

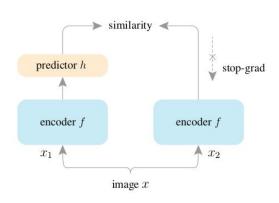
Beyond Deep Learning: Selected Topics

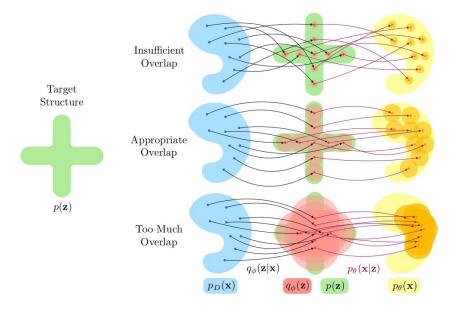
Christian Tomani, Yuesong Shen

Technical University of Munich
Chair of Computer Vision and Artificial Intelligence
Garching, February. 2nd, 2022

Agenda

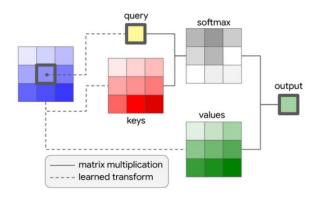
- What are the topics we will cover?
 - Layer and Architecture Designs
 - Alternatives to Neural Networks
 - Uncertainty Aware Models
 - Time Series and Sequence Models
- How is the course organized?
- How to apply?

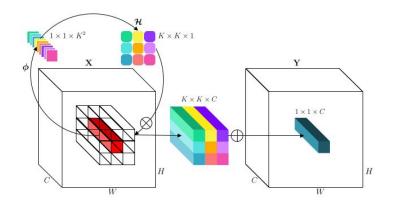



Layer and Architecture Design

Self-supervised representation learning

- Learning without labels
- Learn "good" representation efficiently


Original Images published in:


[&]quot;Exploring Simple Siamese Representation Learning, Chen and He, 2020"; "Disentangling Disentanglement in Variational Autoencoders, Mathieu et al., 2019"

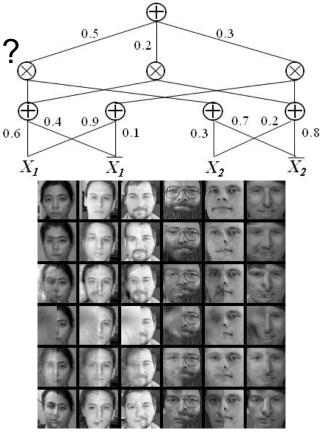
Learning in vision beyond CNNs

- New trend in CNN-dominated vision domain: attention
- Best of both Convolution and self attention?

Alternatives to Neural Networks

Alternatives to Neural Networks: why?

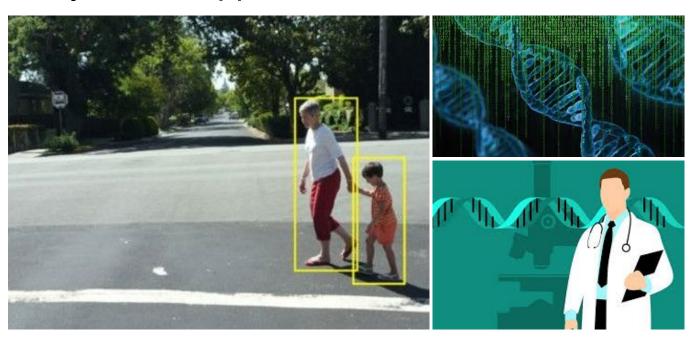
Neural network is currently the "star model" in the machine learning community


- ⇒ Why should we care about alternative ML models?
 - NN does not offer solution to all problems
 - Alternative solutions for generative modeling, unsupervised learning, uncertainty estimation ...
 - Offer inspirations for improving NN / combination
 - Better appreciate the strong / weak points of NN

Alternatives to Neural Networks: which?

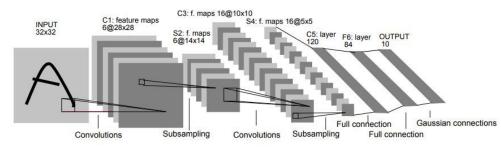
Some possible alternatives to neural network:

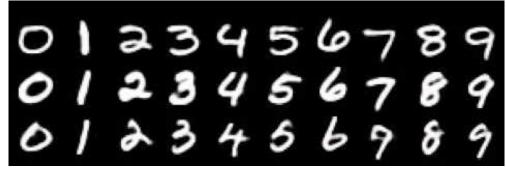
- (Deep) Gaussian process
- Deep belief network
- Deep Boltzmann machine
- Sigmoid belief network
- Sum-product network
- ..


