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ABSTRACT
The present work deals with the problem of information ac-
quisition in a strategic networked environment. To study
this problem, Kleinberg and Raghavan (FOCS 2005) intro-
duced the model of query incentive networks, where the root
of a binomial branching process wishes to retrieve an infor-
mation – known by each node independently with probabil-
ity 1/n – by investing as little as possible. The authors con-
sidered fixed-payment contracts in which every node strate-
gically chooses an amount to offer its children (paid upon
information retrieval) to convince them to seek the informa-
tion in their subtrees. Kleinberg and Raghavan discovered
that the investment needed at the root exhibits an unex-
pected threshold behavior that depends on the branching
parameter b. For b > 2, the investment is linear in the ex-
pected distance to the closest information (logarithmic in
n, the rarity of the information), while, for 1 < b < 2, it
becomes exponential in the same distance (i.e., polynomial
in n). Arcaute et al. (EC 2007) later observed the same
threshold behavior for arbitrary Galton-Watson branching
processes.

The DARPA Network Challenge — retrieving the loca-
tions of ten balloons placed at undisclosed positions in the
US — has recently brought practical attention to the prob-
lems of social mobilization and information acquisition in a
networked environment. The MIT Media Laboratory team
won the challenge by acting as the root of a query incen-
tive network that unfolded all over the world. However,
rather than adopting a fixed-payment strategy, the team
implemented a different incentive scheme based on 1/2-split
contracts. Under such incentive scheme, a node u who does
not possess the information can recruit a friend v through a
contract stipulating that if the information is found in the
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subtree rooted at v, then v has to give half of her own reward
back to u.

Motivated by its empirical success, we present a compre-
hensive theoretical study of this scheme in the game theo-
retical setting of query incentive networks. Our main result
is that split contracts are robust — as opposed to fixed-
payment contracts— to nodes’ selfishness. Surprisingly, when
nodes determine the splits to offer their children based on
the contracts received from their recruiters, the threshold
behavior observed in the previous work vanishes, and an
investment linear in the expected distance to the closest in-
formation is sufficient to retrieve the information in any ar-
bitrary Galton-Watson process with b > 1. Finally, while
previous analyses considered the parameters of the branch-
ing process as constants, we are able to characterize the rate
of the investment in terms of the branching process and the
desired probability of success. This allows us to show im-
provements even in other special cases.
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1. INTRODUCTION
A challenging class of crowdsourcing problems requires

an interested party to provide incentives for large groups
of people to contribute to the search and retrieval of rare
information [19, 14, 7]. The small world problem, i.e. dis-
tributed routing of messages to unknown individuals, is the
seminal example of this class and has illustrated the diffi-
culty of the approach for almost 50 years [15, 21, 17, 4, 22].



In this class of problems, individuals in the social network
act as intermediaries to create a channel between the querier
and the answer. Observe that the chief difficulty of this ap-
proach is to offer incentives to the individuals to propagate
the query further in the network as well as to return the
answer all the way back to the querier [4]. The goal is there-
fore to incentivize participation of the users using some form
of (possibly financial) reward. In this way, a node who does
not know the answer but is offered a sufficiently high reward
can act as intermediary and propagate the query by offer-
ing the neighbors a share of its reward. This setting models
the social network as a marketplace of information where
the users strategically act in order to maximize their utility,
and raises several questions about the system’s performance
and the incentive propagation, the main one being: can we
retrieve the answer to a difficult query when given a limited
budget?

The Defense Advanced Research Projects Agency (DARPA),
a research organization of the United States Department of
Defense, designed a so called “Network Challenge” that con-
veyed a positive answer to this question.1 The challenge con-
sisted of locating ten moored red weather balloons placed at
ten undisclosed locations in the continental United States.
A single $40,000 cash prize was allocated for the first partic-
ipant to submit the correct latitude and longitude (within
one mile error) of all ten balloons within the contest pe-
riod. In particular, the competition consisted in recruiting
a team to achieve the goal. This task posed varied issues
of large-scale, time-critical mobilization. In particular, in
order to guarantee the participation and coordination of a
large team, an adequate structure of economic incentives
had to be built.

The MIT Media Laboratory team won the competition
in less than 9 hours, adopting a recruitment scheme based
on recursive incentives.2 Specifically, using the $40,000 they
could possibly win, they allocated an amount of $4,000 for
finding each balloon. For each balloon, they would distribute
the $4,000 up the chain of participants leading to successful
balloon spotting, as described in their website: “[In the case
we win the competition,] we’re giving $2,000 per balloon
to the first person to send us the correct coordinates, but
that’s not all – we’re also giving $1000 to the person who
invited them. Then we’re giving $500 whoever invited the
inviter, and $250 to whoever invited them, and so on...”.
This is equivalent to say that a node u who does not have
the desired answer, can offer its friends a 1/2-split contract,
stipulating that if the answer is found in the subtree of a
child v of u, then u will get back from v a 1/2 fraction of
whatever amount v gets. However, if u is not the querier,
the total amount pocketed by u is less, as u has to give a 1/2
fraction of its reward to its recruiter.

While the success of this strategy has been hailed as an
empirical testimony to the power of incentive structures [20],
the theoretical efficiency of the proven scheme has remained
an open question, and motivates this work. In particular,
we analyze this economic structure in the model for query
incentive networks introduced By Kleinberg and Raghavan
in [12]. This model considers a competitive environment
where every node plays strategically. To fit the split con-
tracts to this model, we generalize the splits to any fraction

1https://networkchallenge.darpa.mil/
2http://balloon.media.mit.edu/

0 < ρ < 1, in the sense that any node u can offer a child
v a ρ-split contract stipulating the following: if v has the
answer, then v would pocket a (1 − ρ) of the whole reward
while returning a fraction ρ to u; if v does not have the
answer, then v can in turn offer some ρ′-split to its (still
unrecruited) friends, and so on. Given the strategic setting,
nodes will choose the splits to offer to their children so to
maximize their expected payoffs; observe that contracts be-
tween different nodes can have different splits — and this is
indeed the case in the Nash equilibrium as our results show.
The details of the original model introduced in [12] follow.

1.1 Query Incentive Networks
The scenario of interest is that of a node, the root, that

is willing to invest some amount r∗ to retrieve certain in-
formation from a large network in which every node plays
strategically. The main goal is to characterize the tradeoff
between the investment and the rarity of the information.
The model, introduced by Kleinberg and Raghavan [12], is
as follows: the querier node is the root of an infinite d-
ary tree, where each node possesses independently the de-
sired information with probability 1/n, where n represents
the rarity of the answer. The root offers each child u a
“fixed-payment” contract of r∗, stipulating that the root will
pay u that amount upon u providing the answer. The query
propagates down the tree according to the following scheme:
every node u has an integer-valued function fu encoding its
strategies; if u is offered a reward of r by its parent and
does not possess the answer, then in turn it offers a reward
of 1 ≤ fu(r) ≤ r−1 to its children. When the answer to the
query is found, the root selects for payment one among the
answer-holders using a fixed non-strategic rule. The pay-
ment is then propagated down through the path to that
selected node, with each node along the path pocketing its
share. If an intermediate node u on this path was offered r
by its parent, then its overall payoff is r − fu(r)− 1, where
the unit cost is associated with the act of returning the an-
swer3. The game-theoretical aspect of the model is that any
node u chooses the function fu so to maximize its payoff. To
break ties, it is assumed that a node who is offered a reward
of one (and does not possess the answer) will always forward
the query to its children, even if its expected payoff is zero
(since the unit reward would be spent when returning the
answer up to its parent).

As pointed out in [12], there is a subtle deficiency with a
deterministic tree: the Nash equilibria of a game played in
a deterministic network tacitly assume that the nodes know
the entire network. Indeed, in a Nash equilibrium, each node
chooses its best strategy by knowing the strategies of every
other node. However, this is unrealistic, as we want to model
a setting where nodes are only aware of their neighbors. To
deal with this technical issue, Kleinberg and Raghavan con-
sider a network that can be thought as a branching process

3As observed in [12], if nodes placed no value on this answer-
ing effort then the root could simply invest an arbitrarily
small reward ε > 0, and it would retrieve an answer because
each node would have a positive payoff from participating in
the game and returning the answer. To avoid this situation,
a unit price is placed on the effort of returning the answer,
while the cost of participating to the game is zero. This is
motivated by the fact that the cost of forwarding requests
to a list of friends is typically considered negligible in peer-
to-peer and social-network systems [10, 23, 24] (see [12] for
additional details on the motivations).



from the root. In particular, the number of children of each
node is chosen independently from a binomial distribution
Bin(d, q), where q is a constant probability of a node being
present. The expected number of children of a node — i.e.,
the branching factor — is then b = qd. By classical results in
the theory of branching processes, if b < 1 the process dies
out almost surely; therefore there is no amount that the root
can offer to obtain an answer with constant probability if the
rarity n of the answer is large enough. Instead, for any b > 1,
there is a constant non-zero probability that the process will
generate infinitely many nodes, so that the answer is present
within the first O(logn) levels of the tree with high proba-
bility. Nevertheless, Kleinberg and Raghavan show that in
the Nash equilibrium the investment needed at the root can
be much larger than logarithmic in n. Specifically, while
an investment r∗ = O(logn) is sufficient to retrieve the an-
swer with constant probability for b > 2, an investment of
r∗ = nΘ(1) is needed when 1 < b < 2. That is, in the lat-
ter case the root must invest a reward that is exponentially
larger than the expected distance from the closest answer.

