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Abstract

Whole Genome Sequencing is increasingly used to identify Mendelian variants in clinical

pipelines. These pipelines focus on single nucleotide variants (SNVs) and also structural vari-

ants, while ignoring more complex repeat sequence variants. We consider the problem of geno-

typing Variable Number Tandem Repeats (VNTRs), composed of inexact tandem duplications

of short (6-100bp) repeating units. We show that VNTRs span 3% of the human genome, and

are frequently present in coding regions. We present a survey of their implications in multiple

Mendelian disorders. While existing tools recognize VNTR carrying sequence, genotyping VN-

TRs (determining repeat unit count and sequence variation) from high throughput sequenced

reads remains challenging. We study this challenges and existing methods for identifying these

loci in human reference genome, and describe a method, adVNTR, that uses Hidden Markov

Models to model each VNTR, count repeat units, and detect sequence variation. We demon-

strate the performance of the method on short-read (Illumina) and single molecule (PacBio)

whole genome sequencing data using both simulations and real data.

Keywords. VNTR, Tandem Repeats, VNTR frameshift, Second-generation sequencing, Third-

generation sequencing
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1 Introduction

Next Generation Sequencing (NGS) is increasingly used to identify disease causing variants in clin-

ical and diagnostic settings, but variant detection pipelines focus primarily on single nucleotide

variants (SNVs) and small indels and to a lesser extent on structural variants. The human genome

contains repeated sequences such as segmental duplications, short tandem repeats, and minisatel-

lites (defined below) which pose challenges for alignment and variant calling tools. Hence, these

regions are typically ignored during analysis of NGS data. In particular, tandem repeats correspond

to locations where a short DNA sequence or Repeat Unit (RU) is repeated in tandem multiple times.

RUs of 1-6bp are classified as Short Tandem Repeats (STRs), while longer RUs spanning poten-

tially hundreds of nucleotides are denoted as Variable Number Tandem Repeats (VNTRs)(Shriver

et al., 1993; Wright, 1994).

Disease relevance of VNTRs: VNTRs span 3% of the human genome and are often found in

coding regions where the repeat unit length is a multiple of 3 resulting in tandem repeats in the

amino acid sequence. More than 1,200 VNTRs with a RU length of 10 or greater exist in the

coding regions of the human genome(Tyner et al., 2016). Compared to STRs, which have been

extensively studied (Gymrek et al., 2016; Ummat and Bashir, 2014; Liu et al., 2017; Willems et al.,

2017; Dolzhenko et al., 2017), VNTRs have not received as much attention. Nevertheless, multiple

studies have linked variation in VNTRs with Mendelian diseases (e.g., Medullary cystic kidney

disease(Kirby et al., 2013), Myoclonus epilepsy(Lalioti et al., 1997), and FSHD(Lemmers et al.,

2002)) and complex disorders such as bipolar disorder (Table 1). In some cases, the disease asso-

ciated variants correspond to point mutations in the VNTR sequence (Kirby et al., 2013; Ræder

et al., 2006) while in other cases, changes in the number of tandem repeats (RU count) show a

statistical association (or causal relationship) with disease risk. For example, the insulin gene (INS)

VNTR has an RU length of 14 bp with RU count varying from 26 to 200(Pugliese et al., 1997).

Variation in this VNTR has been associated with expression of the INS gene and risk for type 1

diabetes (OR = 2.2) (Durinovic-Belló et al., 2010). Also, variation in the length of a VNTR in

the third exon of DRD4 gene has been linked to numerous mental diseases, including ADHD and

OCD(Viswanath et al., 2013). Notwithstanding these examples, the advent of genome-wide SNP

genotyping arrays led to VNTRs being largely ignored. They have been called ‘the forgotten poly-
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morphisms’(Brookes, 2013). Whole genome sequencing has the potential to detect and genotype

all types of genetic variation, including VNTRs. However, computational identification of variation

in VNTRs from next generation sequencing data remains challenging.

2 Challenges of VNTR genotyping

Lack of high throughput method for VNTR genotyping: VNTRs were originally used as

markers for linkage mapping since they are highly polymorphic with respect to the number of

tandem repeats at a given VNTR locus(Gelfand et al., 2014). Traditionally, VNTR genotyping

required labor intensive and time consuming gel-based screens. In gel-based methods, a part of

donor genome starting before the VNTR and finishing after that will be copied multiple times, and

by reporting the average length of these copied fragments we will be able to estimate the number

of repeats in the VNTR region. However, this approach limits the size of large population based

studies of VNTRs.

