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Abstract. The threat of quantum computers has sparked the development of a new kind of cryp-
tography to resist their attacks. Isogenies between elliptic curves are one of the tools used for such 
cryptosystems. They are championed by SIKE (Supersingular isogeny key encapsulation), an "alter-
nate candidate" of the third round of the NIST Post-Quantum Cryptography Standardization Process. 
While all candidates are believed to be mathematically secure, their implementations may be vulnerable 
to hardware attacks. In this work we investigate for the frst time whether Ti’s 2017 theoretical fault 
injection attack is exploitable in practice. We also examine suitable countermeasures. We manage to 
recover the secret thanks to electromagnetic fault injection on an ARM Cortex A53 using a correct and 
an altered public key generation. Moreover we propose a suitable countermeasure to detect faults that 
has a low overhead as it takes advantage of a redundancy already present in SIKE implementations. 

Keywords: Post-quantum Cryptography · SIKE · Elliptic Curve · Isogeny · Fault Injection Attack. 

1 Introduction 

Starting in 1994 with Shor’s factorization algorithm [25], quantum computers have been shown to threaten 
classic asymmetric cryptography. Thus the National Institute of Standards and Technology launched the 
Post-Quantum Cryptography Standardization Process in December 2016 [21]. Research teams worldwide 
had begun to work on algorithms that can be implemented on classical computers but resist quantum 
computer attacks before and thus continued to study encryption and signature protocols as required by the 
NIST. These protocols are based on various mathematical tools, including lattices, error correcting codes, 
multivariate polynomial equations, hash functions and isogenies between elliptic curves. We will focus here 
on the Supersingular Isogeny Key Encapsulation (SIKE) [5], the only candidate based on isogenies. More 
precisely, SIKE is a key encapsulation mechanism (KEM) based on the Supersingular Isogeny Diÿe-Hellman 
(SIDH) key exchange proposed by Jao and De Feo in 2011 [16]. It is now an alternate candidate in the 
third round of the standardization process, meaning that it is deemed promising enough by the NIST to 
pursue research on it. It has indeed the smallest key size by far among the third round candidates [1], 
but is comparatively slow. Like the other candidates, SIKE is believed to be mathematically secure, but 
vulnerabilities may appear in its implementations. A further interesting characteristic is its regularity, which 
makes hardware attacks more challenging. Hardware attacks assume that the attacker has physical access 
to the device where the algorithm is being executed. There are two categories of such attacks. In a passive 
attack, the attacker is only able to observe the execution of the algorithm on the target. They may measure 
the computation time, the power consumption or the electromagnetic emanation of the circuit and try to 
deduce information about the keys or exchanged messages. These are called side-channel attacks. In an active 
attack, they may disrupt the execution of the algorithm by creating power or clock glitches, illuminating 
the target with a laser beam or injecting an electromagnetic feld to get information. These are called fault 
attacks. Attacks of both kinds have been found to a˙ect SIKE. 

Galbraith et al. initiated in 2016 the study of leakage models for isogeny based cryptography [12]. In 
2017, Gélin and Wesolowski presented a loop-abort attack by injecting a random fault on in the isogeny 
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computation loop counter during the computation of Alice’s shared key [13]. There already exists counter-
measures to avoid loop abort attacks, for instance as presented in [23]. The same year, Ti published a paper 
about another way to do a fault attack on a static key variant of SIDH [28]. Koziel et al. [18] proposed a 
refned power analysis on the three-point Montgomery di˙erential ladder during Alice’s shared secret compu-
tation and during the isogeny computation. Countermeasures are proposed for both. In 2018, Koppermann 
et al. [17] also attacked Alice’s shared secret computation, but with a di˙erential power attack on the scalar 
multiplication during the kernel generator computation. A countermeasure to such an attack is the randomi-
sation of the projective representations of the points [6]. The latest known attack is by Zhang et al. [31]: 
a di˙erential power attack and di˙erential electromagnetic attack, also on the scalar multiplication during 
the isogeny kernel generator computation. We classify these attacks in di˙erent categories as seen in Table 1 
below. 

Table 1. Classifcation of known hardware attacks on SIKE depending on their type, if they are experimentally 
verifed or not, and depending on the part of the algorithm that is attacked 

Gélin et al., 2017 [13] fault injection simulated isogeny 
Koziel et al., 2017 [18] side-channel attack theoretical scalar multiplication, isogeny 

Ti, 2017 [28] fault injection theoretical isogeny 
Koppermann et al., 2018 [17] side-channel attack experimentally verifed scalar multiplication 

Zhang et al., 2020 [31] side-channel attack experimentally verifed scalar multiplication 

In the implementation of SIKE we can distinguish two phases: a frst one that uses only classical elliptic 
curve cryptography algorithms, where a scalar multiplications on elliptic curve points is performed, and 
a second one that performs isogeny computations and evaluations. We classify attacks depending on their 
target, the frst or the second phase. To the best of our knowledge, there has not been any experimentally 
verifed attack specifc to the isogeny phase, thus we want to investigate whether Ti’s 2017 theoretical fault 
injection attack [28] is exploitable in practice. The goal of this attack is to recover the static key, which is 
a key used more than once over a long period of time. After reviewing some background information about 
isogenies and SIDH/SIKE, we will present Ti’s attack. Then, we shall describe the experimental setups used 
in our investigation to fnally analyse possible countermeasures. 