Arcaute et al. [1] generalized the work in [12] showing
that this threshold behavior at b = 2 still holds for arbitrary
Galton-Watson branching process. They also proved that
in a ray — a deterministic infinite path (b = 1, but with
zero extinction probability) — the reward needed is super-
exponential in the expected depth of the search tree, that
is r∗ = Ω(n!). Finally, they observed that this threshold
behavior vanishes if the root desires to find the answer with
probability tending to 1: if the desired probability is 1−1/n,
then for any branching process with b > 1 and no extinction,
the needed reward is nΘ(1).

1.2 Our results
We present a theoretical study of the multi-level market-

ing strategies adopted by the winning team of the DARPA
Network Challenge. Given the strong affinity between this
challenge and the model of query incentive networks intro-
duced in [12, 1], we frame these strategies in this model
by considering split contracts as the possible offers between
nodes.

Our main result is that split contracts, unlike fixed-payment
contracts, are robust to a strategic environment, where ev-
ery node selfishly determines the offers to its children based
on the offer received from its parent. We show that for
any constant ε > 0 and Galton-Watson branching process
with b > 1, the Nash equilibrium with split contracts uses
an investment of r∗ = O(logn) to retrieve the answer with
probability at least 1−ζ−ε, where ζ is the extinction proba-
bility of the process. As the expected distance to the closest
answer is Θ(logn) and nodes pay a unit cost to return the
answer, this is a constant approximation with respect to an
ideal centralized non-strategic setting. In other words, the
price of anarchy of the game with split contracts is constant
(ignoring some pathological equilibria, see Section 4 and Ap-
pendix E).

Unlike previous work that assumed the parameters of the
branching process to be held constant, we are also able to
characterize the dependence of the investment with respect
to the branching process and the success accuracy. This al-
lows us to show additional improvements of split contracts
over fixed-payment contracts: for example, for branching
processes with no extinction, an investment of O(n logn)
is enough to retrieve the answer with probability at least

1−1/n, improving upon the nΘ(1) investment provided in [1].
In fact, our result is even stronger since it guarantees a suc-
cess probability of at least 1− ζ − 1/n in general branching
processes. In the case of a ray (where the expected dis-
tance from the closest answer is n), we show that the invest-
ment needed to find the answer with constant probability
is O(n2), while Ω(n!) is needed when using fixed-payment
contracts [1].

1.3 Additional related work
Pickard et al. [16] described and analyzed the winning

strategy of the DARPA Network Challenge. However, we
distinguish ourselves from [16] in both aims and methods.
The authors of [16] are mainly concerned with the motiva-
tion of the exact 1/2-split winning strategy that was imple-
mented by the MIT Media Laboratory, for which they show
that it is in the participants’ interest to recruit the highest
number of friends and back the theory with an empirical
analysis of the diffusion cascades. Our work considers the
more general setting of split contracts in the model of query
incentive networks introduced in [12] and analyzes the effi-
ciency, in terms of investment, of the Nash equilibria.

In the context of query incentive networks with fixed-
payment contracts, Kota and Narahari [13] applied the re-
sults of general branching processes from [1] to analyze the
reward when the degree distribution follows a power-law and
the desired success probability is at least 1− 1/n and show
a threshold behavior of the reward with respect to the scal-
ing exponent. Dikshit and Yadati [3] considered the issue
of the quality of the answers in query incentive networks.
In particular, they define a quality conscious model of in-
centives and derive the same threshold behavior around the
branching factor b = 2 found in [1, 12].

It is worth to mention additional related work that is not
in the context of query incentive networks. Emek et al. [6]
studied strategies of multi-level marketing, in which each
individual is rewarded according to direct and indirect re-
ferrals, and show that geometric reward schemes are the
only guarantee to certain desirable properties. Our setting
is substantially different from [6], as the reward is based
on referral rather that information retrieval. Douceur and
Moscibroda [5] proposed the lottery tree as a mechanism to
incentivize the adoption of a distributed systems and the so-
licitation of new participants. Influence in social networks is
also related to our work. Kempe et al. [11] considered the al-
gorithmic question of selecting an influential set of individu-
als. Jackson and Yariv [9] proposed a game-theoretic frame-
work to model incentives in adoption processes. Hartline
et al. [8] studied influence in social networks from a revenue
maximization point of view. Singer [18] developed incentive-
compatible mechanisms for influence maximization in sev-
eral models.

2. PRELIMINARIES
We model the network as a tree generated via a Galton-

Watson branching process with offspring distribution {ck}dk=0,
that is, ck is the probability that any node has exactly k chil-
dren and

∑d
k=0 ck = 1. We adopt the convention that the

root of the tree is at level 0, its children at level 1, and
so on. The probability generating function of the offspring



distribution is given by

Ψ(x) =

d∑
k=1

ckx
k, 0 ≤ x ≤ 1.

The branching factor of the process is defined as

b = Ψ′(1) =

d∑
k=0

kck.

A fundamental result in the theory of Galton-Watson pro-
cesses states that the extinction probability ζ of a branch-
ing process is the smallest non-negative root of the equation
x = Ψ(x). If follows ζ = 1 if and only if b < 1, or b = 1
with c0 > 0, and 0 ≤ ζ < 1 otherwise. For classical theory
on Galton-Watson branching processes we refer to [2].

We assume that each node in the network possesses the
answer to the query independently of the other nodes with
probability 1/n, where n represents the rarity of the answer.
Note that n is the expected number of nodes to query before
finding the answer. For i ≥ 0, let φi be the probability that
no node at level j ≤ i has the answer and λi = φi−1 − φi
be the probability that some node at level i and no node
at a lower level possesses the answer. (These probabilities
are over the randomness of the branching process and of the
process assigning the answers.) Moreover, conditional on the
event that the branching process with probability generating
function Ψ does not die out, let hΨ(ε, n) be the minimum
integer i such that φi < ε. For branching factor b > 1, we
have that hΨ(ε, n) = O(logn) for any ε = n−O(1), whereas
in the case of b = 1 and c0 = 0 (i.e., a ray), hΨ(ε, n) = n ln 1

ε
.

Assume that r∗ is the investment available at the root,
which desires to retrieve the answer with probability at least
1− ζ− ε, for a given success accuracy ε > 0. With the nota-
tion introduced so far, we will show that for any constants
b > 1 and ε > 0 an investment of r∗ = O(hΨ(ε, n)) suffices
to propagate the query down to level hΨ(ε, n) of the tree,
and hence to retrieve the answer with probability at least
1 − ζ − ε. For ease of analysis, we assume that the root is
not willing to explore the tree below level hΨ(ε, n), that is,
we truncate the tree at that height.

2.1 Split contracts
We now formalize the notion of split contracts. Every

node including the root can offer a ρ-split contract to its
children, for some 0 < ρ < 1, stipulating the following.
If the root offers a ρ-split to a child u who possesses the
answer, then u receives a payment of r∗ but is required to
return a ρ fraction to the root, earning a total of r∗(1−ρ)−1,
where we introduced a unit cost for returning the answer to
the parent, as in [12, 1]. If instead u does not possess the
answer then it might decide to propagate the query to its
children, according to its strategy fu(·), that is, offering a
fu(ρ)-split contract to its children. If one among u’s children
possesses the answer, then u receives an fu(ρ) fraction of
the reward but it gives a ρ fraction back to the root and
pays the unit cost to return the answer, with an overall
earning of r∗(1 − ρ)fu(ρ) − 1. In general, consider a node
u` which is reached by a query and possesses the answer,
and let u0, u1, . . . , u` be the path connecting the root to u`,
where u0 is the root. Then, if the root offered a ρu0 -split to
its children, and ρui = fui(ρui−1) is the split offered by ui
to its children for all i < `, then the root u0 (who need not

to pay the unit cost) receives a payoff of

r∗ · ρu0 · fu1(ρu0) · fu2(fu1(ρu0)) · · · fu`−1(fu`−2(· · · ))

= r∗ ·
`−1∏
j=0

ρuj .

Similarly, for 1 ≤ i ≤ `, the payoff of node ui is(
r∗(1− ρui−1) ·

`−1∏
j=i

ρuj

)
− 1.