Mapping difficulty in variant calling: Existing variant calling methods have been developed

primarily to identify short sequence variants in unique DNA sequences that fall into a reference

versus alternate allele framework, which is not well suited for detecting variation in VNTR se-

quences. As Fig.1 illustrates, for each read sequenced from any repeating unit in the VNTR region

of the donor, there are multiple locations in the reference genome that result in the same mapping

Gene Chr Unit Number of units Annotation Disease
len Normal Pathogenic

PER3 1 54 4 5 coding Bipolar disorderBenedetti et al. (2008)
MUC1 1 60 11-12 Insertion coding MCKD1Kirby et al. (2013)
IL1RN 2 86 3-6 2 intron Stroke, CADWorrall et al. (2007)
DUX4 4 3.3kb 11-100 1-10 FSHDLemmers et al. (2002)
DAT1 5 44 7-11 10 (ADHD) UTR ADHD, Parkinson’s, BipolarFranke et al. (2010); Kirchheiner et al. (2007)
MUC21 6 45 26-27 4bp deletion coding Diffuse panbronchiolitis (DPB)Hijikata et al. (2011)
CEL 9 33 11-21 Deletion coding Monogenic diabetesRæder et al. (2006)
INS 11 14-15 26-200 26-44 (T1D) promoter T1D;T2DBrookes (2013); Pugliese et al. (1997); Durinovic-Belló et al. (2010)
DRD4 11 48 2-11 7 coding OCD, ADHDLaHoste et al. (1996); Viswanath et al. (2013)
ACAN 15 57 27-33 13-25 coding Osteochondritis dissecansEser et al. (2011)
ZFHX3 16 12 4-5 coding Kawasaki
GP1BA 17 39 1-4 2/3 genotype coding ATF in StrokeCervera et al. (2007)
SERT 17 16-17 9/10/12 intron BPSD, Alzheimer’sHaddley et al. (2011); Pritchard et al. (2007)
SERT 17 22 14 16 (OCD) promoter OCD,Anxiety, SchizophreniaHaddley et al. (2011)
HIC1 17 70 1-4 5+/5+ promoter Metastatic Colorectal CancerOkazaki et al. (2017)
MMP9 20 12 5-6 coding Kawasaki
CSTB 21 12 2-3 12+ 5’UTR Progressive myoclonic epilepsy 1ALalioti et al. (1997)
MAOA X 30 2-5 4 promoter Bipolar disorderByrd and Manuck (2014)

Table 1: Disease-linked VNTRs are generally distinguished from STRs by a longer length (≥ 6) of the repeating

unit. ‘M’ denotes Mendelian inheritance, while ‘A’ represents possibly complex inheritance captured via Association.

As it is difficult to genotype VNTRs, most cases have been determined via association, but the inheritance mode

could be high penetrance.
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Figure 1: Read alignment in VNTRs. Green reads correspond to the repeating unit that contains a single
variation (insertion/deletion) and blue reads correspond to other reads that are sequenced from VNTR region. After
alignment, the green reads have multiple mapping location with only one mismatch which is the best alignment score.
So, they will map to different location and after alignment of blue reads they will be treated as sequencing errors.

quality (e.g. alignment score). So, all the reads sequenced from the same repeating unit will go to

different location. These mapping issues confound existing variant callers, including realignment

tools such as GATK IndelRealigner(DePristo et al., 2011). Therefore, detection of point mutations

in long VNTRs requires integrating information across the entire VNTR sequence. For VNTRs

whose total sequence length (RU count times the RU length) is much longer than the read length,

detection of SNVs and indels is not feasible using existing variant callers.

Mapping difficulty for varying RU count: Mapping tools such as BWA(Li and Durbin, 2009)

and Bowtie2(Langmead and Salzberg, 2012) can work for read recruitment for STRs, but are

challenged by insertion/deletion of larger repeat units. Similar to the case with presence of indel

in the VNTR, variations in the number of RU counts will also affect the performance of alignment

methods since they try to find the exact matching sequence within the reference genome. Fig. 4

demonstrate the performance of state-of-the-art mapping tools based on the number of RU counts

in donor genome.