Contributions We provide the frst experimental realization of Ti’s 2017 theoretical fault attack by carrying 
out an attack campaign in a laboratory. We induced faults on the SIKE round 3 implementation optimized for 
ARM64 on a system on chip (SoC) with four cortex A53 cores by using electromagnetic fault injection. This 
provides an experimental understanding of the threat on SIKE caused by Ti’s attack. At last, we propose 
two new countermeasures against this attack: one concerns the protocol and the other is a verifcation at the 
end of the public key generation. 

2 Preliminaries 

In this section we are going to present a few mathematical and cryptographic notions, in particular, the SIDH 
cryptosystem and the key encapsulation in SIKE that will be of use when analysing Yan Bo Ti’s attack in 
Section 3. We shall start with a primer about on isogeny-based cryptography. 

2.1 Isogenies between Elliptic Curves 

For basic defnitions concerning elliptic curves and isogenies between elliptic curves, we refer the reader 
to [26]. An introduction to isogenies as used in cryptography can be found in [10]. 

The elliptic curves used in SIKE are represented as Montgomery curves [19]. 

2Defnition 1. Let K be a fnite feld such that char(K) =6 2 and A, B ∈ Fp such that B(A2 − 4) 6= 0. The 
2Montgomery (elliptic) curve EA,B consists of a point at infnity O and the set of points (x, y) ∈ Fp such 

that 
3By2 = x + Ax2 + x. 
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In particular, B = 1 in SIKE. 
One advantage of Montgomery curves is to provide algorithms to compute scalar multiplications more 

eÿciently [19]. Indeed, let us consider the multiplication by an integer k on an elliptic curve E [8]: 

[k] : E → E 

P 7→ P + P + ... + P .| {z } 
k times 

The automorphism of E : P 7→ −P can be used to quotient E and thus get a map x : E → P1 ∼= E/h	i. 
We have x(P ) = x(Q) if and only if P = Q or P = −Q. It is then possible to defne an induced multiplication 
on P1 for all k ∈ Z such that x(P ) 7→ x([k]P ). Hence, instead of performing scalar multiplications on points 
of the curve, one can use the x-coordinates of the points only. Montgomery provides more eÿcient formulas 
for point multiplication using the x-coordinates in [19]. For eÿciency reasons, this coordinate x = X/Z of 
Montgomery curves is represented projectively with (X : Z) [8]. 

Also, the A coeÿcient of a Montgomery curve can be recovered using three distinct non-zero x-coordinates 
of points P , Q and R such that R = P − Q with the following formula (see algorithm cfpk in [5]): 

(1 − xP xQ − xP xR − xQxR)2 

A = − xP − xQ − xR. (1)
4xP xQxR 

In SIKE, an elliptic curve is encoded by such an x-coordinate triplet. 
An invariant can be defned for these elliptic curves [8]. 

Defnition 2. Let E be a Montgomery curve as above. Then the j-invariant of E is 

256(A2 − 3)3 

j(E) = . 
A2 − 4 

This allows us to create equivalence classes of elliptic curves. 

Proposition 1. Two elliptic curves are isomorphic over the algebraic closure of their defnition feld if and 
only if they have the same j-invariant. 

Maps can be defned between these equivalence classes. Let E and F be two elliptic curves defned over 
a fnite feld K. An isogeny φ between E and F is a non-trivial group morphism between E and F . We will 
often use the "morphism aspect" of this defnition i.e. that for all points P and Q on E, 

φ(P + Q) = φ(P ) + φ(Q). 

Moreover, we consider in SIKE a special kind of isogenies called separable isogenies that are uniquely 
determined by their kernel. This kernel C is necessarily fnite. Knowing C, there are formulas by Vélu [29] 
showing how to compute the equation of the target elliptic curve of the isogeny, denoted by E/C. Hence, 
referring to the kernel of an isogeny amounts to referring to the isogeny itself. As only separable isogenies 
appear in SIKE, we defne the degree deg(φ) of φ as the size of its kernel. We shall now defne the dual of 
an isogeny. 

Defnition 3. Let φ : E → F be an isogeny. Then there is a unique isogeny φ̂ : F → E called the dual 
isogeny of φ such that 

φ̂ ◦ φ = [deg(φ)]E and φ ◦ φ̂ = [deg(φ)]F . 

The dual isogeny has the following properties. 

– For all isogenies φ : E → F and ψ : F → G, we have [ φ̂ ◦ ψ̂.ψ ◦ φ = 
– deg(φ̂) = deg(φ) 
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ˆ̂– φ = φ 

Having described the necessary mathematical tools, we will now present the scheme that is at the crux 
of SIKE. 

2.2 The SIDH Key Exchange 

The supersingular isogeny Diÿe-Hellman (SIDH) key exchange is a Diÿe-Hellman-like key exchange that is 
a building block of SIKE. 

Alice and Bob are two parties who would like to share a key. Let e2 and e3 be two positive integers 
that defne a prime p such that p = 2e2 3e3 f ± 1, f being a small cofactor (p is of that form in the SIKE 
specifcations [15]). Let E be a supersingular elliptic curve defned over Fp Let P2, Q2 ∈ E[2e2 ] (i.e.2 . 
2e2 P2 = O and 2e2 P2 = O) and P3, Q3 ∈ E[3e3 ], as well as R2 such that R2 = P2 − Q2 and R3 = P3 − Q3. 
These parameters are public. Alice and Bob both have a secret key which is a uniformly distributed random 
integer, respectively sk2 ∈ [0, 2e2 − 1] and sk3 ∈ [0, 3e3 − 1]. The associated secret isogenies φA and φB are 
such that 

Ker(φA) = hP2 + sk2Q2i and Ker(φB ) = hP3 + sk3Q3i. 

