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▪ Before, handcrafted optical flow 

▪ Recently, deep optical flow with rise of deep learning

▪ Inspired by DF-VO from Zhang et al [2]

▪ Aim to explore probability of leveraging deep optical flow to improve the accuracy and 

robustness of a state-of-the-art VIO system.
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Introduction and Motivation
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▪ A displacement vector describes apparent motion of the same pixel in consecutive frames.

▪ Useful for feature tracking

▪ Assumptions:

- Brightness constancy

- Constant motion in a local neighborhood (Lucas-Kanade method [5])

- Spatially smooth motion (Horn-Schunck method [6])

▪ Sparse or dense vector field
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Preliminaries
Optical Flow

Fig 2. Sparse optical flow Fig 3. Color coded dense optical flow

Fig 1. Optical flow for a single pixel. Constant intensity is assumed: 𝑰 𝑥1, 𝑦1, 𝑡1 = 𝑰 𝑥1, 𝑦1, 𝑡1 = 𝑰 𝑥1, 𝑦1, 𝑡1
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▪ Consists of visual-inertial odometry and visual-inertial mapping

▪ Algorithm framework of Basalt VIO

▪ Patch-based KLT for tracking

- Locally-scaled sum of squared differences (LSSD)

- Coarse-to-fine optimization using pyramidal approaches
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Preliminaries
Basalt VIO [1]

Pose

Stereo images VIO frontend 

VIO backend 

IMU Preintegration

If IMU data available

Fig 4. Basalt VIO framework 
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▪ Locally-scaled sum of squared differences (LSSD)

- Patch Ω

- Desired transformation 𝑻 ∈ 𝑆𝐸(2) between two matching 

patches in adjacent images

- Average intensity of all pixels in the patch 𝐼

- Residual 𝑟 of an increment 𝜉

𝑟𝑖 𝜉 =
𝐼𝑡+1 𝑻𝒙𝑖

𝐼𝑡+1
−
𝐼𝑡 𝒙𝑖

𝐼𝑡
− Minimize LSSD over patches to obtain 𝑻

𝑎rgmⅈ𝑛
𝐓𝜖 SE(2)

σ𝒙𝒊∈Ω
𝑟𝑖 𝜉

2

▪ Coarse-to-fine optimization using pyramidal approaches

- Achieve robustness to large displacements in the image

- The pyramid level is fixed 

→ only robust to large displacements in certain degree
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Preliminaries
Basalt VIO

Fig 5. Main concept of LSSD

Fig 6. Image pyramid
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▪ Extract FAST keypoints

- Split the image into regular cells

- Extract and track the keypoint with strongest response in each cell

- Resample if no keypoint remains in the cell
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Integration and Outlier Removal
Integration

Initialization Resample
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▪ Extract FAST keypoints

- Split the image into regular cells

- Extract and track the keypoint with strongest response in each cell

- Resample if no keypoint remains in the cell

▪ Deep optical flow for temporal feature tracking

- Predict forward optical flow using Recurrent All-Pairs Field Transforms (RAFT) # [3]

- Use deep optical flow as prior to warp patches

- Refine by minimizing LSSD

▪ Pyramidal KLT for stereo matching
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Integration and Outlier Removal
Integration

# The model we used is the pretrained model released in the official repo of RAFT.
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1. Forward-backward flow inconsistency

- To remove outliers in temporal feature tracking

2. Epipolar constraint

- To remove outliers in stereo matching
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Integration and Outlier Removal
Outlier Removal
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Forward-backward flow inconsistency

- Predict backward optical flow

- Track points from the current frame to the target frame and back

- Calculate distance between initial position and position after the second tracking

- Large distance denotes high inconsistency → to remove

10Jingkun Feng| Integration of Deep Optical Flow in Visual-Inertial Odometry| January 31st, 2022

Integration and Outlier Removal
Outlier Removal

forward tracking

backward trackingCurrent frame Target frame
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Epipolar constraint

- Check epipolar geometry of correspondences on stereo images

- Calibration → Fundamental matrix 𝑭

- 𝑥′𝑭 𝑥 = 0

- Remove points on the right frame if constraint is violated

- Keep points on the left frame
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Integration and Outlier Removal
Outlier Removal

Fig 7. Epipolar geometry
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1. KITTI Odometry [4]

- 11 stereo sequences of various driving scenarios with ground-truth

- Due to storage limitation, long sequences (02, 05, 08) are excluded

- Grayscale and color images

- No IMU data

2. EuRoC MAV [9]

- 11 sequences of different difficulties with accurate motion ground-truth

- Collected on-board a drone (6 DoF)

- Grayscale images 

- IMU measurements
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Evaluation
Dataset
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1. Root mean squared absolute trajectory error: 𝐴𝑇𝐸

2. Relative pose error: translational 𝑅𝑃𝐸𝑡𝑟𝑎𝑛 and rotational 𝑅𝑃𝐸𝑟𝑜𝑡

3. Average translational and rotational error: 𝑡𝑒𝑟𝑟 and 𝑟𝑒𝑟𝑟

Notation:

• Estimated camera pose: 𝑸 ∈ 𝑆𝐸(3)

• Ground-truth camera pose: 𝐏 ∈ 𝑆𝐸(3)

• Translation and rotation part of a rigid body transformation 𝑻: 𝑡𝑟𝑎𝑛𝑠 𝑻 , 𝑟𝑜𝑡(𝑻)
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Evaluation
Evaluation Metrices
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▪ Evaluate global consistency