High error rate in long read technologies: Single molecule reads (e.g., PacBio(Eid et al.,

2009), Nanopore(Clarke et al., 2009)) can span entire VNTR regions, but it is difficult to estimate

the RU count directly since the distance between the flanking regions varies dramatically from read

to read due to an excess of indel errors. For example, the length-based RU count estimate from

a VNTR in the SERT gene included five different values (13, 14, 15, 16, and 18) for a diploid

genome. Fig. 5B shows the performance of a method that tries to infer copy number based on

length of PacBio reads.
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3 Existing methods

Finding a repetitive region of a string is a classical algorithmic problem, and the solutions to that

problem are used on the human reference genome to find VNTRs(Benson, 1999). Other tools have

addressed the problem of RU count estimation using NGS data, focusing on the related problem

of STR genotyping. Some of these tools do not work with large repeating patterns (Willems et al.,

2017; Liu et al., 2017). Others require all repeat units to be near-identical(Dolzhenko et al., 2017;

Ummat and Bashir, 2014), while in a VNTR region the repeating units are approximate matches.

In particular, ExpansionHunter(Dolzhenko et al., 2017) looks for exact matches of short repeating

sequence within flanking unique sequences, and works for STRs, but not as well with the larger

VNTRs with variations in RUs (Results). VNTRseek(Gelfand et al., 2014) detects a VNTR-like

patterns in reads and reference genome and defines them as the vertices of a graph. To define an

edge in the graph, it aligns the flanking regions of VNTRs in the reads to the reference genome to

get similarity of flanking regions, and combines it with the similarity of repetitive pattern inside the

flanking region based on alignment scores. Using a bipartite matching algorithm, it assigns every

VNTR-like pattern in the NGS to a VNTR in the reference genome. In this approach, alignment

based tools need to align reads at both unique ends, which may not be possible for short (Illumina)

reads.

In contrast to methods like VNTRseek which seek to discover/identify VNTRs, we describe

a method, adVNTR(Bakhtiari et al., 2018), for genotyping VNTRs at targeted loci in a donor

genome. For any target VNTR in a donor, adVNTR reports an estimate of RU counts and point

mutations within the RUs. It trains Hidden Markov Models (HMMs) for each target VNTR locus,

which provide the following advantages: (i) it is sufficient to match any portions of the unique

flanking regions for read alignment; (ii) it is easier to separate homopolymer runs from other indels

helping with frameshift detection, and to estimate RU counts even in the presence of indels; (iii)

each VNTR can be modeled individually, and complex models can be constructed for VNTRs with

complex structure, along with VNTR specific confidence scores. For longer VNTRs not spanned by

short reads, adVNTR can still be used to detect indels, while providing lower bounds on RU counts,

or exact estimates for short VNTRs. adVNTR models can estimate RU counts for thousands of

VNTRs on PacBio data. Using simulated data as well as whole-genome sequence data for a number
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of human individuals, we demonstrate the power of adVNTR to genotype VNTR loci in the human

genome.

4 Method

A VNTR sequence can be represented as SR1R2 . . . RuP , where S and P are the unique flanking

regions, and Ri(1 ≤ i ≤ u) correspond to the tandem repeats. For each i, j, Ri is similar in sequence

to Rj , and the number of occurrences, u, is denoted as the RU count. We do not impose a length

restriction on S and P , but assume that they are long enough to be unique in the genome. For

genotyping a VNTR in a donor genome, we focus primarily on estimating the diploid RU counts

(u1, u2). However, many (∼ 103) VNTRs occur in coding regions, and mutations, particularly

frameshift causing indels, are also relevant. Our method, adVNTR, models the problems of RU

counting and mutation detection using HMMs trained for each target VNTR. adVNTR requires

a one-time training of models for each combination of a VNTR and sequencing technology. Once

models are trained, it has three stages for genotyping: (i) recruitment of reads containing the VNTR

sequence; (ii) counting RUs for each of the two haplotypes; and, (iii) identification of mutations,

specifically indels in coding regions. We describe the training procedure and the three modules

below.

HMM Training. The goal of training is to estimate model parameters for each VNTR and each

sequencing technology. We use an HMM architecture with three parts (Fig. 2). The first part

matches the 5’ (left) flanking region of the VNTR. The second part is an HMM which matches an

arbitrary number of (approximately identical) repeating units. The last part matches the 3’ (right)

flanking region. The RU pattern is matched with a profile HMM (RU HMM ), with states for

matches, deletions, and insertions, and its model parameters are trained first. To train RU HMM

for each VNTR, we collected RU sequences from the reference assemblyLander et al. (2001) and

performed a multiple sequence alignment. Let h(i, j) denote the number of observed transitions

from state i to state j in hidden path of each sequence in multiple alignment, and hi(α) denote

the number of emissions of α in state i. We define permissible transition (arrows in Fig. 2) and
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Figure 2: The VNTR HMM. The HMM is composed of 3 profile HMMs, one each for the left and right flanking
unique regions, and one in the middle to match multiple and partial numbers of RUs. The special states Us (‘Unit-
Start’), and Ue (‘Unit-End’) are used for RU counting. Dotted lines refer to special transitions for partial reads that
do not span the entire region.

match-state emission probabilities as follows:

T (i, j) =
h(i, j) + b0∑
i→l(h(i, l) + b0)

, Ei(α) =
hi(α) + b1∑
α′(hi(α′) + b1)

for α, α′ ∈ {A,C,G, T}.