We denote by EA (respectively EB ) the target curve of φA (respectively φB ), EAB the target curve of 
φ0 A with kernel hφB (P2) + sk2φB (Q2)i and EBA the target curve of φ0 B with kernel hφA(P3) + sk3φA(Q3)i. 
The following diagram shows how the shared key is constructed. 

φA 

E EA 

φB φ0 B 

EB EBA ' EAB 

φ0 A 

Fig. 1. The SIDH key exchange 

First, Alice and Bob generate each their private keys, sk2 and sk3. Then, they compute their public 
keys, respectively (xφA(P3), xφA(Q3), xφA (R3)) and (xφB (P2), xφB (Q2), xφB (R2)) and exchange them. At last, 
they both determine the j-invariant of EAB or EBA, depending on the protagonist. As it can be shown that 
EAB and EBA are isomorphic, j(EAB ) = j(EBA). Thus they have computed a shared key. 

Now we shall see how the public keys are computed in the key generation steps thanks to Algorithm 1. 

Remark 1. To compute an isogeny composed of small degree isogenies faster, one can compute the "small" 
isogenies in a certain order by walking a full binary tree as described in [15]. This does not infuence the 
feasability of Ti’s attack. 

In the following section, we present key encapsulation in SIKE using the concepts of SIDH. 

2.3 SIKE 

SIKE is a key encapsulation mechanism (KEM). A KEM is used to securely exchange a symmetric key 
for data encryption using asymmetric cryptography. Figure 2 shows its di˙erent elements. It is composed of 
three algorithms: 

1. Keygen generates a pair of long term secret and public keys. 
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Input : A private key skA. 
Output: A public key pkA. 

1 xS ← x(P2+sk2Q2 ) // ladder3pt 
2 (x1, x2, x3) ← (xP3 , xQ3 , xR3 ) // init_basis 
3 for i from 0 to e2 − 1 // traverse_tree 
4 do 
5 (a) Compute an 2-isogeny 
6 

φi : Ei → E0 

(x, ...) 7→ (fi(x), ...) 

7 such that Ker(φi) = h2e2−i−1Si. 
8 (b) Ei+1 = E0 

9 (c) xs = fi(xS ) 
10 (d) (x1, x2, x3) ← (fi(xx1 ), fi(xx2 ), fi(xx3 )) 
11 end 
12 Return (x1, x2, x3). 

Algorithm 1: SIKE public key computation with 2-isogenies 

Keygen 

Secret key 
generation 

Public key 
generation 

sk 

Encaps Decaps 

pkpk 

c 

sk 

K 

K 

Fig. 2. Key encapsulation 

2. Encaps takes as input the public key and outputs a random symmetric key K and an encapsulation c of 
said key. 

3. Decaps takes as input the secret key, the public key and c and outputs the symmetric key K. 

We use the notions of Section 2.2 to explain how the concepts of SIDH are used in SIKE. In SIKE, an 
IND-CPA PKE scheme is build using same operations as in SIDH, plus the computation of a hash of the 
j-invariant. The SIKE IND-CCA KEM is build from the PKE scheme using a transformation of Hofheinz, 
Hövelmanns and Kiltz [14]. The secret key and the public key generation in Keygen are performed exactly 
as in SIDH. Encaps and Decaps are based on operations from SIDH but also use hash functions and xor 
operations. An ephemeral scalar and the associated isogeny are generated in Encaps. This scalar cannot be 
called "secret" key because it will be recovered by the other party in Decaps. Each time the parties want to 
compute a shared key K, this scalar is generated anew. However, this is not necessarily the case for the key 
material in Keygen. Ti’s attack takes advantage of this static key, as we will see in the next section. Using 
this ephemeral scalar and the public key pk, a shared secret j (a j-invariant) is computed. The "secret" scalar 
and a hash of j are then used to compute the symmetric key K and an encapsulated key c as a ciphertext. In 
Decaps, the ciphertext is then decrypted with the secret key to recover K and K is validated by recomputing 
the "secret" scalar and the associated isogeny. 
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Remark 2. In both the round 2 [5] and the round 3 [15] SIKE submissions, for the non-compressed version of 
SIKE, the public key is computed using 3-isogenies, while the ciphertext is computed using 2-isogenies. The 
key material used inside the encapsulation is generated anew at each call of Encaps, while the public key 
produced by Keygen is generated once and can be reused for multiple encapsulations. However, compression 
of the ciphertext and public key is faster for points in the binary torsion, i.e. for the images of the fxed 
public points in the binary torsion by 3-isogenies. Thus in the compressed version, key generation is done by 
computing 2-isogenies and encapsulation by computing 3-isogenies. 

3 Ti’s Theoretical Fault Attack 

As seen in Table 1, there are no experimental validations of attacks on SIKE specifc to isogenies. Ti’s attack 
creates few constraints on the faults to inject. Thus it could be exploitable in practice even on systems where 
controlling the produced faults is diÿcult. This is why we decided to tackle Ti’s attack and put it in practice 
on a modern SoC. 

First, we will explain present Ti’s attack scenario. The overview of the attack is described on Figure 3. 

Secret key 

Public key 
generation 

Correct public key 

Public key 
generation 

Altered public key 

Ti’s attack 

Recovered 
secret key 

Fig. 3. Ti’s attack 

Attack Scenario We consider an attack scenario where the attacker is permitted to run public key gener-
ation more than once on the same secret key. To mount the attack, one correct public key and one altered 
public key are suÿcient. The correct public key is indeed needed to get the correct target elliptic curve. This 
curve is used to check that the altered public key contains a point on it, but also for further computations 
with this point. 

