applications it may not be applicable to or desirable for all applica-
performed by summing strata as before, but also by including the tions described in Section 1. In contra@El Sync andLi st are
number of differences that Min-wise estimates to be in its partition. always able to recover the set difference.
For our previous Strata configuration of 80 cells per IBF, each  Figure 10 shows the data overhead required by the four algo-
strata consumes 960 bytes. Therefore, we can trade a strata for 240ithms. Given thatART's were not designed for computing the
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ART --x-- I Gbps Ethernet and report an average RTT of€93

ng'%g”S‘; e "oy Computational Overhead. In the KeyDiff model, the applica-

: s tions at the client and server both add keys to KeyDiff. Wlehf

\\ is called the client requests the appropriate data from the server to

300 PN compute the set difference. We begin by evaluating the computa-
\ tion time required to add new keys to KeyDiff and the time required
N

400

KBytes

Y B ) by the server to generate its response when using each algorithm.
200 B \ For this experiment, we added 1 million keys to the KeyDiff server
. oL

then requested a structure to decode a difference of 100. In Table 1,
we show the average time required for these operations.
- R For adding new keys, we see thatst andART are slower than
Py T - Y B - R both CPI Sync and| BF since both performog(|S|) operations
10 100 1000 10000 100000 —thelLi st to do an ordered insertion, aldRT to update hashes
Set Difference along a path in its tree. In contragiPl Sync and| BF simply
store the new keys to an unordered list until they learn the size of

Figure 10: Data transmission required to reconcile sets with  the structure to build from the client’s request.
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100K elements. We show the space needed BRT and Differ- For server compute time, we note that the latencies correspond
ence Digests to recover 95% and 100% of the set difference,  closely with the number of memory locations each algorithm touches.
respectively, with 99% reliability. Li st is quickest at 6.545 msec, as the server only needs to read

and serialize the keys. In contrabBF andCPI Sync must allo-
cate and populate appropriately-sized structures by scanning their
) o stored lists of keys. FdrBF this requires updating 4 cells per key,
complete set difference, we arbitrarily choose the standard of 95% yhjle cP| Sync must evaluate 100 linear equations, each involv-
of the difference 99% of the time and plot the amount of data re- jng al| 1M keys. The time folART is roughly twice that of BF

quired to achieve this level of performance wiRT. ForCPI Sync, as it must traverse its tree containi2igh| nodes, to build a Bloom

we show the data overhead needed to recover the set difference. Irgjjier representation of its set.

practice, the basic algorithm must be run with knowledge of the At the bottom of Table 1, we show trald and server-compute
difference size, or an interactive approach must be used at greatefimes for the three estimation algorithms. Note that since the length
computation and latency costs. Hence, we show the best case overyf the |BF's in the Strata and Hybrid estimators are static, they can
head forCPI Sync. Finally, we plot the data used by Difference e ypdated online. We also note that although the Hybrid estimator
Digest for both estimation and reconciliation to compute the com- 5intains 2160 Min-wise hash values, its addition times are sig-

plete difference 99% of the time. S nificantly lower that the original Min-wise estimator. This occurs
The results show that the bandwidth requiredbgt andART ~  pecause the Min-wise structure in the Hybrid estimator only sam-
decreases as the size of the difference increases. This is mtumvep,es the elements not assigned to one of the seven strata. Thus,
since bothLi st and theART encode the contents &z, which while the basic Min-wise estimator must compute 3840 hashes for
is diminishing in size as the size of the difference gropfs( = each key, the Hybrid Min-wise estimator only computes hashes for
[Sa| — | D). However,ART outperformsLi st since its compact  gpproximatelyl /2% of the elements in the set. Since each of the
representation requires fewer bits to capture the nodés in estimators is updated during issld operations, minimal server

While the size of the Hybrid Estimator stays constant, the IBF compute time is required to serialize each structure.
grows at an average rate of 24 Bytes (three 4-byte values and @ cgsts and Benefits of Incremental UpdatesAs seen in Table 1,
factor of 2 inflation for accurate decoding) per key in the differ- he server computation time for many of the reconciliation algo-
ence. We see that while Difference Digests @il Sync have the rithms is significant and will negatively affect the speed of our
same asymptotic communication complexi@fl Sync requires g f f operation. The main challenge foBF andCPI Sync is that
less memory in practice at approximately 10 bytes per element in the sjze of the difference must be known before a space-efficient
the difference. o structure can be constructed. We can avoid this runtime compu-
_Algorithm Selection Guidelines.The results show thatforsmall  {4tion by maintaining several IBF’s of predetermined sizes within
differences, Difference Digests a#Pl Sync require an order of  keyDiff. Each key is added to all IBF’'s and, once the size of the dif-
magnitude less bandwidth thaRT and are better up to a differ-  forence is known, the smallest suitable IBF is returned. The number
ence of 4,000 (4%) and 10,000 (10%), respectively. However, the ot |BF's to maintain in parallel will depend on the computing and
fact thatART uses less space for large deltas is misleading since we p5ndwidth overheads encountered for each application.
have allowed\RT to decode only 95% of the differenc®PI Sync | Taple 1, we see that the time to add a new key when doing pre-
provides the lowest bandwidth overhead and decodes determ'”'St"computation on 8 IBF’s takes 3%, two orders of magnitude longer
cally, making ita good choice when differences are small and band- than |BF without precomputation. However, this reduces the server
width is precious. However, as we discuss next, its computational compute time to from 3.9 seconds to 22 a massive improve-