Without loss of generality, we assume that nodes never
propose useless split-offers to their children, that is, ρ-split
where ρ > ρ1 := 1−1/r∗, since their children would not have
incentive to play even if they possessed the answer them-
selves. Also, for simplicity we assume discrete domain and
range for the strategy fu of every node u, that is, fu : DM →
(DM ∪⊥), where fu(ρ) = ⊥ indicates that u chooses not to

propagate the query, and DM = { ρ1
M
, 2ρ1
M
, . . . , (M−1)ρ1

M
, ρ1}

is a discretization of the interval (0, ρ1].

2.2 Propagation of the payment
We remark that the above payoffs for the path u0, . . . , u`

will turn into concrete payments only if the root selects
u` among the answer-holders. Indeed, among all answer-
holders reached by the query the root, will select only one for
payment. In the fixed-payment model of [12, 1], this selec-
tion is made using a fixed arbitrary procedure that does not
affect the strategies of the nodes (e.g., performing a random
walk from the root descending down the tree; the first hit
answer-holder will be paid along with its ancestors). In their
setting, this choice is coherent as the root always spends a
fixed investment, no matter how deep in the tree the pay-
ment is propagated. In our case this peculiarity is missing
as a result of the split contract mechanism. In our model
we will assume the root selects for payment one among the
answer-holders (reached by the query) at smallest depth.
This is motivated by different facts. First, if we consider
some notion of time related to propagating the query one
level down, then our selection mechanism better depicts the
strategy adopted in the DARPA Network Challenge, where
the payment was given to the first participant reporting the
correct location of a balloon. Second, the actual investment
of the root is in general smaller if the path to the answer
is shorter. Finally, a selection mechanism based on smallest
depth alleviates the false-name issue discussed in [16], but
a formal analysis of this claim is beyond the scope of this
work. In case of multiple answer-holders at smallest depth,
we assume that the root breaks ties in a way that does not
affect the strategies of the nodes (e.g., performing a ran-
dom walk from the root to one of the leaves of the subtree
formed by all shortest paths to the answers, and selecting
the corresponding answer-holder).

2.3 Difference with respect to previous work
We would like to spend a few words highlighting some of

the main differences between our analysis and those in [12,
1]. One of these differences, the propagation of payments,
has been already discussed above; from the technical point of
view, the smallest depth selection mechanism introduces the
hurdle that the strategy of each node does not only depend
on the strategies in its subtree (as in the case of [12, 1]), but
potentially on those of all nodes. We remark that the gap



in efficiency of the two models is not related to the different
propagation of payment. In fact, if the answer-holder were
to be selected according to the smallest depth mechanism
in the fixed-payment setting, then the investment needed
to retrieve the answer would increase. Roughly speaking,
this happens as a node further down in the tree requires
higher reward to forward the query, in order to compensate
for the smaller probability of having a payment candidate
in its subtree.

Another salient difference between the two models con-
cerns the values of the contracts: while the nature of the
fixed-payment contracts of [12, 1] implies that a node being
offered a reward of r can only offer an amount r′ < r to its
children, we do not enjoy this property on the ρ’s in the case
of split contracts. This unfortunately precludes the induc-
tive arguments adopted in [12, 1], making a more involved
analysis necessary.

We conclude this section discussing about the gap in ef-
ficiency between split contracts, for which an investment
proportional to the depth of the search tree suffices for any
branching factor b > 1, and the results in [12, 1], for which
the investment becomes exponential in the depth of the
search tree when the branching factor drops below 2. In
the setting of [12], the additional amount of reward δj that
the root needs in order to explore j levels of the tree (rather
than stopping at level j − 1) can be expressed as

δj+1 =
1− φj−1

λj
δj + 1.

When the branching factor drops below 2, the ratio
1−φj−1

λj

is greater than 1, and the investment needed at the root to
propagate the query down to depth hΨ(ε, n) becomes expo-
nential in logn (hence, poly(n)).

In contrast, the dependency on the ratio
1−φj−1

λj
is softer

in our setting. In the proof of Theorem 11, we show that the
ρ-split a node at level ` needs to receive in order to propagate
the query i levels down its subtree is

ρ
〈`〉
i = 1− 1

r∗ − i(1 +O(
1−φi−1

λi
))
.

Since we can show that
1−φi−1

λi
is bounded by a constant

for any branching process with b > 1, an investment r∗ =

O(hΨ(ε, n)) = O(logn) suffices for the value ρ
〈1〉
hΨ(ε,n) offered

by the root to its children to be well-defined (i.e., in DM ),
and hence for the answer to be retrieved cheaply.

2.4 Roadmap
The rest of the paper is structured as follows. In Sec-

tion 3, we derive properties that hold for any Nash equi-
librium. In Section 4, we develop a condition that we call
h-consistency under which we can show that a set of strate-
gies g for the nodes propagates the query to the desired
level and is substantially the unique Nash equilibrium. In
Section 5, we derive a bound on the investment r∗, depend-
ing on quantities related to the branching process, for which
h-consistency is guaranteed to hold. Finally, in Section 6, we
study such quantities of the branching process to conclude
that r∗ = O(hΨ(ε, n)) = O(logn).

3. PROPERTIES OF NASH EQUILIBRIA
In this section we present the notion of Nash equilibrium

that naturally arises in the context of split-contracts, and we
then derive a manageable expression that any Nash equilib-
rium has to maximize. Let fv be the function representing
the strategy of node v, and f be the set of strategies of all
nodes up to level hΨ(ε, n), as we assumed that nodes in lower
levels do not play.

Definition 1 (Nash equilibrium). Let r∗, Ψ, ε, n
be the parameters of the model, and f be a set of functions
for all nodes up to level hΨ(ε, n). For any such node v, let
ρv be the split contract offered to v by its parent under f .
Then, f is a Nash equilibrium if, for each node v, v does not
increase its expected payoff by deviating from fv(ρv) when
all other nodes play according to f . The expectation is taken
over the randomness of the branching process and of the pro-
cess assigning answers to nodes.

We now give a few definitions that will be useful to de-
rive properties of any Nash equilibrium. Given a realiza-
tion of the branching process, we say that a node v at level
` ≤ hΨ(ε, n) is active if the branching process reaches v.
Moreover, given a set f of strategies and a realization of the
branching process, we say that an active node v is f -reachable
if f forwards the query down to v. Given a realization of the
branching process and of the process assigning the answer
to nodes, we say that an f -reachable node v at level ` is an
f -candidate if v holds the answer and no f -reachable node
at a level `′ < ` does. Observe that the root selects for
payment one among the f -candidates. For each node v at
level ` ≤ hΨ(ε, n), set f of strategies, and j ≥ 1, let αf

v(j|ρ)
be the probability that there is an f -candidate in v’s sub-
tree at distance j from v, conditional on v being f -reachable
and offering a ρ-split to its children. Similarly, for j ≥ 1,
let βf

v(j|ρ) be the expected payment that v receives from
its children given that v offers a ρ-split to its children and
there is an f -candidate in v’s subtree at distance j from v
to whom the root propagates the payment.

The following lemma, proved in the Appendix, character-
izes an expression that must be maximized by every node
up to level hΨ(ε, n) in any Nash Equilibrium.

Lemma 2. Consider any set f of strategies, and let ρv be
the split contract offered to v by its parent under f . Then, f
is a Nash equilibrium if and only if, for every node v up to
level hΨ(ε, n), fv(ρv) is a value of ρ maximizing the function

χf
v(ρ; ρv) :=

∑
j≥1

αf
v(j|ρ)

(
(1− ρv)βf

v(j|ρ)− 1
)
. (1)

To break ties in case of multiple maxima for χf
v(·; ρv),

we make the same assumption as in [12, 1] that nodes fa-
vor strategies that forward the query further down in the
tree. Observe that every node can efficiently compute the
strategy that maximizes (1) given the strategies of the other
nodes. The following two lemmas will lead to a simpler ex-
pressions for (1). We will start showing that Nash equilibria
are “leveled” (proof in the Appendix).

Lemma 3. Consider any Nash equilibrium f . Then for
each active node v at level `, v is f -reachable if and only if
every active node at level ` is.

By means of Lemma 3, we will say that a Nash equilibrium
f is k-tall if level k is f -reachable and level k+1 is not. This



notion is useful in decoupling the probabilities αf
v(j|fv(ρ))

from the particular equilibrium f and node v. To see how,
assume f is k-tall, k ≤ hΨ(ε, n). For any node v at level

` ≤ k and any j ≤ k − `, let γ
〈`〉
j be the probability that

there exists an f -candidate in v’s subtree at distance j from
v (and therefore there is no f -candidate in the first `+ j− 1
levels). Then, as f is k-tall, we have that for any node at

level `, γ
〈`〉
j depends only on ` and j (and not on f or the

specific node). This observation directly yields the following

result relating the probabilities αf
v(j|fv(ρv)) and γ

〈`〉
j .

Lemma 4. Let f be a k-tall Nash equilibrium, k ≤ hΨ(ε, n).
Then, for every ` ≤ k and node v at level `,

αf
v(j|fv(ρv)) =

{
γ
〈`〉
j , for 1 ≤ j ≤ k − `

0, for j > k − `

In general, if the query is forwarded j levels down v’s subtree
when v offers a ρ-split to its children, then we have

αf
v(j|ρ) = γ

〈`〉
j .

