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Abstract—Many index advisors have recently been proposed
to build indexes automatically to improve query performance.
However, they mainly consider performance improvement in
static scenarios. Their robustness, i.e., stable performance in
dynamic scenarios (e.g., with minor workload changes), has
not been well investigated. This paper addresses the challenges
of assessing the index advisor’s robustness from the following
aspects. First, we introduce perturbation-based workloads for
robustness assessment and identify three typical perturbation
constraints that occur in real scenarios. Second, with the per-
turbation constraints, we formulate the generation of perturbed
queries as a sequence-to-sequence problem and propose TRAP
(Tailored Robustness assessment via Adversarial Perturbation)
to pinpoint the performance loopholes of index advisors. Third,
to generalize to various index advisors, we place TRAP in
an opaque-box setting (i.e., with little knowledge of the index
advisors’ internal design), and we propose a two-phase training
paradigm to efficiently train TRAP without elaborately annotated
data. Fourth, we conduct comprehensive robustness assessments
on standard benchmarks and real workloads for ten existing
index advisors. Our findings reveal that these index advisors are
vulnerable to the workloads generated by TRAP. Finally, based
on the assessment results, we shed light on insights to enhance
the robustness of different index advisors. For example, learning-
based index advisors can benefit from adopting a fine-grained
state representation and a candidate pruning strategy.

Index Terms—AI4DB, Index Advisors, Robustness Assessment

I. INTRODUCTION

Indexes are crucial in database optimization [1]. Tradi-
tionally, indexes are built by expert database administrators
(DBAs) [2] who analyze the workload characteristics and
create indexes that are likely to accelerate workload execution.
This procedure is labor-intensive. To reduce the manual effort
and automate the selection process, index advisors have been
extensively studied [3]–[10].

Early index advisors are mostly heuristic-based [3]–[6],
[11], [12], where indexes that maximize predefined criteria
(e.g., the relative cost reduction) are greedily added or re-
moved. However, they have two limitations. First, they cannot
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well capture the correlations between the query patterns and
data distributions. Second, they use heuristics to select indexes
from a large set of candidates and are often stuck in a sub-
optimal solution. To address these limitations, learning-based
index advisors [7]–[10], [13], [14] have been proposed. They
capture the syntactic query patterns associated with the index
(e.g., columns in the predicates) based on the training work-
loads. They mostly adopt a reinforcement learning framework
and take actions to select indexes based on the current state
(e.g., the workload characteristics).

Although existing index advisors attempt to achieve high
accuracy in selecting appropriate indexes to reduce the cost of
a static workload [2], they neglect an important factor – ro-
bustness. The robustness of an index advisor is whether it can
adapt to dynamic workloads and maintain stable performance
without expensive model re-training [15], [16]. The robustness
of existing index advisors has not been fully investigated.
Overall, when assessing the robustness of an index advisor,
a pivotal consideration lies in devising appropriate testing
workloads that satisfy two critical criteria. (1) Real-world
Relevance: the workloads should reflect real-world production
systems with a high probability of occurrence; (2) Efficacy
in Loophole Detection: the workloads must pinpoint the per-
formance loopholes of index advisors being assessed. These
two criteria are of paramount importance in measuring index
advisors’ robustness.

To reflect the robustness of index advisors in practice, the
testing workloads should mimic workload drifts [17]–[20]
resulting from query changes in daily life, i.e., to generate
workloads that might occur in real-world scenarios. Our key
observation is that most queries in real production systems
and open-source benchmarks are perturbed variants of a small
set of templates. These templates undergo changes due to
shifts in user behavior and business demands [21], [22]. As
shown in Figure 1, 1.7 billion queries executed in the industry
(e.g., the Fortune 500 and the Global 2000 companies) are
based on 31 million query templates with different parameter
bindings [23] (Figure 1(a)); the queries of eight open-source
benchmarks [19], [24]–[27] are generated from a small number
of well-crafted templates (Figure 1(b)).



Fig. 1: Most queries in real-world workloads (a) and open-source benchmarks
(b) are variants perturbed from a limited number of templates (∞ denotes the
number is unlimited).

Furthermore, perturbations lead to “variants” of the “orig-
inal” workloads that the index advisors are “supposed to
be competent” to select appropriate indexes, both from an
algorithm point of view (e.g., a learning-based index advi-
sor is well-trained on similar workloads [28]) and from an
application point of view (e.g., index advisors are required to
adapt to minor workload changes in practice). Therefore, we
propose to adopt queries generated based on perturbations over
the original workloads and conduct a robustness assessment
based on these workloads.