▪ Align the estimated and the ground-truth trajectory with a transformation matrix 𝑺 (Horn 

method [])

▪ Absolute trajectory error matrix at time step 𝑖

𝑬𝑖 ≔ 𝑸𝑖
−1𝑺𝑷𝑖

▪ Compute the root mean squared error over all time indices

𝐴𝑇𝐸 ≔
1

𝑚
෍

𝑖=1

𝑚

𝑡𝑟𝑎𝑛𝑠 𝑬𝑖
2
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Evaluation
Evaluation Metrices – Root Mean Squared Absolute Trajectory Error (𝐴𝑇𝐸)
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▪ Evaluate local consistency

▪ Relative pose error matrix   𝑭𝑖:Δ ≔ 𝑸𝑖
−1𝑸𝑖+Δ

−1
𝑷𝑖
−1𝑷𝑖+Δ

▪ Translational part  

𝑅𝑃𝐸𝑡𝑟𝑎𝑛𝑠 ≔
1

𝑚
෍

𝑖=1

𝑚

𝑡𝑟𝑎𝑛𝑠 𝑭𝑖
2
for ⅈ = 1,… , n

▪ Rotational part  

𝑅𝑃𝐸𝑟𝑜𝑡 ≔
1

𝑚
෍

𝑖=1

𝑚

∠𝑭𝑖 for ⅈ = 1,… , n where ∠𝑭𝑖 ≔ arccos
𝑡𝑟 𝑟𝑜𝑡 𝑭𝑖 − 1

2
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Evaluation
Relative Pose Error (𝑅𝑃𝐸𝑟𝑜𝑡 , 𝑅𝑃𝐸𝑡𝑟𝑎𝑛 )
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▪ Specific metric adopted to evaluation on KITTI Odometry

▪ Measures errors as function of the trajectory length

16Jingkun Feng| Integration of Deep Optical Flow in Visual-Inertial Odometry| January 31st, 2022

Evaluation
Average translational and rotational error
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▪ On KITTI Odometry

▪ On EuRoC MAV

▪ Outperforms the original in terms of global and local accuracy

▪ However, our system fails at a single frame on KITTI 07.
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Evaluation
Evaluation Results

Table 1 Evaluation results on KITTI Odometry (Seq. 01, 03-07, 09, 10).

Table 2 Evaluation results on EuRoC MAV (V2_03 is excluded).
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Discussion
Failure Case

Fig 8. Failure case. Time step above is t and below is t+1. 
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1. Optical flow inference: Grayscale vs. color images

2. With or without refinement using LSSD

3. … (for other studies please refer to the paper)
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Discussion
Ablation Study
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▪ Color images are more informative than grayscale images

▪ Most existing datasets(e.g., Flyingthings [9] and Sintel [8]) contain merely color images.

▪ Currently proposed deep-learning-based methods mainly train on color images.

▪ Evaluated on KITTI Odometry
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Discussion
Ablation Study – Grayscale vs. RGB
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▪ Using color images for optical flow inference can boost performance in pose estimation.

▪ But 

▪ the improvement is not significant, about 1% in average ATE.

▪ only some of the datasets provide RGB images.
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Discussion
Ablation Study – Grayscale vs. RGB

Table 3 Evaluation results of ablation study about the image format used for inference on KITTI 

Odometry (Seq.03, 04, 05, 06, 09, 10).
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▪ In general, refinement helps achieve more accurate trajectory estimation

▪ System with refined optical flow has obvious larger drift in KITTI 03 and 06
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Discussion
Ablation Study – Refinement 

Table 4 Evaluation results of ablation study about refinement of the deep 

optical flow on KITTI Odometry (Seq.03, 04, 05, 06, 09, 10).

Table 5 Evaluation results of ablation study about refinement of the deep optical flow 

on EuRoC MAV.
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▪ In general, refinement helps achieve more accurate trajectory estimation

▪ System with refined optical flow has obviously larger drift on KITTI 03 and 06
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Discussion
Ablation Study – Refinement 

Fig 9. Estimated trajectory of KITTI 03 Fig 10. Estimated trajectory of KITTI 06 
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▪ Not efficient

▪ A huge part of available information is not in use.

- About 300 pixels out of (370×1226) pixels

▪ Not real-time capable

▪ Original Basalt VIO is around 4 times faster than real-time

- Frame rate of EuRoC is 30 fps (0.03s per frame)

- About 7.5 ms per frame on EuRoC

▪ However, Optical flow inference is very "time consuming".

- 0.4 s per frame on EuRoC using RAFT
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Discussion
Timing and Efficiency
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▪ We extended the Basalt VIO by integrating deep optical flow

- replace the pyramid KLT tracker in BASALT VIO with refined deep optical flow

- remove outliers using forward-backward flow inconsistency and epipolar constraint

▪ According to the evaluation, our system outperforms the original Basalt VIO w.r.t accuracy 

of trajectory estimation.

▪ However, our integration has drawbacks

- less robust to dynamic objects

- inefficient in terms of the usage of available information

- not real time capable
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Summary
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Thank you!
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Appendix
Qualitative Evaluation Results – KITTI Odometry

Qualitative evaluation results on KITTI Odometry Seq. 01, 03-06, 09, 10 
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Appendix
Qualitative Evaluation Results – EuRoC MAV

Qualitative evaluation results on EuRoC MAV (V2_03 is excluded)