Lemma 4 implies that, at equilibrium, the payoff of a node
v deviating from its strategy depends only on the strate-
gies of the nodes in the subtree rooted at v (needed for the
computation of the terms βf

v(j|ρ) in χf
v(ρ; ρv)).

4. THE NASH EQUILIBRIUM
In this section, we derive conditions for the existence of

a Nash equilibrium that forwards the query down to level
hΨ(ε, n), or, equivalently, retrieves the answer with the de-
sired probability 1 − ζ − ε. For ease of notation, let h =
hΨ(ε, n). We proceed as follows. First we define the func-

tions e
〈`〉
i and the thresholds ρ

〈`〉
i , which intuitively represent

expected rewards and contracts for a special set of strate-

gies g. However, to define g, we will need all ρ
〈`〉
i to exist

and be decreasing in i, for all ` ≤ h, property that we will
dub h-consistency. Finally, assuming h-consistency, we will
show that g forwards the query to level h and is a Nash
equilibrium (in fact with an extra property, we will say g is
a best-interest Nash Equilibrium).

We begin by defining the aforementioned functions and
values. We provide an inductive process which defines, for

each 1 ≤ ` ≤ h, a sequence of functions e
〈`〉
i : [0, 1] → R,

0 ≤ i ≤ h− `, and values ρ
〈`〉
i ∈ DM , 1 ≤ i ≤ h− `+ 1. For

every 0 ≤ ` ≤ h, set e
〈`〉
0 (ρ) = 0 and ρ

〈`〉
1 = ρ1 = 1 − 1/r∗.

Suppose that all ρ
〈`′〉
i have been defined for ` < `′ ≤ h and

1 ≤ i ≤ h− `′ + 1. Then, for all 1 ≤ i ≤ h− `, the function

e
〈`〉
i (ρ) is defined as

e
〈`〉
i (ρ) =

i∑
j=1

γ
〈`〉
j

[
(1− ρ)r∗

(
j−1∏
t=0

ρ
〈`+t+1〉
i−t

)
− 1

]
.

Having defined e
〈`〉
i (ρ), we define

ρ
〈`〉
i+1 = max{ρ ∈ DM : e

〈`〉
i (ρ) ≥ e〈`〉i−1(ρ)},

if such value exists, and leave ρ
〈`〉
i+1 undefined otherwise.

For a node v at level ` ≤ h, e
〈`〉
i has the intuitive meaning

of the expected reward that v receives from its children when
the query is propagated i levels down v’s subtree (assuming

the other nodes play accordingly). The value ρ
〈`〉
i+1 represents

the “cheapest” split to offer a node v at level ` ≤ h so that

v prefers to propagate the query i levels down its subtree
rather than i−1 (recall that, to break ties, we assumed that
nodes prefer to propagate the query further down the tree).
To guarantee the propagation of the query to level h, we will

need the values ρ
〈`〉
h−` to be defined.

Definition 5 (h-consistency). We say that h-consistency

holds if, for all 1 ≤ ` ≤ h and 2 ≤ i ≤ h−`+1, the value ρ
〈`〉
i

is defined and ρ
〈`〉
i < ρ

〈`〉
i−1 (note that ρ

〈`〉
1 is always defined).

Intuitively, the ordering of the values ρ
〈`〉
i in the definition

of h-consistency states that if a node v propagates the query
i levels down its subtree when offered a ρ-split by its father,
then, in order to propagate the query i + 1 levels down, it
must be that v is offered a split not greater than ρ. This
property is at the basis of the following definition of the
set of strategies g, which we will then show to be a Nash
equilibrium. Note how, under g, nodes at the same level
play the same strategy.

Definition 6 (Strategy g). Assume h-consistency.

For each 1 ≤ ` ≤ h, consider the function t〈`〉(ρ) : [0, 1] →
DM ∪ {⊥} defined by t〈`〉(ρ) = ρ

〈`+1〉
i−1 for the unique i such

that ρ
〈`〉
i+1 < ρ ≤ ρ

〈`〉
i (such i exists under h-consistency),

where we assume ρ
〈`〉
h−`+2 = 0 and ρ

〈`+1〉
0 = ⊥. The set of

strategies g is defined by setting gv(ρ) = t〈`〉(ρ) to every
node v at level `, for each 1 ≤ ` ≤ h, and letting the root

play ρ
〈1〉
h .

It follows that, under g, the root (at level zero) offers a

ρ
〈1〉
h -split to its children, who in turn offer ρ

〈2〉
h−1-split con-

tracts to their own children, and so on, until the nodes at

level h, who do not forward the query (they play t〈h〉(ρ
〈h〉
1 ) =

⊥). Observe that g is h-tall, as all nodes up to level h are
g-reachable. The following theorem states that g is a Nash
equilibrium.

Theorem 7 (Nash equilibrium). Assume that
h-consistency holds. Then the set of strategies g is a Nash
equilibrium.

The key fact in the proof is to show that, for any node v at

level 1 ≤ ` ≤ h (which under g receives a ρ
〈`〉
h−`+1-split from

its parent and in turn offers a ρ
〈`+1〉
h−` -split to its children),

χg
v(ρ
〈`+1〉
j ; ρ) = e

〈`〉
j (ρ) for all j ≤ h − `, and that ρ

〈`+1〉
h−` is

the only maximizer of (1) that propagates the query to level
h. Then the theorem follows by Lemma 2.

In the proof of the theorem, we make use of the following
claim, that is a consequence of h-consistency and is proved
in the Appendix.

Claim 8. Assume h-consistency. Then, for every 1 ≤
` ≤ h, 1 ≤ i ≤ h− `, and ρ

〈`〉
i+2 < ρ ≤ ρ〈`〉i+1, we have that

e
〈`〉
i (ρ) > e

〈`〉
i+1(ρ) > · · · > e

〈`〉
h−`(ρ),

and

e
〈`〉
i (ρ) ≥ e〈`〉i−1(ρ) ≥ · · · ≥ e〈`〉0 (ρ),

where we assume ρ
〈1〉
h+1 = 0.

We are now ready to prove Theorem 7.



Proof. Under h-consistency, for all ` ≤ h and 2 ≤ i ≤
h− `+ 1, ρ

〈`〉
i is defined and ρ

〈`〉
i < ρ

〈`〉
i−1 (recall that ρ

〈`〉
1 is

defined for all ` ≤ h).
To show that g is a Nash equilibrium, by Lemma 2, it

suffices to prove that, for every node v at level up to h,
gv(ρv) is the value that maximizes χg

v(·; ρv), where ρv is the
split offer v receives from its parent. Let 0 ≤ i ≤ h− 1, and

fix a node v at level ` = h−i. Under g, v receives a ρ
〈`〉
i+1-split

from its parent and in turn offers a t〈`〉(ρ
〈`〉
i+1) = ρ

〈`+1〉
i -split

to its children. Therefore, it suffices to show that

ρ
〈`+1〉
i = arg max

ρ′
{χg

v(ρ′; ρ
〈`〉
i+1)}.

We will in fact prove something stronger, that is, for all
ρ ∈ DM ,

gv(ρ) = t〈`〉(ρ) = arg max
ρ′

{χg
v(ρ′; ρ)}. (2)

Fix any ρ ∈ DM . A few observations allow to prove con-
dition (2) for the chosen ρ. First, by h-consistency, there

exists unique k such that ρ
〈`〉
k+2 < ρ ≤ ρ

〈`〉
k+1, where we as-

sume ρ
〈`〉
h+1 = 0. Second, by definition of g and χg

v(·; ·), node

v has an incentive to play a given ρ′ ∈ DM only if there is
no ρ̂ > ρ′ such that v’s children would play exactly the same
split contract if either offered a ρ̂-split or a ρ′-split (other-
wise, the query would propagate the same number of levels
down the tree, but with v earning more if offering a ρ̂-split
to its children). This implies that if ρ′ maximizes χg

v(., ρ),

then ρ′ = ρ
〈`+1〉
j for some 0 ≤ j ≤ i (recall that node v is

at level h− i). Third, by definition of g, e
〈`〉
j (·) and χg

v(·; ·),
and by Claim 4, we have that χg

v(ρ
〈`+1〉
j ; ρ) = e

〈`〉
j (ρ) for all

0 ≤ j ≤ h − `. Finally, by Claim 8, as ρ
〈`〉
k+2 < ρ ≤ ρ

〈`〉
k+1,

we have that e
〈`〉
k (ρ) > e

〈`〉
j (ρ) for all k < j < h − ` and

e
〈`〉
k (ρ) ≥ e

〈`〉
j (ρ) for all 0 ≤ j < k. We have that ρ

〈`+1〉
k

is the only maximizers of χg
v(·; ρ) which forwards the query

to level h, while any other maximizer forwards the query
to some level `′ < h. Therefore, as we assumed that nodes
break ties preferring to propagate the query further down the

tree, ρ
〈`+1〉
k = t〈`〉(ρ) is the preferred strategy of node v when

offered a ρ-split from its parent. Considering all ρ ∈ DM ,
condition (2) follows and the theorem is proven.