In a KEM API, Keygen outputs the secret key and the public key at the same time, hence it is a design 
mistake to enable a regeneration of the public key. It is however diÿcult to ensure that all developers will 
respect the KEM API and avoid generating more than once a public key from the same secret. Hence a 
countermeasure intrinsic to the public key generation would be useful. 

Moreover, avoiding secret reuse is simply not possible in a multipartite exchange [3] where Bob has to 
use his secret key to generate multiple triplets of points to send to Alice and Charlie, for instance. Hence 
if the attacker injects a fault during the computation of the triplet Bob wants to send to Alice, he can still 
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Secret key skA 

φA(Pf 
B ),φA(QB ), 
φA(RB )) 

Elliptic 
curve E0 

Points PA, QA, RA 

Points PB , QB , RB 

Points PC , QC , RC 

(φA(PC ),φA(QC ), 
φA(RC ) 

Bob 

Alice 

Charlie 

Fig. 4. Ti’s attack in a multipartite key exchange setting 

recover Bob’s real triplet by computing it using the triplet sent by Bob to Charlie. Thus a countermeasure 
intrinsic to public key generation is strictly necessary for multipartite key exchange (Figure 4). 

In Ti’s article, the starting curve E0 is defned on Fp2 with p = 2eA 3eB f ± 1 where f is a small cofactor 
as in Section 2.2. Normally, when the key generation is not under attack, the images of three fxed public 
points P3, Q3 and R3 by the secret isogeny φ are computed to get the public key (line 10 of Algorithm 1). 
The attacker will force the computation of the image of a random point by φ. The result is an altered point 
φ(Pf 

3), φ(Qf 
3) or φ(Rf 

3). 
Ti uses the following lemma to show that it is possible to recover the secret key via this point. 

Lemma 1 ([28]). Let p be a prime number such that p = 2e2 3e3 f ± 1, where f is a small positive integer 
and e2 and e3 are positive integers such that 2e2 ≈ 3e3 , the same form as in the SIKE specifcations [15]. Let 
E1, E2 and E0 be supersingular elliptic curves defned over Fp2 . Suppose that φ : E1 → E2 is an isogeny of 
degree 2e2 with a cylic kernel and let P and Q be generators of E1[2

e2 ]. For any X ∈ E1[2
e2 ], let ψ : E2 → E0 

be a isogeny with kernel generated by φ(X). Then there exists an isogeny θ : E0 → E1 of degree 2� where � 
is a positive integer such that � 6 e2 and φ̂ = θ ◦ ψ. 

Proof. See [28]. 

This lemma is translated to Algorithm 2. 

input : φ(P3), φ(Q3) or φ(R3) and 
M , a faulted point that can be φ(Pf 

3), φ(Qf 
3) or φ(Rf 

3). 
output: φ̂ 

1 λ = 3e3 f 
2 Compute Ae2 , the parameter of the fnal Montgomery curve EAacc , using algorithm cfpk of section 

1.2.1 in [5]. 
3 T = λM on Ee2 

4 if ord(T ) = 2e2 then 
5 hT i = ker(φ̂) 
6 else 
7 Brute force for θ such that φ̂ = θ ◦ ψ 

Algorithm 2: Ti’s key recovery algorithm 

This algorithm highlights that in the case where the generator of the dual candidate kernel has maximum 
order, θ is the identity map Figure 5, which is a special case of Figure 6. 

If T has maximal order, i.e. 2e2 , then the isogeny with kernel hT i has degree 2e2 and is the dual of φ since 
an isogeny and its dual have the same degree. If, however, T has not maximal order, an additional isogeny 
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φ φ 
E0 EA 

E0 EA 

θ ψ 
ψ E0 

Fig. 5. T has maximal order. Fig. 6. T has not maximal order. 

θ of degree 2e2−ord(T ) will be needed so that θ ◦ ψ is the dual of φ. Recovering φ knowing the dual is then 
possible using its defnition. 

Remark 3. What is the size of the search space for θ’s kernel? Do note that we study here a public key 
generation with a secret isogeny of degree 2e2 . First, to be able to carry out the attack, we need the faulted 
point to be on E0. Heuristically, the probability that a random aÿne coordinate x (as we are using Mont-
gomery curve arithmetic, see Section 2) corresponds to a point X on E0 is approximately 1 . Moreover, as2 
E0 is supersingular, E0(Fp2 ) ' (Z/(p + 1)Z)2 . Hence there is a basis (A, B) of E0(Fp2 ) such that A and B 
are of order p + 1 and 3e3 B = S, where S ∈ E0 is the secret kernel generator of φ and ord(S) = 2e2 . Let 
X ∈ E0(Fp2 ) such that X = aA + bB where a, b ∈ Z/(p + 1)Z. Then T = 3e3 φ(X) = a3e3 φ(A) + bφ(3e3 B) 
and thus T = aφ(3e3 A) using the defnition of B. The order of 3e3 A is 2e2 , and so the order of φ(3e3 A) is 
also 2e2 . The order of T is then 2e2−val2(a), where 2val2(a) is the maximum power of 2 dividing a. The order 
of T is maximal if val2(a) = 0 i.e. if a is odd. The probability of a being odd is 1 . T is of order 2e2−1 if a is2 
even but not divisible by 4. The probability for this is 1 . In the worst case, val2(a) = e2, and the brute force 4 