To comprehensively assess index advisors’ robustness, the
testing workloads should be tailored to reveal the performance
loopholes of each index advisor. However, it presents the
following challenges when designing a framework to generate
such workloads. First, because of the wide-ranging diversity of
SQL queries in terms of literal patterns (e.g., various database
schemas and multiple clauses), a great number of operations
can be performed to perturb the SQL (e.g., adding a specific
column in the SELECT clause). Defining a distinct action rule
for each operation becomes impractical due to the excessive
action space (C1). Second, given the significant disparities in
the internal architecture of index advisors (e.g., the adopted
strategies and learning paradigms), it becomes imperative to
design a unified generation framework, which involves mini-
mal knowledge and generalizes to various index advisors (C2).
Third, the generation process should be efficient, i.e, produce
executable queries and reduce the number of invalid queries
(e.g., violate the given perturbation constraints), precisely
target the performance loopholes of the index advisors (C3).

To address C1, we formulate perturbation over queries in
the original workloads as a sequence-to-sequence problem.
Given the input SQL, the perturbed query is synthesized
by generating each SQL token based on an encoder-decoder
network. Therefore, all the operations (e.g., add or replace a
specific token) can be implemented in a unified manner, and
the size of the action space is independent of the number of
operations. To address C2, we propose a tailored workload
generation framework TRAP based on a two-phase training
paradigm. It generates a workload that intends to degrade the
performance of the index advisors by exploring perturbation
combinations via reinforcement learning without any prior
knowledge of their internal designs. Moreover, to enhance the
sample efficiency in reinforcement learning, TRAP performs
index advisor independent pretraining, effectively initializing
the agent with an understanding of the SQL semantics. To

address C3, we design a novel tree-based structure to further
restrict the action space of the permissible SQL tokens. This
structure ensures that each generated query satisfies the pertur-
bation constraints and strictly adheres to the SQL grammar.
Furthermore, a reward function based on the learned index
utility is adopted to provide more accurate rewards associated
with the performance drops of index advisors.

To the best of our knowledge, this paper is the first attempt
to thoroughly study the robustness of index advisors. The main
contributions of this paper are summarized below.
• We introduce the concept of perturbation-based adversarial

workloads based on the observations from typical workload
drifts to measure the robustness of index advisors (Sec-
tion III).

• We formulate the generation of the perturbed queries as
a sequence-to-sequence problem and propose a generation
framework TRAP based on an encoder-decoder architecture
to implement multiple perturbations in a unified manner
(Section IV-A).

• We adopt a two-phase training paradigm to generate effec-
tive adversarial workloads over various index advisors with
little knowledge about their internal designs (Section IV-B
/ IV-C).

• We design a novel structure to ensure the validity of the
perturbed SQL and utilize a learned index utility model to
provide more accurate feedback (Section IV-D).

• We conduct a thorough robustness assessment on ten exist-
ing index advisors over both open-source benchmarks and
real-world datasets (Section V).

• We reveal insightful findings and discoveries from the
assessments, which can facilitate the design of more robust
index advisors (Section VI).

II. RELATED WORK

A. Index Advisor

Heuristic-based index advisors incrementally add [3]–[5]
or decrementally [6], [29] remove candidate indexes (i.e.,
single-column indexes [6] or multi-column indexes [3]–[5],
[29]) according to the predefined criteria (e.g., the relative
cost reduction [5], [6], [11], [12] or the benefit-per-storage
ratio [3], [4], [29]). Learning-based index advisors apply
machine learning techniques, primarily based on Reinforce-
ment Learning (RL) [30], where an agent (typically a neural
network [31]) outputs an action (i.e., the selected indexes)
based on the current state to maximize a reward function (e.g.,
the estimated cost reduction [8]–[10], [13], [32], the benefit-
per-storage ratio [7] or the actual runtime [1], [14]). There
are various choices of the state representations to incorporate
features of the workloads at different levels (more details in
Section VI-A).
Difference with our work. Most index advisors, especially the
learning-based ones, are only assessed on static workloads. Al-
though a few recent attempts have proposed different strategies
to make their methods more robust [33], [34] or considered
dynamic workloads [1], [7], the assessments are conducted
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on the testing workloads split from a predefined set of work-
loads, which only contain limited query variants and fails to
reflect typical workload drifts. Therefore, the robustness of
both heuristic-based and learning-based index advisors over
workload drifts has never been thoroughly assessed.