Even though g is not the only Nash equilibrium, the proof
of Theorem 7 shows that g enjoys the additional property
that, for each node v and ρ ∈ DM ,

gv(ρ) = arg max
ρ′

{χg
v(ρ′; ρ)}. (3)

We call any equilibrium enjoying such property a best-interest
equilibrium, as nodes choose their best option in any sce-
nario. The following theorem, proved in the Appendix,
shows that g is substantially the only best-interest equi-
librium, meaning that every other best-interest equilibrium
f coincides with g on all the split-offers that are offered
to nodes under f . As a remark, we observe that even the
game with fixed-payment contracts in [12, 1] admits mul-
tiple equilibria, although the authors claim uniqueness (a
counter-example is presented in Appendix E). On the pos-
itive side, the equilibrium analyzed in [12, 1] is the unique
best-interest Nash equilibrium of their game.

Theorem 9 (Uniqueness). Assume h-consistency. Let
f be any `-tall best-interest Nash equilibrium, for some 1 ≤
` ≤ h, and, for each node v up to level `, let ρv be the split
contract offered to v by its parent under f . Then, for every
node v up to level `, fv(ρ) = gv(ρ), for all ρv ≤ ρ ≤ ρ1.

Theorem 9 implies that every best-interest equilibrium f in

which the root offers a ρ
〈1〉
h -split to its children has to be

h-tall, as f agrees with g on all split-offers made in g. As
h-tall equilibria retrieve the answer with the desired proba-

bility, the root has incentive to play ρ
〈1〉
h as its strategy and

would have incentive to deviate to ρ
〈1〉
h if playing a different

strategy. This observation implies the following Corollary.

Corollary 10. Under the assumption of h-consistency,
every best-interest equilibrium retrieve the answer with the
desired probability.

Furthermore, Theorem 9 shows that all best-interest equi-
libria are identical to g for all the values that matter, i.e. all
the values of ρv ≤ ρ ≤ ρ1. (The values ρ < ρv are uninter-
esting as, when v is offered ρv, the query will already reach
all nodes in v’s subtree, hence v’s parent has no incentive to
offer v a value ρ < ρv.) This suggests that nodes can easily
reach one such equilibrium. In particular, as shown in the
proof of Theorem 9, nodes at level h will participate only
when offered a ρ-split for ρ ≤ ρ1; nodes at level h − 1 can
infer this and, by playing according to (3), will offer a ρ1-

split to their children when offered a ρ′-split for ρ′ ≤ ρ
〈2〉
h−1,

and will only participate (without propagating the query) if

offered a ρ′-split for ρ
〈2〉
h−1 < ρ′ ≤ ρ1; the argument extends

up to the root.

5. GUARANTEEING h-CONSISTENCY
Until now, we assumed h-consistency both in the defini-

tion of g and in the proof that g is a Nash equilibrium. It
therefore remains to derive conditions that ensure h-consistency.
In the following theorem, we provide a lower bound on the
reward r∗ above which h-consistency is guaranteed. The

bound reads in terms of the probabilities γ
〈`〉
i through the

quantities Γ
〈`〉
i = 1

γ
〈`〉
i

∑i−1
j=1 γ

〈`〉
j , which, for all 1 ≤ ` ≤ h

and 1 ≤ i < h − `, intuitively represent the ratio between
the probability that a node at level ` has a candidate at
depth j < i in its subtree versus the probability that it has
one at depth i.

Theorem 11. Suppose the discretization parameter M is
large enough, say M = Θ(r∗2), and that

r∗ ≥ 4 · h ·max

{
1, max

1≤`≤h
1≤i<h−`

Γ
〈`〉
i

}
. (4)

Then h-consistency holds. In particular, for all 1 ≤ ` ≤ h

and 1 ≤ i ≤ h− `, ρ〈`〉i is defined and satisfies

1− 1

r∗ − i < ρ
〈`〉
i ≤ 1− 1

r∗ − i+ 1
. (5)

Proof. Suppose condition (4) holds. We show by induc-
tion that, if the discretization parameter M is large enough,

for all 1 ≤ ` ≤ h and 1 ≤ i ≤ h − ` + 1, ρ
〈`〉
i is defined and

satisfies (5), that is, h-consistency holds.

By definition we have ρ
〈`〉
1 = ρ1 = 1 − 1/r∗, for all 1 ≤

` ≤ h. Therefore (5) holds for all 1 ≤ ` ≤ h and i = 1. Fix



` ≤ h and suppose the claim holds for all ` ≤ `′ ≤ h and

1 ≤ i ≤ h− `′. We recall that ρ
〈`−1〉
i+1 is defined as

ρ
〈`−1〉
i+1 = max{ρ ∈ DM : e

〈`−1〉
i (ρ) ≥ e〈`−1〉

i−1 (ρ)},

where

e
〈`−1〉
i (ρ) =

i∑
j=1

γ
〈`−1〉
j

[
(1− ρ)r∗

(
j−1∏
t=0

ρ
〈(`−1)+t+1〉
i−t

)
− 1

]
.

By definition of ρ
〈`−1〉
i+1 , it must be that

1− 1

r∗∆i
− 1

M
≤ ρ〈`−1〉

i+1 ≤ 1− 1

r∗∆i
,

where

∆i =

i−1∏
j=0

ρ
〈`+j〉
i−j −

i−1∑
j=1

γ
〈`〉
j

γ
〈`〉
i

[
j−1∏
t=0

ρ
〈`+t〉
i−t−1 −

j−1∏
t=0

ρ
〈`+t〉
i−t

]
,

andM is the discretization parameter of the domainDM . To

see this, compute the difference e
〈`−1〉
i (ρ

〈`−1〉
i+1 )−e〈`−1〉

i−1 (ρ
〈`−1〉
i+1 ),

and argue that 1 ≤ (1− ρ〈`−1〉
i+1 )r∗∆i ≤ 1 + r∗∆i/M .

We find lower and upper bounds to the term between
brackets in the expression for ∆i. First, by the inductive

hypothesis, ρ
〈`+t〉
i−t−1 > ρ

〈`+t〉
i−t for all 0 ≤ t ≤ h − ` and

0 ≤ t ≤ j − 1 (with j < i). Therefore, we have

j−1∏
t=0

ρ
〈`+t〉
i−t−1 −

j−1∏
t=0

ρ
〈`+t〉
i−t > 0.

Also by induction, we have

j−1∏
t=0

ρ
〈`+t〉
i−t−1 −

j−1∏
t=0

ρ
〈`+t〉
i−t

<

j−1∏
t=0

r∗ − i+ t+ 1

r∗ − i+ t+ 2
−
j−1∏
t=0

r∗ − i+ t− 1

r∗ − i+ t

=
r∗ − i+ 1

r∗ − i+ j + 1
− r∗ − i− 1

r∗ − i+ j − 1

=
2j

(r − i+ j + 1)(r − i+ j − 1)

<
2i

(r∗)2
,

as j < i in the expression of ∆i. Therefore, again by induc-
tion, we have

r∗ − i− 1

r∗ − 1
− 2i

(r∗)2
Γ
〈`〉
i < ∆i <

r∗ − i
r∗

.

The upper bound on ρ
〈`−1〉
i+1 follows immediately. For the

lower bound, it suffices to show that r∗ ·∆i > (r∗−i−1)(1+
r∗/M). Also, note that this would imply that ∆i > 0, and

so that ρ
〈`−1〉
i+1 is defined. Rearranging the terms, it suffices

to show that

2i

r∗(r∗ − i− 1)
Γ
〈`〉
i <

1

r∗ − 1
− r∗

M
. (6)

By (4), we have that

i ≤ r∗

4
min{1, 1/Γ〈`〉i } − 1.

Then, (6) holds if

1/2

1− 1
4

min{1, 1/Γ〈`〉i }
< 1− (r∗)2

M
,

which is satisfied for M large enough.

Recall that ρ
〈`〉
h−`+1 is the split offered to the nodes at

level ` in the Nash equilibrium g. Theorem 11 along with
Theorem 9 implies that, in every best-interest equilibrium,
the nodes at level ` receive a split offer close to 1− 1

r∗−(h−`) .

It can also be proven that, for a fixed i, ρ
〈`〉
i is decreasing

in ` for 0 ≤ ` ≤ h − i. The intuition for this property is
that a node further down in the tree is willing to give a
smaller fraction of its reward back to its parent, in order to
compensate the smaller probability of having a candidate in
its subtree. However, we do not need this property to ensure
h-consistency.

Theorem 11 along with Corollary 10 directly yields the

following pivotal result, which relates the quantities Γ
〈`〉
j to

the investment that is sufficient at the root to retrieve the
answer with the desired probability.