1to compute θ is the longest. But the probability of such an event is low: only 
2e2+1 . Hence the probability to 

have no θ to compute is 1 , to have a θ of degree 2 to compute is 1 and the worst case, which corresponds to 4 8 
1a brute force of the dual isogeny, has probability to occur. The expected value of the search space for θ

2e2+2 

e2P 
1 e2+1is then given by · 2i = , which is quite low. All in all, there is a 50% chance that the attack will 2i+1 2 

i=0 
fail, a 25% chance that the attacker will not need to search for θ, a 12.5% chance that he will have to fnd θ 
among the isogenies of degree 21 and a 6.25% that he will have to fnd θ among the isogenies of degree 22 , 
etc... Thus it is clear that the probability for the attacker to succeed within a reasonable time is close to 50%. 
Do note that the reasoning is similar if the attack is performed to fnd a secret 3e3 -isogeny, and that there is 
again a 50% chance for the attack to fail and a nearly 50% chance for it to succeed in a reasonable amount 
of time. These results are valid for a fault at line 2 of Algorithm 1. A fault on x1, x2 or x3 after executing 
line 10 of Algorithm 1 for the i-th time will modify the probability distribution of val2(ord(T )). Indeed, T 
will have at most a 25% chance to have order 2e2−i (or 3e3−i , depending on the case): the distribution is the 
same, but shifted by i on the val2(ord(T )) axis. 

Remark 4. Some implementations of SIKE use compressed public keys (for instance [15]). There are di˙erent 
variants of the compression available, for instance in [4, 7, 20, 22, 30]. We focus on the one presented in [20], 
which is the one used in the round 3 submission of SIKE [15]. There are three main steps to compress a 
public key: 

1. Compute the basis of the 3e3 -torsion of EA. 
2. Pull it back to E0 with the dual of the secret isogeny. 
3. Compute the coordinates of P3, Q3 and R3 in that basis on E0. 

These coordinates are the same as the coordinates of φ(P3), φ(Q3) and φ(R3) in the 3e3 -torsion of EA, 
and they are the compression of the public key. In this case, we would have to adapt Ti’s attack to compute 
the image of incorrect points by the dual instead of images of the basis. Thus we would have to create a 
fault during the computation of the image of the basis by the dual. The impact of the di˙erent compression 
methods on the feasability of the attack should thus be studied in the future. In the rest of this work, we 
will focus on the non-compressed version of SIKE. 
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Remark 5. Ti’s attack is possible on both 2-isogenies and 3-isogenies. In practice, the attacker will attack 
2-isogenies or 3-isogenies depending on what is used in Keygen. We chose to focus our experiments on the 
attack of only one type of isogenies. When altering point initializations with fault injections, an e˙ect can 
be to uninitialize some words. In the studied SIKE implementation, the allocated memory space for a point 
is frst flled with zero words. All these zero words are then overwritten by data from constant parameter set 
coordinates. Fault injection will target this second initialization to altered point coordinates. But altering 
an overwriting by zero of a zero word has no e˙ect: thus it is easier to alter points initialized with few zero 
words. When looking at the non-compressed SIKE p434 parameter set, one notices that the points P3 and 
Q3 in the ternary torsion have more zero words in their coordinates so it is more diÿcult to alter these 
points. Hence we decided to attack a public key generation with computations of the images of P3 and Q3 

by 2-isogenies, starting by the non-compressed version, with the goal of attacking the compressed version 
later. 

4 Experimental Setups 

Before performing real-life electromagnetic fault attacks, we decided to simulate these attacks using software 
only. Indeed, fault injection attacks are long and complex to carry out [11], thus we chose to validate the 
attack with a simulation before the laboratory experiments. There were two steps: 

– frst, we used Sage [27] to simulate fault injection and to recover the secret isogeny with an implemen-
tation of Algorithm 2 and 

– then we emulated the target in C and injected the fault by debugging, while recovering the secret with 
the same Sage implementation of Algorithm 2. 

We are going to subsequently describe the second step, as it is the most realistic simulation of the two, 
and then the experimental setup for the real-life fault injection. 

4.1 Fault Injection Simulation with C 

For that second step, we simulate the fault injection by debugging with gdb the optimized round 3 ARM64 
implementation of SIKE [15] with curve p434 (non compressed version) using qemu as an emulator of our 
target. The emulator is a tool to study execution of the ARM64 application on an Intel processor. We 
compiled the SIKE sources from the path Additional_Implementations/ARM64/SIKEp434 in the round 3 
SIKE archive with gcc 7.2.1 and the optimization level 3 [2]4 . 

First, we programmed a tool to generate the key material, i.e. the private key and the public key. Our 
public key generation tool is a simple encapsulation of the function EphemeralKeyGeneration_A of said 
ARM64 SIKE implementation. Then we could perform the fault injection simulation, which consists in 
debugging the public key generation program executed by the emulator with debugger gdb. The input is 
Alice’s secret key. 300 fault attacks are launched by executing EphemeralKeyGeneration_A and skipping a 
di˙erent instruction for each experiment. We only observed the program’s behaviour when skipping one of 
the frst 300 instructions. Indeed, the “instruction skip” fault model is easy to implement in gdb with the 
command “set $pc=$pc+4” and is a very simplifed but satisfying model before the implementation of a real 
attack, as shown in [9] and [24]. 