B. SQL Generation

Heuristic-based SQL generation methods use various rules.
For example, SQLsmith [35] randomly synthesizes queries by
walking through the parse tree. TLP [36] derives multiple
queries by partitioning the results from the original query.
Recently, learning-based SQL generation methods adopt Gen-
erative Adversarial Network (GAN) [37] or the reinforcement
learning framework [38]. Instead of generating queries from
scratch, some studies perform a series of rewrite transforma-
tions to optimize the original query. Sia [39] replaces the
predicates in a query with valid but weaker ones learned by
a classifier over the columns. LearnedRewrite [40] adopts the
Monte Carlo Tree Search (MCTS) algorithm to find a near-
optimal rewrite order from a set of query rewrite rules.
Difference with our work. First, our work aims to generate
perturbed queries due to typical workload drifts. Existing
studies, such as heuristic-based methods or generating from
scratch, will produce many queries that might never occur in
the real world. Second, the generation process is instructed to
degrade the index advisor’s performance intentionally. Existing
methods need a large volume of queries to find the perfor-
mance loopholes due to the mismatch among the generation
goals (refer to the results in Section V-B).

C. Adversarial Attack

Adversarial attacks have received much attention in the
Computer Vision (CV) and Natural Language Processing
(NLP) fields. There are two categories of adversarial attack:
(1) the evasion attack [41], where a testing sample similar
to the original input sample is constructed to deteriorate the
effectiveness of a well-trained or deployed model, and (2) the
data poisoning attack [42], where samples are injected into the
training set to mislead the model’s training procedure.
Difference with our work. Recently, data poisoning attacks
have been explored on learned index structure [43]. Our work
belongs to evasion attacks that aim to assess the robustness of
index advisors. The opaque-box setting (i.e., the design details
are not exposed) requires the assessment procedure to be
less intrusive and more generalized. The similarity constraint
adopted in this work differs from existing evasion attacks [41],
i.e., the proposed perturbations over the SQL queries reflect the
typical workload drifts so that the robustness of index advisors
can be more accurately and practically measured.

III. PROBLEM DEFINITION

DEFINITION 3.1 (Index Advisor): Given a dataset d, a
workload W which contains a set of queries and the as-
sociated weights (e.g., the frequency of query q is e), i.e.,
W = {(q, e)}, |W| ≥ 1, an index advisor f returns a set of
indexes I = f(W,d) based on its internal mechanism.

DEFINITION 3.2 (Index Utility): The index advisor f ’s
utility u(W,d, f) for a workload W on a dataset d is the
relative cost reduction with the selected indexes I = f(W,d),
compared with a baseline index configuration Ib,

u(W,d, f) = 1−
c
(
W,d, I

)
c
(
W,d, Ib

) (1)

where c(W,d, I) is a cost metric of running workload W on
dataset d given the selected indexes I.

The index utility u measures the optimization ability of the
indexes based on the workload cost, similar to the primary
focus of previous studies [1], [2], [7]–[9]. The baseline Ib

allows more flexibility in measuring the index’s quality. For
example, if the baseline Ib is the default indexes, we require
the index advisor to select indexes that outperform the default
indexes (i.e., u > 0) [44] (More details about Ib are in
Section V).

In real production systems and open-source benchmarks,
workloads are rarely static [21]–[23]. The robustness of an
index advisor over dynamic workloads can be measured by
the fluctuation of index utility on different workloads. Next,
we define the robustness of an index advisor.

DEFINITION 3.3 (Index Advisor’s Robustness): Given a
dataset d, an original workload W (e.g., the current workload
or the training workload for a learning-based index advisor),
another workload W ′ (e.g., generated by the robustness assess-
ment process for performance comparison with W), and an
index advisor f with u(W,d, f) > θ (θ ≥ 0), the robustness
is defined as the Index Utility Decrease Ratio (IUDR) on W ′,

IUDR = 1− u(W ′,d, f)

u(W,d, f)
(2)

Robustness is the ability of index advisors to provide
high and stable performance over dynamic workloads without
updating the index advisor. Thus, Definition 3.3 requires the
index advisor f to be properly operating on the original
workload W with u(W,d, f) > θ, where the threshold
θ is user-defined. A larger value of θ indicates the index
advisor should provide higher performance. Note that we also
require the generated workload W ′ to be sargable [45], [46]
(i.e., can be optimized by a set of indexes). Specifically, we
summarize the categories of query changes that make a query
non-sargable (more details in Section VI-C). Then, these non-
sargable workloads are detected, verified, and filtered out from
the robustness assessment process. According to Equation 2,
a smaller IUDR indicates a smaller performance gap between
W and W ′, i.e., more stable and robust performance.

