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Abstract
This paper describes how we can use the generalized Baum-
Welch (GBW) algorithm to develop better extended Baum-
Welch (EBW) algorithms. Based on GBW, we show that the
backoff term in the EBW algorithm comes from KL-divergence
which is used as a regularization function. This finding allows
us to develop a fast EBW algorithm, which can reduce the time
of model space discriminative training by half, without incur-
ring any degradation on recognition accuracy. We compare the
performance of the new EBW algorithm with the original one
on various large scale systems including Farsi, Iraqi and modern
standard Arabic ASR systems.
Index Terms: speech recognition, discriminative training

1. Introduction
Model estimation in speech recognition is often formulated as
an optimization problem. Common optimization algorithms
include the Baum-Welch (BW) algorithm and the extended
Baum-Welch (EBW) algorithm [1]. The BW algorithm max-
imizes the likelihood of the hidden Markov model (HMM) on
the train data, while the EBW algorithm optimizes HMM for
some discriminative objective functions such as boosted max-
imum mutual information (BMMI) [2]. Compared to the BW
algorithm, the EBW algorithm is more expensive since the dis-
criminative objective functions involve not only the references
of the data, but also the competitors. Although the computa-
tional cost is much higher, the EBW algorithm with a proper
discriminative objective function often outperforms systems
trained with maximum likelihood (ML) estimation [2].

In [3], we proposed the generalized Baum-Welch (GBW)
algorithm, which is a generalization of the BW and the EBW
algorithms. We found that the backoff term (we called it the
D-term) in the EBW update equations comes from a distance
based regularization in the optimization problem. This is not
obvious in the original derivation of the EBW algorithm, and
the GBW algorithm can also explain the heuristics used in the
EBW algorithm.

The purpose of this paper is to show that the GBW algo-
rithm provides a platform to develop better EBW algorithms.
In this paper, we extend [3] and show that the regularization in
the original EBW algorithm is based on KL-divergence. Given
this piece of information, we demonstrate how to develop a fast
EBW algorithm which can achieve the same recognition accu-
racy with only half the training time. We would like to empha-
size that while this new EBW algorithm is useful, this is only
one example about how we can use the GBW algorithm to im-
prove the EBW algorithm.

This paper is organized as follows: in section 2, we review
the GBW algorithm and regularization. In section 3, we show
that the regularization is based on KL-divergence and cross en-
tropy, and explain how we can improve the EBW algorithm. In
section 4, we report experimental results on the EBW and our
proposed EBW algorithm. We conclude our work and discuss
future work in section 5.

2. Generalized Baum-Welch Algorithm
Instead of directly optimizing a discriminative objective func-
tion, GBW minimizes,

G(X, θ) =
X

i

|Qi(X, θ)− Ci|+ R(θ, θ
0) . (1)

where i is an index referring to the reference or the competi-
tor of some utterance; X is the observation; θ represents the
model parameters; Qi is an auxiliary function representing the
negative log likelihood and Ci is the target value that we want
Qi to achieve. By setting Ci appropriately, minimizing G is
equivalent to optimizing the discriminative objective function.
For instance, if the objective function is mutual information,
one can set Ci such that Qi > Ci for all i correspond to ref-
erences and Qi < Ci for all i correspond to competitors (i.e.
lattices). R(θ, θ0) is an optional regularization function with θ0

as a backoff model.
Suppose we optimize the mean vectors and we use Maha-

lanobis distance for regularization, the problem becomes,

min
ε,μ

P
i
εi +

X

j

Dj

2
||μj − μ

0
j ||

2
Σj

s.t. εi ≥ Qi(μ)− Ci ∀i

εi ≥ Ci −Qi(μ) ∀i , (2)

where εi is a slack variable; Dj is a Gaussian specific constant
to control the weight of regularization and μ0

j is the backoff
mean vector. Then, we construct the Lagrangian,

Lm(ε, μ, α, β) =
X

i

εi −
X

i

αi(εi −Qi(μ) + Ci)

−
X

i

βi(εi − Ci + Qi(μ))

+
X

j

Dj

2
||μj − μ

0
j ||

2
Σj

(3)

where {αi} and {βi} are the Lagrange multipliers for the first
and the second set of constraints of the optimization problem in
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equation 2. The Lagrangian dual is then defined as,

L
D
m(α, β) = inf

ε,μ
Lm(ε, μ, α, β) . (4)

Now, we can differentiate Lm w.r.t. μ and ε. Hence,

∂Lm

∂εi

= 1− αi − βi (5)