overhead is substantial. ment fordi f f latency. For most applications, the small cost (10’s
of microseconds) for incremental updates during each add opera-
6.4 KeyDiff Performance tion should not dramatically affect overall application performance,

while the speedup duringj f f (seconds) is a clear advantage.

Diff Performance. We now look at time required to run the
di f f operation. As we are primarily concerned with the perfor-
mance of computing set differences as seen by an application built
on top of these algorithms, we use incremental updates and measure

We now examine the benefits of Difference Digest in system-
level benchmarks using KeyDiff service described in Section 5.
We quantify the performance of KeyDiff using Difference Digests
versusART, CPI Sync, andLi st. For these experiments, we
deployed KeyDiff on two dual-processor quad-core Xeon servers



R.econciliation Algorithm Add (us) Serv. Compute) 12d, while Li st 'sis [Sa| + |Sz| = 2|Sa| — d. Thus, they will

"&'R?t (sorted) }'ggg 6 9367'58%51rpnssicc have equivalent latency dt= 52 |Sa, or a difference of 15%.

CPI Sync (d=100) 0.216 | 34.051.480 mseq Guidance for Constrained Computation. We conclude that,

| BF (no precompute) 0.217 | 3,957.847 msed for our high-speed test environment, precomputed Difference Di-

| BF (1x precompute) 3.858 0.023 msec gests are superior for small deltas (less than 2%), while sending a

| BF (8x precompute) 31.320 0.022 msec full list is preferable at larger difference sizes. We argue that in
environments where computation is severely constrained relative

Estimation Algorithms (precompute) to bandwidth, this crossover point can reach up to 15%. In such

Min-wise (3840 hashes) 21.909 0.022 msec scenarios, precomputation is vital to optimitief f performance.

Strata (16x80 cells) 4.224 0.021 msec . . . .

Hybrid (7x80 cells + 2160 hash 4319 0.023 msec Varying BandW|dth. We now investigate how the latency of
each algorithm changes as the speed of the network decreases. For
this we consider bandwidths of 10 Mbps and 100Kbps, which are

Table 1: Time required to add a key to KeyDiff and the time speeds typical in wide-area networks and mobile devices, respec-
required to generate a KeyD|ff response for sets of 1M keys tIVely By Scaling the transmission times from our preViOUS exper-
with a delta of 100. The time peradd call is averaged across iments, we are able to predict the performance at slower network
the insertion of the 1M keys. speeds. We show these results in Figure 11b and Figure 11c.

As discussed previously, the data required_bgt , CPl Sync,
and Difference Digests i§.Sg|, 10d and roughly24d, respectively.
Thus, as the network slows and dominates the running time, we ex-
pect that the low bandwidth overhead@®l Sync and Difference
Digests will make them attractive for a wider range of deltas ver-
sus the sortedli st. With only communication overheadj st
will take 4|Sg| = 4(]Sa| — d), which will equal Difference Di-
gest’s running time af = ﬁ|SA|, or a difference of 14%. As
the communication overhead for Difference Digest grows due to
widely spaced precomputed IBF’s the trade off point will move to-
ward differences that are a smaller percentage of the total set size.
However, for small to moderate set sizes and highly constrained
bandwidths KeyDiff should create appropriately sized IBF’s on de-
mand to reduce memory overhead and minimize transmission time.
Guidance for Constrained Bandwidth. As bandwidth becomes

the wall clock time required to compute the set difference. Differ-
ence Digests are run with 15.3 KB dedicated to the Estimator, and
8 parallel, precomputed IBF's with sizes ranging from 256 to 400K
cells in factors of 4. To present the best case scen@RbSync
was configured with foreknowledge of the difference size and the
correctly sizedCPl Sync structure was precomputed at the server
side. We omit performance results fRT as it has the unfair ad-
vantage of onlyapproximatingthe membership oD 4_ 5, unlike
the other algorithms, which return all 845 andDp_ 4.