This fault injection simulation was done for two di˙erent random secret keys. Among the 300 instructions 
that were skipped, 85 are particularly interesting because they are load/store pairs of instructions that copy 
the coordinates xP3 , xQ3 and xR3 in the accumulator of line 2 of Algorithm 1. They correspond to the 
second init_basis function call at the beginning of function EphemeralKeyGeneration_A in sidh.c5 . 28 
of these instructions have no impact on the public key when skipped. The 57 remaining instructions modify 
the public key when skipped. Out of these 57, 8 instructions yield a x that does not correspond to a point 
on the target curve because it is impossible to compute y. For the 49 other instructions, it is possible to 
4 The original ARMv8-A software implementation is also available in the SIDH Microsoft library at 
https://github.com/microsoft/PQCrypto-SIDH/tree/f43c9f74 

5 https://github.com/microsoft/PQCrypto-SIDH/blob/f43c9f74/src/sidh.c#L51 
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compute y. Table 2 shows the order of T and the attack successes for these 49 instructions. Recovering the 
secret was limited to points T with log2(ord(T )) >= 210 to limit brute force computations and as stated 
in theory in Remark 3, we notice that the obtained log2(ord(T )) are close to e2. Thus 45 to 48 instructions 
yield the secret key, and this shows that di˙erent faults enable secret key recovery, and is encouraging for 
the set up of a laboratory fault attack campaign. 

Table 2. Number of altered instructions during the second call to init_basis yielding the secret key 

log2(ord(T )) <208 209 210 211 212 213 214 215 216 
Instructions yielding T for secret key #1 0 1 0 1 3 4 10 21 9 
Instructions yielding secret key #1 / / 0 1 3 4 10 21 9 
Instructions yielding T for secret key #2 0 4 0 3 3 2 14 16 7 
Instructions yielding secret key #2 / / 0 3 3 2 14 16 7 

Sensitive instructions yielding the secret key were also identifed outside of the second call to init_basis. 
We focused the study on the frst 300 instructions of the function EphemeralKeyGeneration_A. 11 additional 
instructions were identifed after calls to the init_basis functions. A lot of instruction skips generated 
altered points that cannot be exploited to recover the secret. For example, altering the points used to 
compute the secret kernel generates three altered points in the public key but this alteration of the secret 
isogeny cannot be exploited by the attack. Table 3 shows the order of T computed from altered points. Each 
instruction skip that yields the secret key generates a unique altered point. Again, as expected in Remark 3, 
the obtained log2(ord(T )) are close to e2. 

Table 3. Number of altered instructions in the 300 frst instructions of EphemeralKeyGeneration_A yielding the 
secret key 

log2(ord(T )) <208 209 210 211 212 213 214 215 216 
Altered point yielding T for secret key #1 1 2 0 1 4 6 19 53 136 
Instructions yielding secret key #1 / / 0 1 3 5 12 27 11 
Altered point yielding T for secret key #2 1 4 0 4 3 4 31 46 128 
Instructions yielding secret key #2 / / 0 3 3 3 19 19 9 

4.2 Carrying Out the Fault Injection in a Laboratory 

After having shown that it is possible to simulate Ti’s attack, we will now present an experimental version. 
The target is a system on chip (SoC) equipped with four ARM Cortex A53 cores and including a Yocto 
Linux operating system. While it is diÿcult to fault a chosen instruction because of a poorly predictable 
latency of execution in SoCs [11], we have seen in Section 3 and with the simulation in Section 4.1 that 
we only need to fault the beginning of the key generation and do not need to choose precisely the time for 
the fault injection. Thus we can expect a successful attack on such a target. As seen in Section 3, we want 
Alice to compute the image of a random point by her secret isogeny, hence we only need to implement the 
generation of her public key to test the feasibility of the attack. Thus we will not implement the full SIKE 
protocol, but only the public key generation, here the optimized version for ARMv8-A of the SIKE round 3 
submission. The computations will be forced on one CPU of the quad-core and the CPU clock is fxed to the 
maximum frequency, i.e. 1.2 GHz. We choose electromagnetic injection to create faults as a complex sample 
preparation like removing the circuit packaging is not necessary, and it is cheap. Our setup for the campaign 
can be seen on the following Figure 7. 

To launch attacks, the control computer executes a campaign script that manages the communication with 
the target and the other devices (target power supply, oscilloscope, pulse generator and motorized stage). 
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Fig. 7. Campaign setup 

The key exchange implemented on the target has been modifed such that the state of a GPIO (general 
purpose input/output, here output pin) of the target changes just before the public key computation. The 
fault injection is then triggered by the target when this rising edge appears on the GPIO. The fault is induced 
by an electromagnetic disturbance generated with a tension pulse generator. The width in nanoseconds, the 
amplitude in Volt and the delay of the pulse, i.e. the time between the rising edge corresponding to the public 
key computation and the injection of said pulse can all be controlled. The tension pulse is then transmitted 
as an electromagnetic disturbance to the target through an electromagnetic probe. The probe can be moved 
with the motorized stage to fnd the optimal position for fault injection, that is to say the position where it 
is indeed possible to modify the execution of the algorithm and perform our attack. This induces unwanted 
currents inside the target. The results of the algorithm computations after injection may be a˙ected and are 
retrieved and analysed by the computer. In case of application or kernel crash, the power supply is used to 
reboot the target. 

During our campaign, the probe does not move and the pulse width is set at 6 ns. This position and the 
width are propitious for fault injection according to [11]. The amplitude varies from 300 to 360 V with a 
20 V step and the delay between the start of the public key generation and the fault injection varies from 
100 to 600 ns with a 20 ns step. Per such confguration, 10,000 attempts are made. Hence 1,040,000 attemps 
were made in total. The campaign lasted for 4.5 days. 