Non-permissible transitions have probability 0, and hi(α) = 1/4 for insert state i and 0 for deletions.

The pseudocounts b0 and b1 were estimated by initially setting them to the error rate of the

sequencing technology, but they (along with other model parameters) were updated after aligning

Illumina or PacBio reads to the model. The RU HMM architecture was augmented by adding (a)

transitions from Ue to Us to allow matching of variable number of RU; (b) adding the HMMs for

the matching of any portions of left and right flanking sequences; and (c) by adding transitions

to match reads that match either the left flanking or the right flanking region. In addition, reads

anchored to one of the unique regions can jump past the other HMM using dotted arrows.

While error correction tools for PacBio have been developed, most do not work for repetitive

regions,(Hackl et al., 2014; Salmela and Rivals, 2014; Au et al., 2012; Miclotte et al., 2016; Lee

et al., 2014) and others assume a single haplotype for error correction(Salmela et al., 2016; Berlin

et al., 2015). In contrast, the HMM allows us to model many of the common (homopolymer)

errors directly. Insertion deletion errors are common in single molecule sequencing particularly in

homopolymer runs of length ≥ 6, and occur mostly as insertions in the homopolymer run(Chaisson

and Tesler, 2012). Consider a match state i with highest emission probability for nucleotide α. The
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transition probability T (i, i) from a match state i to itself was set based on the match probabilities

of α in previous k = 6 states. The PacBio model parameters were updated using both simulated

and real PacBio data.

Read Recruitment. The first step in adVNTR is to recruit all reads that match a portion of

the VNTR sequence. Alignment-based methods do not work well due to changes in RU counts

(See Results), but the adVNTR HMM allows for variable RU count. To speed up recruitment,

we used an Aho-Corasick keyword matching algorithm(Altschul et al., 1990) to identify all reads

that match a keyword from the VNTR patterns or the flanking regions. Note that the dictionary

construction is a one-time process, and all reads must be scanned once for filtering. The keyword

size and number of keywords were empirically chosen for each VNTR. Filtered reads had high

sensitivity and were filtered by aligning to the HMM using the Viterbi algorithm. We aligned 107

non-target genomic sequences to the HMM to form an empirical null distribution, and used 10−5

as the p-value cut-off, correcting for multiple (∼ 103) target VNTRs.

Estimating VNTR RU Counts. Recall the Viterbi algorithm: Let Vk,j denote the highest (log)

probability of emitting the first k letters of the sequence s1, s2, . . . sn and ending in state j of an

HMM. Let, Prevk,j denote the state j′ immediately prior to j in this optimum parse. Then,

Vk,j = max
j′
{Vk′,j + log T (j′, j) + logEj(sk)}, (1)

Prevk,j = arg max
j′
{Vk′,j + log T (j′, j) + logEj(sk)}, (2)

where, k′ = k − 1 for match or insert states; k′ = k otherwise.

For each read, the Viterbi algorithm allows for the enumeration of the maximum likelihood

(ML) path by going backwards from Prev(End, n). Ignoring all but the Us and Ue states in the

Viterbi path, we get a pattern of the form Uk1
e (UsUe)

k2Uk3
s with k1, k3 ∈ {0, 1}, and k2 ≥ 0. We

estimate the RU count of the read as k1 + k2 + k3, and mark it as a lower bound if k1 + k3 > 0 (see

Fig. 3 for an example).

Figure 3: Estimates of RU counts using re-

cruited reads. (A) (k1, k2, k3) = (1, 3, 1); RU count

≥ 5. (B) (k1, k2, k3) = (0, 3, 1); RU count ≥ 4 (C)

(k1, k2, k3) = (0, 3, 0); RU count = 3.

To model errors in read counts, we define param-

eter rε s.t. r∆
ε is the probability of RU counting error

by ±∆ in the estimation of the true count. Thus the
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probability of getting the correct count is 1−r, where

r = 2(rε + r2
ε + r3

ε + . . .) =
2rε

1− rε

The analysis of reads at a VNTR gives us a multi-set of RU counts (or lower bounds) c1, c2, . . . , cn.