For our tests, we populated the first hodtwith a set of 1 mil-
lion, unique 32-bit keysS 4, and copied a random subset of those
keys, Sg, to the other hostB. From hostA we then query Key-
Diff to compute the set of unique keys. Our results can be seen in : : - . .
Figure 11a. We note that there are 3 components contributing to the predominant factor in reconciling a set difference, the algorithm

latency for all of these methods, the time to generate the response a !th the Iowest_data overhead shoulq be employed. Thust
. . . will have superior performance for differences greater than 14%.
hostB, the time to transmit the response, and the time to compare

the response to the set stored at hdstSince we maintain each E:J)tr tsh'zaglr%;gggfng?ms'ﬁlsHLBFer\:\Qlloic?rzivgizfisitﬁérggggr&?\?\lﬁ'n
data structure online, the time for haBtto generate a response is recomouted IBF'sp For constF;ained networks and moderate set
negligible and does not affect the overall latency. P P ’

We see from these results that thiest shows predictable per- sizes, IBF’s could be computed on-demand to optimize communi-

f . . - cation overhead and minimize overall latency.

ormance across difference sizes, but performs particularly elell r

ative to other methods as the size of the difference increases beyon

20K. Since the size of the data seletcreasess the size of the dif- d7 CONCLUSIONS

ference increases, the transmission time and the time to sort and We have shown how Difference Digests can efficiently compute
compare atA decrease accordingly. On the other hand, the Differ- the set difference of data objects on different hosts using computa-
ence Digest performs best at small set differences. Since the estion and communication proportional to the size of the set differ-
timator is maintained online, the estimation phase concludes very ence. The constant factors are roughly 12 for computation (4 hash
quickly, often taking less than 1 millisecond. We note that precom- functions, resulting in 3 updates each) and 24 for communication
puting IBF’'s at various sizes is essential and significantly reduces (12 bytes/cell scaled by two for accurate estimation and decoding).

the latency by the IBF’s construction at haBtat runtime. Fi- The two main new ideas are whole set differencing for IBF’s, and
nally, we see that even though its communication overhead is very a new estimator that accurately estimates small set differences via a
low, the cubic decoding complexity f@Pl Sync dramatically in- hierarchy of sampled IBF's. One can think of IBF’s as a particularly
creases its latency at differences larger than 100. simple random code that can deal with both erasures and insertions

In considering the resources required for each algorithingt and hence uses a simpler structure than Tornado codes but a similar
requirest|Sg| bytes in transmission and touchék: | + |Sg| val- decoding procedure.

ues in memory. Difference Digest has a constant estimation phase We learned via experiments that 3 to 4 hash functions work best,
of 15.3KB followed by an average &f4d bytes in transmission and that a simple rule of thumb is to size the second phase IBF equal
and3d x hash_count memory operations (3 fields in each IBF to twice the estimate found in the first phase. We implemented
cell). Finally, CPI Sync requires onlyl0d bytes of transmission Difference Digests in a KeyDiff service run on top of TCP that
to send a vector of sums from it's linear equations, Butemory can be utilized by different applications such as Peer-to-Peer file
operations to solve its matrix. transfer. There are three calls in the API (Figure 4): calls to add
If our experimental setup were completely compute bound, we and delete a key, and a call to find the difference between a set of
would expectLi st to have superior performance for large differ- keys at another host.
ences and Difference Digest to shine for small difference. If we  Inaddition, using 80 cells per strata in the estimator worked well
assume dash_count of 4, then Difference Digest’s latency is  and, after the first 7 strata, augmenting the estimator with Min-
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Figure 11: Time to run KeyDiff di ff for |Sa|= 1M keys and varying difference sizes. We show our measured relésiin 11a, then
extrapolate the latencies for more constrained network conditios in 11b and 11c.

wise hashing provides better accuracy. Combined as a Difference [7] G. Cormode and S. Muthukrishnan. What's new: finding
Digest, the IBF and Hybrid Estimator provide the best performance significant differences in network data streatEEE/ACM
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the optimal algorithm. streams via dynamic inverse sampliiv.DB '05.
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the gain in transmission time compared to simple schemes that send Invertible Bloom Filters|IEEE Trans. on Knowledge and
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gest is ten times or more faster. Precomputation adds only a few for massive data streamBIAM Journal on Computing

microseconds to updating a key. 32(1):131-151, 2002.

While we have implemented a generic Key Difference service [12] P. Flajolet andé N. Martin. Probabilistic counting

using Difference Digests, we believe that a KeyDiff service could aigorithms for da.ta base abplicatiodsof Computer and

be used by some application involving either reconciliation or dedu- System Scienced1(2):182 — 209, 1985
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