4.3 Analysis 

To analyse the results produced by either the simulation or the real fault attack, we use a Sage tool and 
follow the steps described in Section 3. In the proof of Ti’s attack the order of the candidate dual generator 
can be maximal or not, and in the latter case, a brute force is necessary to get a θ isogeny to “go back” 
to the starting elliptic curve. To ensure that the computations do not take “too much time”, i.e. that the 
number of candidates for θ when performing the brute force is small, the order of generator T should be as 
close to the maximum order, 2e2 , as possible. In that case, the degree of θ (the size of its kernel) will be 
small. When computing T and checking its order, we will thus only keep points that yield generators T with 
a “nearly” maximum order, higher or equal to 2e2 −6 . Assuming that the altered point is on E0 (Remark 3), 
meaning that we can compute T , the probability to get a point T with such order is more than 99%. We 
then compute a candidate ψ for the dual isogeny of Alice’s secret isogeny. Depending on the order of T , we 
will then determine θ or not, and then we will compute the images of P3, Q3 and R3 by the reconstructed 
secret isogeny to get a reconstructed public key and check that the attack went well. Recovering the secret 
scalar associated to this secret isogeny is also possible because we know its kernel point and solving discrete 
logarithms is easy in the smooth order groups used by SIDH/SIKE. 
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4.4 Experimental Results 

During the 4.5 days campaign, we obtained among 1,040,000 attempts: 

– 8706 attempts producing at least one altered output point (0.84%) i.e. at least one point whose x-
coordinate is di˙erent from the corresponding correct public key coordinate. At this point, we have not 
yet tested if these points are on the correct public key curve. Even if our goal is an alteration of the 
isogeny input point, other faults might arise and prevent us from recovering the secret, for example a 
corrupted secret kernel. 

– 1780 attempts yielding the secret key (0.17% of all attempts). This represents 20.45% of attempts with 
faulted output point, which is nearly half of the estimated probability in Section 3. The main explanation 
for this lower probability must be that our probability estimation is based on one assumption: the x-
coordinate of the input point of the isogeny is faulted. In practice, we also induced other faults. Table 4 
shows log2(ord(T )) with T from the faulted output point for the 1780 attempts (see line 3 of Algorithm 2). 
As anticipated, the order of most of T points are high (Table 6 shows the number of attempts we ignored 
because they were yielding a point T with an order too small for us to want to continue the attack) and 
thus, brute force for θ is fast. 

Table 4. Attacks yielding the secret by altering P3, Q3 or R3 

log2(ord(T )) 210 211 212 213 214 215 216 
Number of successful attempts with altered φ(P3) 5 6 64 80 115 273 82 
Number of successful attempts with altered φ(Q3) 11 14 60 52 188 371 93 
Number of successful attempts with altered φ(R3) 4 19 12 10 58 75 219 

Table 5. Attacks altering P3, Q3 or R3 and getting ord(T ) >= 210 but not yielding the secret 

log2(ord(T )) 210 211 212 213 214 215 216 
Number of unsucessful attempts with altered φ(P3) 0 2 5 30 176 512 2169 
Number of unsucessful attempts with altered φ(Q3) 0 2 4 28 83 572 2174 
Number of unsucessful attempts with altered φ(R3) 0 2 5 33 82 621 2124 

Remark 6. Do note that for each (amplitude, delay) confguration, we check if either P , Q or R has been 
altered. Sometimes, for a given confguration, more than one of these points is altered and matches our 
condition (yielding the secret, yielding a T of order greater than 210 but not the secret, yielding a T with 
an order strictly smaller than 210. Thus for instance the line for attempts with an altered φ(P3) matching 
the chosen condition also includes attempts where two points including φ(P3) are altered and match it, and 
attempts where the three points are altered and match it. 

Table 6. Attacks yielding T but its order is too small for us to want to continue the attack 

log2(ord(T )) 1 206 207 208 209 
Number of attempts with altered φ(P3) 155 1 4 0 3 
Number of attempts with altered φ(Q3) 350 0 0 5 69 
Number of attempts with altered φ(R3) 225 0 0 3 1 
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Fig. 8. Percentage of successful attempts depending on the amplitude and delay 

Figure 8 is a heat map representing the percentage of successful attempts i.e. that yield Alice’s secret 
key depending on the (delay, amplitude) confguration. After one campaign, injections of pulses with a 360 
V amplitude and a delay of 440 ns seem to be the best choice to recover the secret key: there is a 0.62% 
chance to recover the secret key in this confguration. Do note that the maximum amplitude delivered by 
our pulser is 400 V, and that the number of reboots increases when approaching that limit, thus slowing the 
campaign. There are few confgurations where there is no chance to recover the secret. This confrms than 
the required accuracy on the induced fault is low and compatible with practical fault injection. 

5 Countermeasures 

As discussed in Section 3, it is diÿcult to make sure that people implementing the SIKE protocol will 
adhere to the specifed API and avoid computing twice the public key. Moreover, it is not possible to avoid 
computing more than one public key using the same secret in a multipartite setting. Thus we propose a 
countermeasure that shall work in this setting too. 