Additionally, we allow the possibility that all reads are sampled from one haplotype with the RU

count of the missing haplotype being X. We define C = {c1, c2, . . . , cn} ∪ {X} and use C to get a

list of possible genotypes (ci, cj) with ci ≤ cj . Then, the conditional likelihood of a read with RU

count c is given by:

Pr(RU = c|(ci, cj)) =



1− r c = ci = cj

1
2((1− r) + r

|c−cj |
ε ) c = ci

1
2((1− r) + r

|c−ci|
ε ) c = cj

1
2(r
|c−cj |
ε + r

|c−cj |
ε ) c 6= ci, c 6= cj

(1
2)(1− r) c = ci, cj = X

Similarly, the likelihood of a read with a lower bound c on the RU count is given by:

Pr(RU ≥ c|(ci, cj)) =


(1− r) c ≤ ci
1
2(1− r) ci < c ≤ cj

r c > cj

The likelihood of the data C is given by
∏
ck∈C Pr(ck|(ci, cj)). The posterior genotype probabilities

can be computed using Bayes’ theorem:

Pr((ci, cj)|C) =
Pr(C|(ci, cj)) Pr((ci, cj))∑

i′,j′ Pr(C|(ci′ , cj′)) Pr((ci′ , cj′))
(3)

We generally set equal priors. However, in the event that we only see reads with a single count c′,

we choose Pr((c′, c′)) = Pr((c′, X)) = 1
2 . If we see multiple counts, we set Pr((c′, X)) = 0 for all

c′ ∈ C, and give equal priors to all other genotypes.

VNTR Mutation Detection. It is not difficult to see that alignment based methods do not

work well in VNTRs. Changes in RU counts make it difficult to align reads even for mappers
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that allow split-reads, as the gaps in different reads can be placed in different locations. A similar

problem appears with small indels, as there are multiple ways to align reads with an indel in a

Repeat Unit. The adVNTR HMM aligns all repeat units to the same HMM, and this has the effect

of aligning all mutations/indels in the same column. Consider the case where reads contain a total

of v nucleotides matching a VNTR RU of length `, and RU count u. Moreover at a specific position

covered by d Repeats, suppose we observe ι indel transitions.

For a true indel mutation, we expect u`
v fraction of transitions to be an indel, giving a likelihood

of the observed data as Binom(d, ι, u`v ). Alternatively, for a homopolymer run of i > 0 nucleotides,

let εi denote the per-nucleotide indel error rate. We modeled ε1 empirically in non-VNTR, non-

polymorphic regions and confirmed prior results that εi increases with increasing i(Margulies et al.,

2005). Thus, the likelihood of seeing ι indel transitions due to sequencing error in a homopolymer

run of length i is Binom(d, ι, εi). We scored an indel in the VNTR using the log-likelihood ratio

−2 ln

(
Binomial(d, ι, u`v )

Binomial(d, ι, εi)

)
, (4)

which follows a χ2 distribution. We select the indel if the nominal p-value is lower than 0.01.

5 Results

Our method, adVNTR, requires training of separate HMM models for each combination of target

VNTR and sequencing technologies. The detailed training procedure is described in Methods.

Given trained models, adVNTR genotypes the VNTRs in three stages: (i) Selection of reads that

contain VNTR locus (read recruitment); (ii) estimating RU counts; and, (iii) variant detection. We

report results on training, and performance of adVNTR in each of these stages using simulated and

read datasets based on PacBio and Illumina technologies.

HMM training. Initial HMMs were trained using a multiple alignment of RU sequences from

the reference assembly hg19(Lander et al., 2001), as described in methods. Similarly, HMMs were

trained for the left flanking and right flanking regions for each VNTR. To tailor HMMs for short

reads, we used WGS data of a CEU trio from 1000 Genomes project and the AJ trio from Genome

in a Bottle (GIAB) project. Correspondingly, to train models for PacBio reads, we re-estimated

model parameters after aligning PacBio simulated reads using SimLoRD(Stöcker et al., 2016). A
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Figure 4: Sensitivity of read recruitment at VNTR loci. Comparison of adVNTR read selection with BWA-

MEM and Bowtie2 mapping for Illumina reads (short VNTRs) and Blasr for PacBio reads (long VNTRs). Each plot

shows the sensitivity of mapped/selected reads as a function of the number of repeats for different VNTRs.

total of 865 VNTR models were trained for VNTRs in coding and promoter regions of the genome,

for both Illumina and PacBio. Subsequently, we tested performance for (a) read-recruitment, (b)

counting of Repeat Units, and (c) detection of indels.