Original Image published in:

Uncertainty Aware Models

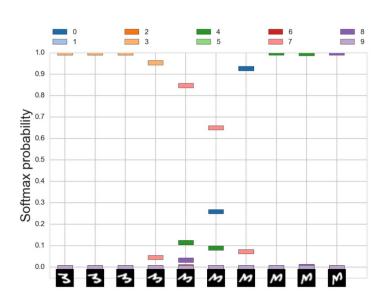
Safety critical applications



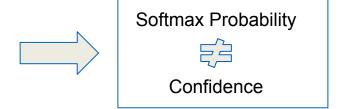

The issue with Deep Learning - Can we trust the model?

Setup

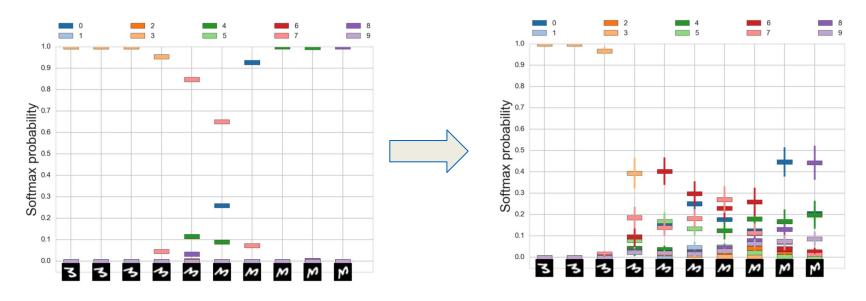
LeNet-5 Model with weight decay



MNIST Dataset



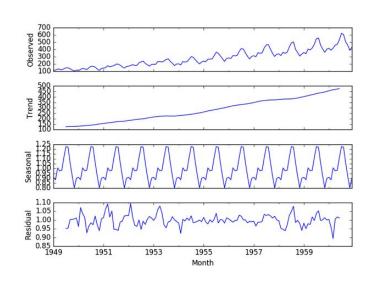
The issue with Deep Learning - Can we trust the model?


Vanilla LeNet-5 Model on MNIST

- Model is unreliable and not calibrated
- Gives totally wrong but highly confident predictions if data is perturbed
- wrong predictions cannot be distinguished from correct ones

The issue with Deep Learning - Can we trust the model?

Time Series and Sequence Models


Time Series Basics

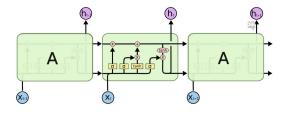
2 Types of time series:

- univariate time series
- multivariate time series

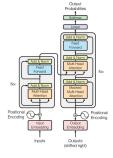
Decomposition of time series:

- d, trend component (deterministic)
- c, cyclical component (deterministic, periodic)
- s_t seasonal component (deterministic, periodic)
- ε_t irregular component (stochastic, stationary)

$$y_t = d_t + c_t + s_t + \epsilon_t$$



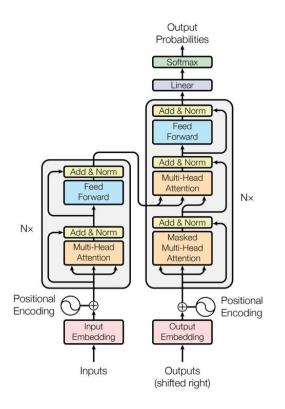
Time Series Models


Autoregressive Model:

$$X_t = c + \sum_{i=1}^p arphi_i X_{t-i} + arepsilon_t$$

Long Short Term Memory Model (LSTM):

Transformer Models:



Transformer Models

- Encoder and decoder stacks
- Attention
- No recurrent neural network
- Applications:
 - Sequence modeling
 - Language translation
 - Text processing

Attention is all you need vs.
Hopfield Networks is All You Need

Course logistics

Course Organization

Course website: https://vision.in.tum.de/teaching/ss2022/bdlstnc ss2022

Course email: <u>bdlstnc-ss22@vision.in.tum.de</u>

Course structure:

- Kick-Off Meeting with all the topics (default date: April 27th)
- Matching to the topics
- Read the papers and do a literature search and elaborate on the topic you are provided with
- Get optional help, if you did not understand the paper
- Send a first draft of the presentation and get optional feedback
- Presentations take place on July 5th-6th 2022
- Final report will be due after the presentations

Prerequisites

Machine learning & deep learning knowledge:

Basic ML concepts and ML/DL models

Min. Requirement: passed one ML/DL related course (I2ML, I2DL, ADL4CV, PGM ...)

Soft skills:

Manage regular workflow and communicate with tutors efficiently

- We also value:
 - solid basis & interest for maths
 - prior experience with ML/DL projects

How to apply

- 1. Apply via the **TUM Matching system** (Feb. 10 ~ Feb. 15, 2022)
 - If you like our course, make sure to give it a high priority :)
- 2. Send us an email to show your interest and fulfillment of prerequisites
 - Crucial for us to give you a priority
 - The email should be sent to bdlstnc-ss22@vision.in.tum.de latest Feb. 15th with the title "[Application] Firstname Lastname" and contain
 - Filled information form (template on course website, rename to "firstname_lastname.xlsx")
 - Transcript
 - CV

Thank you! Questions?