Let us consider the round 3 optimized implementation of SIKE. The starting curve E0 is pushed succes-
sively through the isogenies of small degrees (update of the curve line 8 of Algorithm 1 and Algorithm 3) to be 
used for the computation of the kernel generator of the next isogeny (line 7 of algorithm 1 and Algorithm 3). 
Let us compute the coeÿcient A of this last target elliptic curve. We call it Ae2 . But we can also compute the 
coeÿcient by using the x-coordinates of the public key. Let us call the result of this computation Ax1,x2,x3 . 
If at least one image of a point di˙erent of P3, Q3 and R3 is computed, then the probability to recover the 
correct elliptic curve coeÿcient using the x-coordinates at the end will be very low: most of the time, we will 
have Ax1,x2,x3 6= AeA . Algorithm 3 is a modifed version of the public key generation Algorithm 1 with the 
added countermeasure. 

We would like to know the probability of not detecting a faulted point. Supposing that there is only 
one faulted point. Then according to Equation (1) in Section 2.1, A is a polynomial of degree 2 in xP for 
instance. Hence it has two roots in Fp2 . One is the correct xP . The probability to get the wrong one is then 
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Input : A private key skA. 
Output: A public key pkA. 

1 xS ← x(PA+skAQA) ; // ladder3pt 
2 (x1, x2, x3) ← (xPB , xQB , xRB ) ; // init_basis 
3 for i from 0 to eA − 1 ; // traverse_tree 
4 do 
5 (a) Compute an lA-isogeny 
6 

φi : Ei → E0 

(x, ...) 7→ (fi(x), ...) 

7 such that Ker(φi) = hleA−i−1Si.A 
8 b) Ei+1 = E0 

9 c) xS = fi(xS ) 
10 d) (x1, x2, x3) ← (fi(x1), fi(x2), fi(x3)) 
11 end 

// Ae2 can be retrieved after the computation of Ee2 . 
12 Ax1,x2 ,x3 = get_A(x1, x2, x3) 
13 if Ax1,x2,x3 6= Ae2 then 
14 return 0 // fault detected, do not return the altered public key 
15 else 
16 return pkA = (x1, x2, x3).// return the public key 
17 end 

Algorithm 3: SIKE public key computation with countermeasure 

1 
p2 , as there is only one value that is a root and that is not the correct abscissa. Looking at the size of p, it 
is a very low probability. 

We implement this countermeasure during the public key generation. While we have chosen to attack a 
public key generation with 2-isogenies as explained in Remark 5 of Section 3, we also propose the variant for 
3-isogenies. We implement the test of line 12 of Algorithm 3 as follows. 

A– 2-isogenies: we use the computation of the coeÿcient Ae2 such that Ae2 = of the public key curve C 
at the line 5 of algorithm 23 in [15]: (A : C) = (4A+ : C24) in projective coordinates. Even if24 − 2C24 

this coeÿcient is not needed in the public key, its computation is present in SIKE. We take advantage of 
this redundancy. Algorithm 10 is used to compute coeÿcient Ax1,x2,x3 using the triplet of x-coordinates 
of the public key. We want to check that 

(CAx1,x2,x3 : C) = (4A+ 
24 − 2C24 : C24). 

Thus we check that 

4A+ C24 + 2C24.24 = Ax1 ,x2,x3 

If not, then we detect a problem during the public key generation. 
This costs four additions, one multiplication and one call to get_A. 

A– 3-isogenies: we use the computation of the coeÿcient Ae2 such that Ae2 = of the public key curve C 
at the line 5 of algorithm 24 in [15]: (A : C) = (2(A+ ) : (A+ − A− )) in projective coordinates. 24 + A− 

24 24 24 
Even if this coeÿcient is not needed in the public key, its computation is present in SIKE. Algorithm 10 
is used to compute coeÿcient Ax1,x2,x3 using the triplet of x-coordinates of the public key. We want to 
check that 

(CAx1 ,x2,x3 : C) = (2(A+ ) : (A+ − A− )).24 + A− 
24 24 24 

Thus we check that 
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(A+ − A− )Ax1,x2,x3 = 2(A+ 
24).24 24 24 + A− 

If not, then we detect a problem during the public key generation. 
This costs three additions and substractions, one multiplication and one call to get_A. 

A call to get_A costs seven additions and subtractions, one squaring, four multiplications and one inver-
sion. It is possible to get rid of the inversion and obtain a faster verifcation by manipulating the equality 
we check using the formula of A in Equation (1) as computed by get_A. 

The number of operations to add to implement the countermeasure is very small compared to the number 
of operations necessary to generate the public key, thus there is nearly no overhead. The verifcation can also 
be done during and after the traverse_tree step of Algorithm 3. But considering the probability to detect 
a fault at the end of the public key computation, it does not seem necessary. 

6 Conclusion 

We have shown that Ti’s 2017 fault injection attack on the key generation step of SIKE is exploitable in 
practice though electromagnetic injection on a SoC. While it is complex to generate faults on a SoC, Ti’s 
attack does not require a high precision when performing it, which simplifes the experimental verifcation 
in a laboratory. In a 4.5 days campaign, 0.17% of the attack confgurations yielded the secret key for at 
least one of the altered public key points, which corresponds to around one confguration that enables us 
to recover the secret key every 3 minutes and 18 seconds. This attack requires both the real public key of 
Alice and an altered version. While the attack scenario is unlikely to apply to implementations of SIKE that 
respect the KEM API, it occurs in a multipartite setting. We thus propose a countermeasure which consists 
in computing the public key curve coeÿcient by using two di˙erent methods. This countermeasure has both 
a small overhead and a high probability to detect a fault. It remains to be seen if the attack is still feasible 
when the public keys are compressed. 
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