Running time. On PacBio WGS sequencing data at 30X coverage (aligned with Blasr), adVNTR

took 10 hours to genotype all 865 VNTRs. For unaligned sequencing data of a CHB individual

(20X) coverage, the time increased to 21:45 hours.

Read Recruitment. To evaluate read recruitment performance in PacBio sequencing, we sim-

ulated haplotypes with 30x coverage using SimLoRD(Stöcker et al., 2016) for three disease-linked

VNTRs (INS, CSTB, and HIC1) in their known RU count range. To evaluate read recruitment and

RU genotyping for Illumina, we used ART(Huang et al., 2011) to simulate haplotype WGS (shotgun

150bp) reads at 30x coverage for three disease-linked short VNTRs using known RU counts. Pairs

of haplotypes were merged to get diploid samples. We compared adVNTR with BWA-MEM and

Bowtie2 algorithms for assessing Illumina read recruitment (Fig. 4: A-C) and with Blasr(Chaisson

and Tesler, 2012) for PacBio reads (Fig. 4: D-F). The plots show that while adVNTR works well for

a range of RU counts, other mapping tools work well only when the simulated RU count matches
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the reference RU count.

VNTR RU count estimation with PacBio reads. Recall that sequencing (particularly ho-

mopolymer) errors can cause lengths to change, particularly for short RU lengths and larger RU

counts. To test the performance of adVNTR for RU counting on haplotype data, we compared

against a naive method that estimates RU counts based on read length between the flanking re-

gions. A total of 210 VNTRs with lengths ranging from 10bp to 90bp were selected and for each

VNTR, PacBio sequence was simulated for 20 different RU counts with coverage varying from 1-

40X. Fig. 5A shows RU count performance on VNTRs in INS, CSTB, and HIC1 genes for varying

RU counts and sequence coverage, while Fig. 5B shows RU counting performance on all 210 VNTRs

as a function of RU lengths. adVNTR estimates are uniformly good except at low sequence cover-

age. We tested RU counting on diploid samples by simulating different RU counts on individuals

at 3 VNTRs (Table S1). adVNTR RU counts showed 100% accuracy in each of the 52 different

samples tested.

To test performance on real data where the true VNTR genotype is not known, we checked for

Mendelian inheritance consistency at four disease-linked VNTRs in the AJ trio from Genome in a

Bottle (GIAB)(Zook et al., 2016) and a Chinese Han trio from NCBI SRA (accession PRJEB12236).

Our predictions were consistent in each case (Fig. 5C). We extended this analysis to 865 VNTRs

in the coding region of human genome with RU count ≥10. At a posterior probability threshold

of 0.99, 99.1% of the calls in the AJ trio, and 98.5% of the calls in the Chinese trio are consistent

with Mendelian inheritance. The few discrepancies can be attributed mainly to low coverage and

missing data (Fig. 5E,F). Increasing sequence coverage threshold from 5× to 10× increased the

average posterior probability from 0.91 to 0.98 resulting in improved RU count accuracy (Suppl.

Fig. S1).

We also performed a long range (LR)PCR experiment on the individual NA12878 to assess the

accuracy of the adVNTR genotypes. In Fig. 5D, black bands correspond to the observed PCR

product lengths, and they match up with the computational product lengths based on estimated

RU count (red arrows), while being different from the hg19 reference RU count. For each VNTR,

there are two arrows for the predicted heterozygous RU counts, and a single arrow for the SLC6A4

VNTR that was predicted to be homozygous.
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Figure 5: VNTR genotyping using PacBio data. (A) RU count estimation on simulated PacBio reads and

effect of sequencing coverage on estimation. (B) Effect of repeating unit length on naive method. For shorter

repeating units, insertion and deletion errors have more impact on RU count estimation. (C) Mendelian consistency

of genotypes at 4 VNTR loci in the Chinese Han and Ashkenazi trios. (D) LR-PCR based validation of genotypes at

disease-linked VNTRs in NA12878. (E) RU count calls and consistent calls ratio in AJ trio. (F) RU count calls and

consistent calls ratio in Chinese trio.
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While we could not get the VNTR discovery tool VNTRseek(Gelfand et al., 2014) to run on

our machine (personal communication), we observed that the authors had predicted 125 VNTRs

in the Watson sequenced genome(Wheeler et al., 2008), and 75 VNTRs in two trios as being

polymorphic. In contrast, analysis of the PacBio sequencing data identified >500 examples of

polymorphic VNTRs with RU counts ≥ 10 that overlap with coding regions. The results suggest

that variation in RU counts of VNTRs and their role in influencing phenotypes might be greater

than previously estimated.