Corollary 12. Suppose condition (4) holds. Then, in
any best-interest Nash equilibrium, the query reaches all nodes
at level h = hΨ(ε, n) of the tree. That is, an answer is re-
trieved with probability at least 1− ζ − ε.

6. EFFICIENCY
In the previous section, we derived a lower bound on the

investment r∗ as a function of the values Γ
〈`〉
i , for 1 ≤ ` ≤ h

and 1 ≤ i ≤ h − `. In this section, we show our main
result by relating these values to the branching process and
the desired success probability. The following lemma bounds
these quantities in terms of the probabilities λi and φi of the
branching process. Recall that, for each i ≥ 0 we defined φi
as the probability that no node at level j ≤ i possesses the
answer, and λi = φi−1−φi as the probability that a node at
level i possesses the answer and no node at level j < i does.

Lemma 13. For every 1 ≤ ` ≤ h and 1 ≤ i ≤ h − `, it

holds that Γ
〈`〉
i ≤

1

φ`+i−1

1− φi−1

λi
.

The key in proving Lemma 13 is to express γ
〈`〉
i in terms of

the probabilities φj and λj defined above, and then to bound

Γ
〈`〉
i exploiting the memory-less property of the branching

process and of the process assigning the answer to the nodes.

Proof. Recall that, for each i ≥ 0 we defined φi as the
probability that no node at level j ≤ i possesses the answer,
and λi = φi−1 − φi as the probability that a node at level i
possesses the answer while no node at level j < i does. Also,
for every 0 ≤ ` ≤ h and 0 ≤ i ≤ `, we defined

Γ
〈`〉
i =

∑i−1
j=1 γ

〈`〉
j

γ
〈`〉
i

,

where γ
〈`〉
i is the probability that, fixed any node v at level

`, there is a g-candidate u in v’s subtree at distance i from
v, given that v is active. We recall that a node u at level `′

is a g-candidate if, under strategy g, u is an active answer-
holder and there is no active answer-holder in the first `′−1



levels. Let Lj be the event that there is an answer holder
at level j of the tree, and Fj be the event that no event
Lk happens for all k ≤ j. Observe that Pr(Lj , Fj−1) = λj
and Pr(Fj) = φj . Fix a node v at level ` < h. Let Lvj be
the event that there is an answer holder in v’s subtree at
distance j from v, and F vj be the event that no Lvk happens
for all k ≤ j. Also, let Av be the event that v is active. We
have

γ
〈`〉
j = Pr(Lvj , F`+j−1|Av)

= Pr(Lvj |Av, F`+j−1) Pr(F`+j−1|Av)

= Pr(Lj |Fj−1) Pr(F`+j−1|Av)

=
Pr(Lj , Fj−1)

Pr(Fj−1)
Pr(F`+j−1|Av),

where the third equality follows by the fact that the branch-
ing process is memory-less. By Bayes’ rule,

γ
〈`〉
j =

Pr(Lj , Fj−1)

Pr(Fj−1)

Pr(Av|F`+j−1) Pr(F`+j−1)

Pr(Av)
.

Observe that the probability that v is active only depends
on the existence of answer-holders on the path from the root
to v or in the subtree rooted at v. Therefore, letting P v be
the event that there is no answer-holder in the path from
the root to v, we can write

Pr(Av|F`+j−1) = Pr(Av|P v, F vj−1)

=
Pr(F vj−1|Av, P v) Pr(Av|P v)

Pr(F vj−1|P v)

=
Pr(Fj−1) Pr(Av|P v)

Pr(F vj−1|P v)
,

where the second equality follows by Bayes’ rule, and the
third equality by the memory-less property of the branching
factor. It follows that, for all ` ≤ h and 0 ≤ j ≤ h− `,

γ
〈`〉
j =

Pr(Lj , Fj−1) Pr(F`+j−1) Pr(Av|P v)

Pr(F vj−1|P v) Pr(Av)
.

Plugging the last expression into the definition of Γ
〈`〉
i , we

get

Γ
〈`〉
i =

1

Pr(Li, Fi−1) Pr(F`+i−1)

·
i−1∑
j=1

Pr(Lj , Fj−1) Pr(F`+j−1)
Pr(F vi−1|P v)

Pr(F vj−1|P v)

=
1

λiφ`+i−1

i−1∑
j=1

λjφ`+j−1
Pr(F vi−1|P v)

Pr(F vj−1|P v)
.

As Pr(F vi−1|P v) ≤ Pr(F vj−1|P v) for j ≤ i, and φ`+j−1 ≤ 1,
we have that

Γ
〈`〉
i ≤

1

λiφ`+i−1

i−1∑
j=1

λj

<
1

φ`+i−1

1− φi−1

λi
.

The following technical lemma provides an upper bound

to
1−φi−1

λi
. In particular, for any fixed branching process

with b > 1, this ratio is bounded by a constant, as long as

φi is bounded away from the extinction probability ζ. The
lemma characterizes the bound with respect to the branch-
ing process and the gap φi − ζ, and its proof builds on the
mathematical properties of the probability generating func-
tion of the branching process. Recall that the desired success
probability is 1− ζ − ε.

Lemma 14. Consider any Galton-Watson branching pro-
cess with branching factor b > 1. Then, for every i such that
ζ + ε ≤ φi ≤ 1, it holds that

1− φi
λi+1

≤ max

{
1

b− 1
,

1

ε
· 1

1−Ψ′(ζ)

}
.

Proof. For all i ≥ 0, let φ̂i = φi/p be the probability
that for all levels up to i no node has the answer given that
the root (at level zero) does not. Observe that no node up
to level i + 1 has the answer given that the root does not
if and only if the root’s children and their subtrees up to
depth i do not have the answer. Therefore, we have that
φ̂i+1 = Ψ(p · φ̂i), where Ψ(x), 0 ≤ x ≤ 1 is the probability
generating function of the branching process. It follows that

λi+1 = φi − φi+1

= φi − p · φ̂i+1

= φi − p ·
d∑
k=0

ckφ̂
k
i p
k

= φi − p
d∑
k=0

ckφ
k
i .

Therefore we conclude

λi+1 > φi −
d∑
k=0

ckφ
k
i = φi −Ψ(φi). (7)

For 0 < ε ≤ 1− ζ and 0 ≤ z < 1− ζ, let

a(ε) = max

{
1

b− 1
,

1

ε

1

1−Ψ′(ζ)

}
,

and

t(z, ε) = a(ε) · (1− z −Ψ(1− z))− z.

We need to show that, for any 0 < ε ≤ 1− ζ,
1− φi
λi+1

≤ a(ε).

Observe that, by inequality (7),

1− φi
λi+1

≤ 1− φi
φi −Ψ(φi)

and therefore it suffices to prove that, for every ε > 0,

t(1− φi, ε) = a(ε) (φi −Ψ(φi))− (1− φi) ≥ 0.

First, observe that, for every ε > 0, we have t(0, ε) = 0, since
Ψ(1) = 1 (see [2]). Also note that

∂

∂z
t(z, ε)

∣∣∣∣
z=0

= a(ε) ·
(
Ψ′(1)− 1

)
− 1 = a(ε) · (b− 1)− 1,

which is non-negative since a(ε) ≥ 1/(b − 1). Also, observe

that ∂2

∂z2 t(z, ε) < 0 and ∂
∂ε
t(z, ε) > 0, for all z and ε in their

respective domains. Therefore, since the function t(z, ε) is
continuous, it suffices to check that limε→0 t(1−ζ−ε, ε) ≥ 0.



As (1− b)−1 ≤ ε−1(1−Ψ′(ζ))−1 for ε small enough, we have
that

lim
ε→0

t(1− ζ − ε, ε) > lim
ε→0

[
1

1−Ψ′(ζ)

1

ε
(ζ + ε−Ψ(ζ + ε))

]
− 1.

Since ζ = Ψ(ζ), by l’Hôpital’s rule, limε→0 t(1 − ζ − ε, ε) >
0.

Our main result directly follows by combining Corollary 12,
Lemma 13 and Lemma 14, along with the observation that
φ`+i−1 > ε (as φ`+i−1 ≥ φhΨ(ε,n)−1 > ε). For the case of a

ray, the bound can be obtained observing that φi = (1−1/n)i

and λi+1 = φi
n

, which implies Γ
〈`〉
i ≤ Γ

〈1〉
h ≤ ε−2n.

Theorem 15 (Efficiency). Consider any Galton-Watson
branching process with b > 1. Then, at equilibrium, the root
retrieves the answer with probability at least σ = 1 − ζ − ε
provided an investment of

r∗ =
4

ε
·max

{
1

b− 1
,

1

ε
· 1

1−Ψ′(ζ)

}
· hΨ(ε, n).

In the case of a ray, with b = 1 and c0 = ζ = 0, an invest-

ment of r∗ = 4 · n
ε2
· hΨ(ε, n) = 4 · n

2

ε2
ln 1

ε
suffices.