∂Lm

∂μj

=
X

i

(αi − βi)
∂Qi

∂μj

+ Dj
∂

∂μj

||μj − μ
0
j ||

2
Σj

=
X

i

(αi − βi)(−
X

t

γ
i
t(j)Σ

−1
j (xt − μj))

+ Dj(Σ
−1
j (μj − μ

0
j )) . (6)

By setting them to zero, it implies,

αi + βi = 1 ∀i (7)

μj = Φj(α, β) =
P

i(αi−βi)
P

t γi
t(j)xt+Djμ0

j
P

i(αi−βi)
P

t γi
t(j)+Dj

, (8)

and this is the GBW update equation for mean vectors.
If the optimization is performed on the covariance, the mod-

ification to the optimization problem is

min
ε,Σ

X

i

εi +
X

j

Dj

2
(μ0′

j Σ−1
j μ

0
j + tr(Σ0

jΣ
−1
j ) + log |Σj |)

s.t. εi ≥ Qi(Σ)− Ci ∀i

εi ≥ Ci −Qi(Σ) ∀i , (9)

where Σ0
j is the covariance that we want GBW to backoff to.

Similar to the optimization problem for solving the mean vec-
tors, we setup the Lagrangian,

Lc(ε, Σ, α, β) =
X

i

εi −
X

i

αi(εi −Qi(Σ) + Ci)

−
X

i

βi(εi − Ci + Qi(Σ))

+
X

j

Dj

2
(μ0′

j Σ−1
j μ

0
j + tr(Σ0

jΣ
−1
j )

+ log |Σj |) . (10)

We then differentiate the Lc w.r.t. the covariance,

∂Lc

∂Σj

=
X

i

(αi − βi)
X

t

γ
i
t(j)(Σ

−1
j −Σ−1

j StjΣ
−1
j )

+ Dj(Σ
−1
j −Σ−1

j Σ0
jΣ
−1
j −Σ−1

j μ
0
jμ

0′

j Σ−1
j ) (11)

where Stj ≡ (xt − μj)(xt − μj)
′. Then by setting it to zero,

we obtain the GBW update equation for covariance,

Σj = Ψj(α, β)

=
P

i(αi−βi)
P

t γi
t(j)xtx′

t+Dj(Σ0

j+μ0

j μ0
′

j )
P

i(αi−βi)
P

t γi
t(j)+Dj

− μjμ
′

j , (12)

The GBW update equations are generalization of BW and
EBW update equations. GBW reduces to BW if αi = 1 and
βi = 0 for all references, αi = βi = 0.5 for all competitors
and Dj = 0. GBW is also equivalent to EBW if αi = 1 and
βi = 0 for all references, and αi = 0 and βi = 1 for all
competitors. Hence, GBW is a generalization of BW and EBW.
In practice, the αi and βi are determined by solving a convex
dual problem and details are available in [3].

3. Cross Entropy and Regularization
The GBW algorithm gives an interesting insight about the EBW
algorithm. It states that the D-term in the EBW algorithm comes
from some distance based regularization. In fact, GBW further
explains that such regularization is based on a well known sim-
ilarity measure between two probability distributions, i.e. KL
divergence.

If we combine the optimization problems for solving mean
vectors and covariance matrices into one single problem, we
have,

min
ε,μ,Σ

X

i

εi +
X

j

Dj

2
(||μj − μ

0
j ||Σj

+ tr(Σ0
jΣ
−1
j ) + log |Σj |)

s.t. εi ≥ Qi(μ, Σ)− Ci ∀i

εi ≥ Ci −Qi(μ, Σ) ∀i . (13)

The regularization function is the KL-divergence from
N0(μ

0
j , Σ

0
j ) to N(μj , Σj). If we put back the terms that are

removed by differentiation,

KL(N0||N) =
1

2
[||μj − μ

0
j ||Σj

+ tr(Σ0
jΣ
−1
j )

− log
|Σ0

j |

|Σj |
−K] , (14)

where K is the dimension of the feature vector. It is important
to note that the term μ0

jΣ
−1
j μ0

j is moved from the mean opti-
mization problem to the covariance optimization problem. This
term is part of the Mahalanobis distance but it disappears when
we differentiate the objective function with respect to the mean
vectors, hence, it remains in the covariance problem as shown
in equation 9.

Equation 13 and 14 show that the D-term in the EBW up-
date equation comes from the KL-divergence. Without affecting
the solution of the optimization problem, we use cross entropy
as the regularization function,

CH(N0||N) = H(N0) + KL(N0||N) . (15)

This does not alter the solution because the entropy of the back-
off Gaussian N0,

H(N0) =
1

2
log((2πe)K |Σ0|) , (16)

is not related to the mean and covariance that we are optimizing.
The function H(N0) is derived from differential entropy and
details are available in [4].