RU counting with Illumina. We tested adVNTR RU counting performance on Illumina reads

simulated using ART on three VNTRs and compared it to ExpansionHunter(Dolzhenko et al.,

2017) which is designed mainly for STRs (Supp. Table S1). Of the 52 samples tested, adVNTR

predicted the correct genotype in all but 6 cases, with erroneous calls in the case of high RU counts

where the read length does not span the VNTR perfectly. In contrast, ExpansionHunter could not

predict a majority of cases as it makes the assumption that the different RUs are mostly identical

in sequence (valid for STRs but not for many VNTRs).

For short VNTRs, adVNTR can be an effective tool for larger population-scale studies of VNTR

genotypes using WGS data replacing labor intensive gel electrophoresis(Byrd and Manuck, 2014;

Cervera et al., 2007). Fig: 6 shows the RU count frequencies for two disease-linked VNTRs (in the

coding region of GP1BA and promoter of MAOA), using 150 PCR-free WGS data obtained from

1000 genomes project(Consortium, 2015). The 2R/3R genotypes in GP1BA are associated with

Aspirin Treatment failure for stroke prevention(Cervera et al., 2007). Notably, our results suggest

that the 2R genotype is absent in African populations suggesting that this shorter allele arose after

the out of Africa transition.

VNTR mutation/indel detection. To test indel detection, we simulated Illumina reads from

20 whole genomes after introducing a single insertion or deletion in the middle of the VNTR re-

gion in the CEL gene. As a negative control, we simulated 10 WGS experiments with a range of

sequence coverage values. We ran adVNTR, Samtools mpileup(Li, 2011), and GATK Haplotype-

Caller(DePristo et al., 2011) which uses GATK IndelRealigner, to identify frameshifts in each of

the simulated datasets, and the 10 control datasets. On the control data, none of the tools found

any variant. On the simulated indels, adVNTR made the correct prediction in each case (Suppl.
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Figure 6: Population-scale genotyping of VNTRs. (A) RU count frequencies for MAOA VNTR. In more
diverse populations, the dominant genotype has lower frequency than other populations which leads to having more
diversity in RU count of the VNTR. (B) RU count frequencies for GP1BA VNTR. Lack of 2R genotype in African
population suggests it may have occurred outside of Africa.

Table S2), while Samtools and GATK were unable to predict a single insertion or deletion. This

result is not surprising as the reads have poor alignment scores, and the indel can be mapped to

multiple locations (Suppl. Fig. S2)(Robinson et al., 2011).

As frameshifts in the VNTR region of the CEL gene have been linked to a monogenic form

of diabetes(Ræder et al., 2006), we tested for frameshifts in CEL using whole Exome sequencing

(WES) data from 2,081 cases with Type 2 Diabetes (Fuchsberger et al., 2016) and compared the

numbers to 2,090 control individuals. WES data analysis is challenging as high GC-content makes

it difficult to PCR-amplify this VNTR. adVNTR found that while none of the controls had any

evidence of a frameshift, 8 of the 2,081 diabetes cases showed a frameshift in this VNTR region

(Suppl. Fig. S3).

6 Discussion

The main contribution of our paper is the separation of VNTR discovery from VNTR genotyping,

and allowing to genotype VNTRs using sequencing data instead of reference genome. The problem

of genotyping VNTRs (determining diploid RU counts and mutations) is important for clinical

pipelines seeking to find the genetic mechanisms of Mendelian disorders, as well as association

studies where we could associate a disease with VNTR variation. In this paper, we presented

adVNTR to genotype VNTRs using major next generation sequencing technologies. Our method

train a model for each specific target, allowing us to tailor the approach for complex VNTRs. It

solves the problem of alignment by mapping the reads to the pattern instead of a static reference
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genome, and resolves the problem of mapping reads for indel detection by collapsing all RU copies

inside the read. Like other STR genotyping tools, adVNTR works best when reads can span the

VNTR, but (a) indel detection is possible for long VNTRs; (b) RU counting lower bounds can

separate pathogenic cases from normal cases for some targets; and, (c) the increasing popularity

of long read sequencing (esp. PacBio, and Nanopore) makes it possible to genotype VNTRs with

higher confidence. Future research will focus on increasing the number of target VNTRs, and

algorithmic strategies to speed up VNTR genotyping across the genome.
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Figure S1: Association of sequencing coverage in VNTR region and posterior probability of RU count

calling. The figure shows posterior probability of RU count estimation in AJ trio. Most of calls with low posterior

probability (low confidence calls) result from low coverage in VNTR region. With at least 10 reads that span the

VNTR, we will get 0.98 posterior probability for estimated genotype.
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Figure S2: Alignment stats with frameshift. Alignment of a simulated data after running GATK IndelRe-
aligner, when there is a deletion. With a sequencing mean of 30X, 25 reads contain the deletion but even after
running realigner, deletions are mapped to five different repeating units.