Observe that an investment of hΨ(ε, n) is necessary even in
a centralized (non-strategic) setting, where the root decides
the strategies of all nodes while only guaranteeing a non-
negative payoff to them (each node pays a unit cost when
returning the answer). In line with intuition, the investment
grows as b tends to 1 (in the limit, when the tree becomes
a ray, the investment is polynomial in n), and when the
accuracy ε approaches 0. The term 1

1−Ψ′(ζ) can be crudely

bounded by 1
c0

. However, when c0 tends to zero, so does

the extinction probability ζ, which implies 1
1−Ψ′(ζ) ≈

1
1−c1

,

also suggesting a more expensive investment when the tree
tends to a ray (i.e., when c1 approaches 1).
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APPENDIX
A. PROOF OF LEMMA 2

Fix the available investment r∗, a set f of strategies, and a
node v at level ` ≤ hΨ(ε, n). We need to define the following
events. Let A denote the event that the root propagates
the payment down through v, that is, the root selects for
payment an f -candidate in v’s subtree. For each 0 ≤ j ≤
hΨ(ε, n) − `, let Bj denote the event that the f -candidates
are at level ` + j. Finally let C denote the event that v
is f -reachable and D denote the event that there is an f -
candidate in v’s subtree. Observe that the co-occurrence of
B0 and D means that v itself is an f -candidate. Given r∗

and f , let Y vf ,r∗ be the random variable denoting the payment
assigned to v.

We have that

E[Y vf ,r∗ ] =
∑
j≥0

E[Yf ,r∗ |A,Bj , D,C] Pr(A,Bj , D,C)

= Pr(A|D) Pr(C)

·
∑
j≥0

E[Yf ,r∗ |A,Bj , D,C] Pr(Bj , D|C).

The first equality follows from the law of total probability
together with the observation that Pr(A,C) = Pr(A,D) = 0
and E[Y vf ,r∗ |A] = 0. The second equality follows from the
chain rule of probability and the fact that Pr(A|Bj , D,C) =
Pr(A|D) for all j ≥ 0. Observe that the term corresponding
to j = 0 (i.e., v is the f -candidate selected for payment) does
not depend on fv since E[Yf ,r∗ |A,B0, D,C] = (1−ρv)r∗−1
and Pr(B0, D|C) only depends on the strategies of the nodes
that are ancestors of v. Similarly, fv affects neither Pr(C),
which depends on the strategies of v’s ancestors only, nor
Pr(A|D), which is only based on the root’s choice of whom
to propagate the payment to. Finally, note that if v offers a
ρ-split to its children, then, for j ≥ 1, E[Yf ,r∗ |A,Bj , S, C] =
(1 − ρv)βf

v(j|ρ) − 1 and Pr(Bj , D|C) = αf
v(j|ρ). Therefore,

f is a Nash equilibrium if and only if, for every node v up
to level hΨ(ε, n), fv(ρv) is a value ρ maximizing χf

v(ρ; ρv).

B. PROOF OF LEMMA 3
Let f be a Nash equilibrium. Fix a node v and let

ρ2 = max{ρ ∈ DM : χf
v(ρ1; ρ) ≥ χf

v(⊥; ρ)}

be the maximum split v’s father can ask v so that v will
in turn prefer to offer a ρ1-split to their children rather
than just participating in the game without propagating the
query. We first argue that ρ2 does not depend on the cho-
sen node v, then show that fv(ρ) = ⊥ for every node v and
ρ2 < ρ ≤ ρ1 = 1− 1

r∗ , and finally use this fact to prove the
lemma.

To see that ρ2 does not depend on v, observe that χf
v(⊥; ρ) =

0 as αf
v(j|⊥) = 0 for j ≥ 1, and that χf

v(ρ1; ρ) = αf
v(1|ρ1)((1−

ρ)βf
v(1|ρ1)− 1) = αf

v(1|ρ1)((1− ρ)r∗ρ1 − 1).
We now show that fv(ρ) = ⊥, for every node v and ρ2 <

ρ ≤ ρ1. By contradiction, suppose fv(ρ) = ρ′, for some v,
ρ2 < ρ ≤ ρ1, ρ′ ∈ DM . On the one hand, as f is a Nash
equilibrium, Lemma 2 implies that ρ′ maximizes χf

v(ρ′; ρ),
and thus

χf
v(ρ′; ρ) ≥ χf

v(⊥; ρ) = 0.

On the other hand, we have that

χf
v(ρ′; ρ) =

∑
j≥1

αf
v(j|ρ′)

(
(1− ρ)βf

v(j|ρ′)− 1
)

≤
∑
j≥1

αf
v(j|ρ′)((1− ρ)r∗ρ1 − 1),

where the last inequality follows from βf
v(j|ρ′) ≤ r∗ρ1 for all

j ≥ 1, as ρ′ must be at most ρ1 for v’s children to participate
to the game. By definition of ρ2, it must be that χf

v(ρ1; ρ) <
χf
v(⊥; ρ) = 0, which implies ((1− ρ)r∗ρ1 − 1) < 0 and thus
χf
v(ρ′; ρ) < 0, generating a contradiction.
We are now ready to prove the lemma. By contradiction,

suppose the statement of the lemma does not hold. Then
there must be two sibling nodes u and v (at some level ` <
hΨ(ε, n)) and a value ρ = ρu = ρv such that fu(ρ) = ρ′ 6= ⊥
and fv(ρ) = ⊥, that is, such that u forwards the query when
offered a ρ-split by its parent while v does not. By the claim
above, fu(ρ) = ρ′ implies that ρ ≤ ρ2 and therefore, by
definition of ρ2, v would have incentive to deviate from fv,
offering a ρ1-split to their children than just participating to
the game without propagating the query, contradicting that
f is a Nash equilibrium.

C. PROOF OF CLAIM 8
Consider any i + 1 ≤ j ≤ h − `, and observe that, by

definition,

ρ
〈`〉
j+1 = max{ρ′ ∈ DM : e

〈`〉
j (ρ′) ≥ e〈`〉j−1(ρ′)},

and, by h-consistency (as j + 1 ≥ i + 2), ρ
〈`〉
j+1 ≤ ρ

〈`〉
i+2 < ρ.

It follows that e
〈`〉
j (ρ) < e

〈`〉
j−1(ρ) for all i + 1 ≤ j ≤ h − `,

which implies that

e
〈`〉
h−`(ρ) < e

〈`〉
h−`−1(ρ) < · · · < e

〈`〉
i (ρ),

proving the first chain of inequalities in the lemma. Now
consider any 2 ≤ m ≤ i+ 1, and observe that, by definition

of ρ
〈`〉
m ,

e
〈`〉
m−1(ρ〈`〉m ) ≥ e〈`〉m−2(ρ〈`〉m )

and, by h-consistency (as i+ 1 ≥ m), ρ ≤ ρ〈`〉m . This implies

that e
〈`〉
m−1(ρ) ≥ e

〈`〉
m−2(ρ) for all 2 ≤ m ≤ i + 1. It follows

that

e
〈`〉
i (ρ) ≥ e〈`〉i−1(ρ) . . . ≥ e〈`〉0 (ρ),

which proves the second chain of inequalities in the lemma.

D. PROOF OF THEOREM 9
Under h-consistency, for all ` ≤ h, ρ

〈`〉
i is defined and

ρ
〈`〉
i < ρ

〈`〉
i−1 for all 2 ≤ i ≤ h − ` + 1. Ler f be a best-

interest Nash equilibrium that is `-tall for some ` ≤ h. As f
is best-interest, for every node v up to level `,

fv(ρ) = arg max
ρ′

{χf
v(ρ′; ρ)}, ∀ρ ∈ DM .

We want to prove that, for every node v up to level `,

fv(ρ) = gv(ρ), ∀ρv ≤ ρ ≤ ρ1, (8)

where ρv is the split offered to v by its parent under f ,
ρ1 = 1 − 1/r∗ and g is the best-interest Nash equilibrium
from Definition 6.



We proceed by induction on the levels of the tree, starting
from level ` and going backwards. In particular we prove by
induction that (8) holds for every node at level `, for every
level `′ ≤ `. Consider any node v at level `. As f is `-tall
(i.e., level ` is f -reachable, while level ` + 1 is not), node v
plays ⊥. Therefore, v’s parent (at level `− 1) has incentive
to offer v a ρ1-split (the maximum split such that v has
incentive to forward the answer to its parent). It follows
that ρv = ρ1 and fv(ρ1) = ⊥ = gv(ρ1), and (8) holds for
level `.

Fix 0 ≤ i < `, and suppose (8) holds for every node at
level ` − i. Let `′ = ` − i − 1, and consider any node v at
level `′. In the proof of Theorem 7, we showed that, for
every ρ ∈ DM and 1 ≤ j ≤ i,

χg
v(ρ
〈`′+1〉
j ; ρ) = e

〈`′〉
j (ρ).

By the inductive hypothesis on level `′ + 1 = ` − i and the
fact that both f and g are best-interest, we have that, for
every ρ ∈ DM and 1 ≤ j ≤ i,

χf
v(ρ
〈`′+1〉
j ; ρ) = χg

v(ρ
〈`′+1〉
j ; ρ).