In this setting, cross entropy measures the average num-
ber of bits required to encode N given N0 is the true distribu-
tion. This is reasonable for regularization since cross entropy
increases when N moves too far away from the backoff Gaus-
sian N0. However, N0 in the EBW algorithm is either the ML
model or the model from the previous EM iteration. In most
cases,N0 is inferior and it is not the true distribution. While the
true distribution is unknown, we can look for a better Gaussian
for the backoff purpose.

In this paper, we suggest we can treat the EBW/GBW up-
date equations as some recurrence relations. The M-step of the
EBW algorithm becomes an iterative procedure,

μ
m+1
j =

P
i
(αi − βi)

P
t
γi

t(j)xt + Djμ
m
jP

i
(αi − βi)

P
t
γi

t(j) + Dj

, (17)
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Σm+1
j =

P
i
(αi − βi)

P
t
γi

t(j)xtx
′

t + Dj(Σ
m
j + μm

j μm′

j )P
i
(αi − βi)

P
t
γi

t(j) + Dj

−μ
m+1
j μ

m+1′

j , (18)

where μm+1
j and Σm+1

j are the Gaussian parameters of the
(m+1)-th iteration, which depend on the parameters on them-
th iteration; If we perform only one iteration, it is the same the
standard EBW/GBW algorithm. If we perform two iterations,
it is like we are using the Gaussian computed from standard
EBW/GBW algorithm as a backoff parameter. If we believe the
Gaussian computed from the standard EBW/GBW algorithm is
better than the original model, we are using a better estimate to
compute the cross entropy for regularization. In this paper, we
use the variableM to denote how many M-steps are performed
after each E-step.

The reason for choosing cross entropy instead of KL-
divergence is to examine the convergence of this recurrence
relation, and whether the recurrence update leads to a smaller
cross entropy. One can compare the cross entropy of succes-
sive iterations since it is measured by the number of bits. KL-
divergence is a relative measure and it cannot compare the re-
sults of different iterations. Although equation 17 and equa-
tion 18 form simple linear recurrence relation, it is still impos-
sible to prove convergence unless one can derive a bound on the
feature vectors, xt. In practice, we found that the cross entropy
always decreases which implies the changes on the Gaussian
parameters diminish across iterations. Details on this are avail-
able in section 4.

We would like to emphasize that the implementation of the
above recurrence update equations is very simple. One can per-
form multiple M-steps in the standard EBW/GBW algorithm
to achieve the same result. This incurs negligible extra com-
putation since the M-step does not involve data processing. In
this paper, we focus on the effectiveness of this new EBW algo-
rithm. Hence, we do not test the recurrence GBW algorithm, but
simply use GBW as a tool to derive this new EBW algorithm.

4. Experimental Setup
We evaluated the performance of the proposed EBW algorithm
on three systems. The experiments included a Farsi ASR sys-
tem, an Iraqi ASR system and a modern standard Arabic (MSA)
ASR system. Table 1 summaries the configuration of these three
systems. This table also contains the time needed for each EM

Farsi ASR Iraqi ASR MSA ASR
Train data 110 hr 450 hr 1100 hr
System type SI, 1-pass SA, 1-pass SA, 3-pass
Vocab size 33K 62K 737K
Adaptation None Incremental Batch
# Gaussians 112K 308K 867K

LM 3-gram 3-gram 4-gram
Time/Iter ∼ 3 hours ∼ 20 hours ∼ 10 days

Table 1: Description of the Farsi, Iraqi and MSA ASR systems.

iteration of the EBW algorithm. The time was measured by us-
ing 10 cores running in parallel and each core had similar per-
formance to the Intel Xeon X5355 series at 2.66GHz. It demon-
strated discriminative training is very expensive. Detailed sys-
tem description of the Farsi and Iraqi ASR is available in [5]
and description of the MSA ASR system is available in [6].

For the experiments, the Farsi system used the TransTac Jul07
Farsi open set as the unseen test set. The Iraqi system used the
TransTac Jun08 open set as dev set, and Nov08 open set as the
unseen test set. The MSA system used GALE dev07/08/09 as
dev sets, and eval09 and a three hours subset of dev10 as the
unseen test sets.

We first investigated how the recurrence update equations
affect the performance of the new EBW algorithm. We com-
pared the EBW algorithm with different number of M-steps per
EM iteration using the recurrence equation 17 and 18. Both
EBW algorithms optimize the acoustic model for the BMMI
objective function. We used the Iraqi system to analyze the per-
formance. In this experiment, We tried up to four EM iterations
and for each EM iteration, we performed a fixed number of M-
steps from one to four (M = 1, 2, 3, 4).