Figure S3: Frameshift in CEL gene. Multiple alignment of sequenced reads and reference repeating unit shows
a deletion in diabetes patient genome. Due to low PCR amplification in GC rich VNTR region (84.8%), the coverage
of VNTR region is 14X and 6 reads support the deletion.
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RU Count Discrepancy
PacBio Dataset Illumina Dataset

VNTR Simulated Genotype adVNTR Expansion Hunter adVNTR

MAOA 1/1 0/0 -/- 0/0
MAOA 1/2 0/0 0/-1 0/0
MAOA 1/3 0/0 0/-2 0/0
MAOA 1/4 0/0 0/-3 0/0
MAOA 1/5 0/0 0/-4 0/0
MAOA 2/2 0/0 -1/-1 0/0
MAOA 2/3 0/0 0/-1 0/0
MAOA 2/4 0/0 -1/-3 0/0
MAOA 2/5 0/0 -1/-4 0/0
MAOA 3/3 0/0 -2/-2 0/0
MAOA 3/4 0/0 -2/-3 0/0
MAOA 3/5 0/0 -2/-4 0/0
MAOA 4/4 0/0 -3/-3 0/0
MAOA 4/5 0/0 -3/-4 0/0
MAOA 5/5 0/0 -4/-4 -1/-1
GP1BA 1/1 0/0 0/0 0/0
GP1BA 1/2 0/0 0/0 0/0
GP1BA 1/3 0/0 0/-1 0/0
GP1BA 1/4 0/0 1/-2 0/-1
GP1BA 2/2 0/0 0/0 0/0
GP1BA 2/3 0/0 0/-1 0/0
GP1BA 2/4 0/0 0/-2 0/-1
GP1BA 3/3 0/0 -1/-1 0/0
GP1BA 3/4 0/0 -1/-2 0/0
GP1BA 4/4 0/0 -2/-2 -1/0
CSTB 1/1 0/0 -/- 0/0
CSTB 1/2 0/0 1/0 0/0
CSTB 1/3 0/0 2/0 0/0
CSTB 1/4 0/0 3/0 0/0
CSTB 1/5 0/0 4/0 0/0
CSTB 1/6 0/0 4/-1 0/0
CSTB 1/7 0/0 3/-3 0/0
CSTB 1/8 0/0 4/-3 0/0
CSTB 1/9 0/0 3/-5 0/0
CSTB 1/10 0/0 4/-5 0/0
CSTB 1/11 0/0 4/-6 0/0
CSTB 1/12 0/0 4/-7 0/0
CSTB 1/13 0/0 4/-8 0/0
CSTB 1/14 0/0 3/-10 0/-1
CSTB 2/2 0/0 0/0 0/0
CSTB 2/3 0/0 1/0 0/0
CSTB 2/4 0/0 1/-1 0/0
CSTB 2/6 0/0 3/-1 0/0
CSTB 2/8 0/0 3/-3 0/0
CSTB 2/10 0/0 3/-5 0/0
CSTB 2/12 0/0 3/-7 0/0
CSTB 2/14 0/0 3/-9 0/-1
CSTB 3/3 0/0 -1/-1 0/0
CSTB 3/4 0/0 2/1 0/0
CSTB 3/6 0/0 2/-1 0/0
CSTB 3/8 0/0 2/-3 0/0
CSTB 3/10 0/0 2/-5 0/0

Table S1: RU count genotyping results on simulated data. For two cases, (MAOA 1/1 and CSTB 1/1)
Expansion Hunter doesn’t find any RU count.

25



# of Samples
# of samples that frameshift has been identified
Samtools Our Method GATK

10X
Insertions 20 0 20 0
Deletions 20 0 20 0

20X
Insertions 20 0 20 0
Deletions 20 0 20 0

30X
Insertions 20 0 20 0
Deletions 20 0 20 0

40X
Insertions 20 0 20 0
Deletions 20 0 20 0

Table S2: Comparison of indel finding with Samtools
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