The last two observations imply that, for every ρ ∈ DM and
1 ≤ j ≤ i,

χf
v(ρ
〈`′+1〉
j ; ρ) = e

〈`′〉
j (ρ). (9)

Lemma 8, togethet with (9), implies that

(i) for every j < i and ρ
〈`′〉
j+2 < ρ′ ≤ ρ

〈`′〉
j+1, node v has

incentive to play ρ
〈`′+1〉
j among all ρ

〈`′+1〉
i ≤ ρ ≤ ρ1,

and

(ii) for ρ′ = ρ
〈`′〉
i+1, node v has incentive to play ρ

〈`′+1〉
i

among all ρ
〈`′+1〉
i ≤ ρ ≤ ρ1.

We need the following technical result in order to proceed
with the proof.

Claim 16. Let v be a node at level `′ = `− i−1. Suppose

that v receives a ρ′-split from its parent, with ρ
〈`′〉
j+2 < ρ′ ≤

ρ
〈`′〉
j+1 for some j ≤ i, and that v forwards the query exactly

to level ˆ̀ ≤ `. Moreover, assume that (8) holds for every

node below v. Then, ˆ̀= `′ + j + 1 and fv(ρ′) = ρ
〈`′+1〉
j .

Proof. Let m = ˆ̀− `′ − 1. First we show that fv(ρ′) ≤
ρ
〈`′+1〉
m , and then we argue that equality must hold. To

show that fv(ρ′) ≤ ρ
〈`′+1〉
m , suppose by contradiction that

fv(ρ′) > ρ
〈`′+1〉
m , that is, there exists k < m such that

ρ
〈`′+1〉
k+1 < fv(ρ′) ≤ ρ

〈`′+1〉
k . Then, the query would only

be forwarded to level `′ + 1 + j < `′ + 1 +m = ˆ̀, as we as-
sumed that (8) holds for all nodes below v. This generates

a contradiction, and, therefore, it must be fv(ρ′) ≤ ρ〈`
′+1〉

m .

We now show that fv(ρ′) = ρ
〈`′+1〉
m . As fv(ρ′) ≤ ρ

〈`′+1〉
m ,

we have that βf
v(k|fv(ρ′)) ≤ βf

v(k|ρ〈`
′+1〉

m ) for all 1 ≤ k ≤ m,

with equality if and only if fv(ρ′) = ρ
〈`′+1〉
m . This yields

χf
v(fv(ρ′); ρ′) < χf

v(ρ
〈`′+1〉
m ; ρ′), for fv(ρ′) < ρ

〈`′+1〉
m , which

implies fv(ρ′) = ρ
〈`′+1〉
m . By (i), it must be m = j, which

gives ˆ̀= `′ +m+ 1 = `′ + j + 1.

We now proceed with the proof. As f is `-tall, fv(ρv) must
forward the query exactly to level `. We first show that

ρv = ρ
〈`′〉
i+1 and fv(ρ

〈`′〉
i+1) = ρ

〈`′+1〉
i , and then we show that

(8) holds for v. Note that the claim above implies that if v

receives a ρ′-split from its parent with ρ′ > ρ
〈`′〉
i+1, then fv(ρ′)

does not forward the query to level exactly `. Therefore, it

suffices to show that fv(ρ
〈`′〉
i+1) = ρ

〈`′+1〉
i . Indeed, this would

imply that ρv = ρ
〈`′〉
i+1, as no better (larger) split forwards the

query to level exactly `. By contradiction, suppose v plays

fv(ρ
〈`′〉
i+1) = ρ̂ 6= ρ

〈`′+1〉
i . As we are assuming v is offered

a ρ
〈`′〉
i+1-split, and (ii) implies that v prefers to play ρ

〈`′+1〉
i

among all ρ > ρ
〈`′+1〉
i , it must be ρ̂ < ρ

〈`′+1〉
i . Moreover, it

must be the case that ρ̂ forwards the query below level `,

otherwise v would prefer to play ρ
〈`′+1〉
i . However, if it was

the case, v would prefer to play ρ̂ over ρ
〈`′+1〉
i when offered

any ρ′-split with ρ′ < ρ
〈`′〉
i+1. This contradicts the assumption

that f is `-tall, for which there exists ρ′ = ρv such that fv(ρ′)
forwards the query exactly to level `.

We showed that ρv = ρ
〈`′〉
i+1 and fv(ρv) = gv(ρv). To com-

plete the inductive step, we need to prove that fv(ρ′) =
gv(ρ′) for all ρv ≤ ρ′ ≤ ρ1. Fix any ρv ≤ ρ′ ≤ ρ1. We al-
ready proved that fv(ρ′) does not forward the query exactly
to level `. Moreover, fv(ρ′) cannot forward the the query
below level `′ > `, as otherwise v would prefer this strategy
even when offered a ρv-split. Thus, fv(ρ′) must forward the

query to some level ˆ̀< `, and Claim 16 concludes the proof.

E. NON-UNIQUENESS OF THE
NASH EQUILIBRIUM

In this section, we discuss the existence of multiple Nash
equilibria both in the game with fixed-payment contract
of [12, 1] and in the game with split contracts presented
in this work.

First we recall the setting of [12, 1]. Each node has an
integer-valued function fv; if v is offered a reward of r ≥ 1
by its parent, and v does not possess the answer to the query,
then v offers in turn a reward of fv(r) < r to its children.
Also, by definition, fv(1) = 0. Kleinberg and Raghavan [12]
show that a set of strategies f is a Nash equilibrium if and
only if, for every node v, fv(rv) is the value x maximizing
the function

hv(x; rv) = (rv − x− 1)pv(f , x).

Here rv is the reward offered to v by its parent under f , and
pv(f , x) is the probability that the subtree below v yields
the answer, given that v does not possess the answer and
offers reward x to its children. This characterization of the
Nash equilibria for the game with fixed-payment contract is
analogous to our result of Lemma 2 for split contracts, where
the optimization is with respect to the function χf

v(·, ρv).
Using the functions hv(x; rv), it is possible to construct

a set of strategies gfixed which optimizes hv(x; rv) for every
node v and is therefore a Nash equilibrium of the game with
fixed-payment contracts. Theorem 2.2 in [12] claims that
gfixed is the unique equilibrium, in the sense that any other
Nash equilibrium f in which fv(2) = 1 is such that for all
nodes v and rewards r that are reachable at v with respect
to f , fv(r) = gfixed

v (r). Note that this claim would imply
that all equilibria have the same efficiency, in that the query
is forwarded to the same levels in every equilibrium.

Unfortunately, this claim can be showed to hold true only
when restricted to best-interest equilibria (as in our setting,



see Theorem 9), that is, when considering only equilibria
where fv(r′) is the value x maximizing hv(x; r′), for every r′.
Note that in a best-interest equilibrium, nodes choose their
strategies to optimize their payoff for any possible offer they
may receive. This suggests that equilibria that are not best-
interest are somewhat pathological, as contain nodes who do
not consider their payoff globally. It is possible to show that
both games admit (non-best-interest) equilibria that can be
very inefficient in the sense that the query is only forwarded
to a constant number of levels in the tree no matter how
large the available investment r∗ is. We present one of these
equilibria for the case of fixed-payment contracts (the case
with split contracts is similar). Consider the set of strategies
f in which all nodes at level 1 play f1(r), all nodes at level
2 play f2(r), and all nodes below play f3(r) (recall that the
root is at level zero). For a parameter r′ ≥ 4, the functions
are defined as follows.

f1(r) =


0, if r = 1
1, if r = 2

2, if r ≥ 3 and (r−r′−1)(λ1+λ2+λ3)
(r−2−1)(λ1+λ2)

< 1

r′, if r ≥ 3 and (r−r′−1)(λ1+λ2+λ3)
(r−2−1)(λ1+λ2)

≥ 1

f2(r) =

 0, if r = 1
1, if 2 ≤ r < r′

2, if r ≥ r′

f3(r) =

{
0, if r = 1
1, if r ≥ 2

It can be verified that f is a Nash equilibrium, which thus
forwards the query to level at most 3, regardless of the re-
ward r∗ offered by the root to the nodes at level 1. The
bottleneck in the equilibrium is created by the nodes at level
3 or more, who cannot forward the query more than a single
level as they never offer their children more than 1; in light
of this, the nodes at level 2 are not going to offer their chil-
dren more than 2 (and they do so when receiving at least
r′), and in turn the nodes at level 1 do not offer more than
r′. This causes the query not to be forwarded efficiently.
This phenomenon cannot happen in a best-interest equilib-
rium as, roughly speaking, the nodes at level 3 (or more)
would consider the scenario in which they get offered an
amount larger than 2 and realize that it is more convenient
to offer their children an amount larger than 1 (assuming
the nodes below reason similarly), therefore forwarding the
query deeper down the tree.