Figure 1: Performance of EBW algorithm with different num-
ber of M-steps per EM iteration. This experiment is performed
on the TransTac Jun08 open set using the Iraqi ASR system.
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Figure 2: Increase of the BMMI objective function compared to
the BMMI score of the ML model on the train set.

Figure 1 shows that if we perform more M-steps per EM
iteration, the system can achieve the best performance at earlier
iterations. However, as shown in figure 2, performing multi-
ple M-steps may also cause overfitting to occur earlier than the
standard EBW algorithm as the training becomes more aggres-
sive. When we perform twoM-steps per EM iteration (M = 2),
we got 32.7% WER which is almost the same as the 32.6%
WER of standard EBW (M = 1) with only half the training
time. We also tried the standard EBW algorithm with a grid
search of learning rate (E tuning). In the model update equa-
tion 8 and 12,Dj controls the weight of the regularization. This
value is often computed by a heuristics and it is the maximum
of E ×

P
t
γc

t (j), or twice the value required to keep the co-
variance positive. E is often set to two and it is also our set-
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ting for all EBW algorithms except the one with grid search.
The grid search is performed based on the WER of the test set,
which we find the best E in the range [1.0, 3.0]. Therefore, it
is an oracle experiment. The purpose of this oracle experiment
is to investigate if the standard EBW algorithm, in the optimal
case, can converge as fast as our proposed EBW algorithm. Our
results showed the opposite, and it implied our method is use-
ful. Figure 3 shows the reduction in average cross entropy for

0 5 10 15 20 25 30
34

36

38

40

42

44

46

48

Number of M−steps

A
ve

ra
ge

 C
ro

ss
 E

nt
ro

py

Figure 3: Decrease in average cross entropy implies the changes
on the Gaussian parameters diminish for each M-step.

each M-step performed. The cross entropy is computed after the
first EM iteration shown in figure 1 and it is averaged across all
Gaussian distributions in the acoustic model. This result shows
that the cross entropy is decreasing so it implies the changes in
the Gaussian parameters are also decreasing.

Based on these results, we studied whether our proposed
EBW algorithm causes accuracy degradation as a tradeoff for
faster convergence. We compared the performance of the new
EBW algorithm with the standard version on our Farsi ASR,
Iraqi ASR and MSA ASR systems. In this experiment, the new
EBW algorithm performed two M-steps for each E step (M =
2). In total, two EM iterations were performed. The standard
EBW algorithm performed four EM iterations and one M-step
per E-step (M = 1). Therefore, the execution time of the new
EBW algorithm is only half of the standard version. Table 2, 3
and 4 showed the performance of the Farsi, Iraqi and MSAASR
systems respectively.

Farsi Jul07 open
BWML 50.2%

EBWM=1 45.6%
EBWM=2 45.5%

Table 2: The WER of the Farsi ASR system on the Jul07 open
set.

Jun08 open Nov08 open
BWML 37.0% 35.2%

EBWM=1 32.6% 30.6%
EBWM=2 32.7% 30.8%

Table 3: The WER of the Iraqi ASR system on the Jun08 and
Nov08 open sets.

The results suggested that our proposed EBW algorithm
can achieve the same WER as the standard EBW algorithm.
Among these eight test sets on three different systems, the dif-
ference in WER is no more than 0.2% absolute. Therefore,
the gain in speed is a clear advantage for the new EBW algo-
rithm. According to the information in table 1, using the stan-
dard EBW algorithm needs 40 days to train the MSA system,
while the new EBW algorithm only needs around 20 days to
achieve the same WER, which is a big advantage.

dev07 dev08 dev09 eval09 dev10
BWML 13.7% 15.5% 20.4% 15.1% 16.5%

EBWM=1 11.7% 14.0% 18.6% 13.3% 14.6%
EBWM=2 11.9% 14.0% 18.5% 13.2% 14.5%

Table 4: The WER of the MSA ASR system on the GALE
dev07/08/09/10 and eval09 test sets.

5. Conclusion and Future Work
We demonstrated how to use the GBW algorithm to develop a
better EBW algorithm. The GBW algorithm showed that the D-
term of the EBW algorithm came from the KL-divergence/cross
entropy. Based on this information, we proposed a fast EBW
algorithm which can cut the time of model space discriminative
training by half, without performance loss. In sum, the GBW
algorithm allows us to understand the EBW algorithm better,
and hence, we can improve it.

There are other ways to develop variants of the EBW algo-
rithm. Instead of using one Gaussian model as a backoff model
to compute cross entropy, one can use multiple models from
the same HMM state and create multiple regularization terms
in the optimization problem. We will investigate this variant of
the EBW algorithm in the future.
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