Intuitively, W ′ must (1) simulate workloads under workload
drifts to more accurately measure robustness in practice and
(2) target the weakness of index advisors so that the per-
formance gap between W and W ′ can detect whether the
performance of the index advisor is truly stable. These two
assumptions motivate us to give the following definition.

DEFINITION 3.4 (Perturbation-based Adversarial Work-
load): Given an original workload W , a dataset d, a
perturbation-based adversarial workload W ′ is generated to
assess the robustness of an index advisor f , W ′ = {(q′, e′)}
consists of a set of queries and their weights (e.g., the
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occurring frequency). Each unseen query (i.e., a query that
has not been included in the original workload) is generated
by adding slight perturbations with an adversarial intent to
the original workload, i.e., ∀q′ ∈ W ′ \ W, |q′| ≥ 1,∃q ∈
W, k(q,q′) < ϵ, e′ = e, s.t., u(W ′,d, f) < u(W,d, f),
where k(·, ·) is a distance metric, e.g., the edit distance.

We now explain the key concepts in Definition 3.4.
• Perturbation-based Workload. Definition 3.4 uses per-

turbed queries to simulate common query changes under
workload drifts. Perturbed queries are widely observed in
open-source benchmarks [24], [26], [27], [47]–[50], where
queries are variants of templates with different (1) query
payloads (e.g., columns in the SELECT clause), (2) pa-
rameter values, and (3) filter predicates. Perturbation can
be considered a meaningful template augmentation, e.g.,
additional predicates correspond to more fine-grained data
slicing over the tuples without changing the original queries’
semantics greatly [26]. Thus, for robustness assessment, it is
better to use perturbed queries instead of generating queries
from scratch because the latter leads to meaningless queries
that never occur in real scenarios. Furthermore, perturbed
queries are more appropriate for assessing the learning-
based index advisors. By restricting a small perturbation,
we generate workloads that a well-trained index advisor
is “supposed” to perform well but fails to, exposing the
vulnerability of the learning-based index advisors. On the
contrary, generating from scratch might incur an inevitable
performance drop for learning-based index advisors since
workloads contain irrelevant query patterns to the original
ones [17]–[20].

• Distance Metric. Definition 3.4 uses SQL-level differences
(i.e., edit distance) to quantify the degree of perturbation
because changes in user behavior and business demands can
be uniformly implemented by a series of edit operations. We
do not use plan-level difference because the transformation
from a SQL to a query plan is more pertinent to the
optimizer [49] and is more appropriate to assess their
robustness. The user-defined parameter ϵ controls the degree
of the perturbation and indicates the maximal number of
tokens that can be changed. For example, if ϵ = 5,
queries changed within five tokens are considered slight
perturbations without strict amplitude ordering.

• Adversarial Intent. Definition 3.4 uses u(W ′,d, f) <
u(W,d, f) to indicate that W ′ is generated with an ad-
versarial intent and targets the weakness of the given index
advisor, i.e., leading to their performance drops.
Considering the common query changes due to typical

workload drifts [17]–[20], we present three types of pertur-
bation constraints. These perturbation constraints differ in the
types of tokens that can be modified (Table I)1.
• Value Only Perturbation [18], [20] reflects the

most common template-based workload drifts where queries
are variants of the same set of pre-defined templates (e.g.,

1Note that the join predicates over columns, i.e., the join graph are not
allowed to be modified considering the semantic meaningfulness of the query.

TABLE I: Legal token types that can be modified (colored in black) under
different constraints. The original query is a simplified SQL in JOB [24].

Original Query q
SELECT t.title, n.name FROM title AS t, cast info AS ci, name AS n
WHERE t.id = ci.movie id AND ci.person id = n.id AND t.kind id = 1
ORDER BY t.production year, t.series years

Perturbation Column Value Conjunction Operator Aggregator
Value Only - ✓ - - -

Example Query q′

for Value Only

SELECT t.title, n.name FROM title AS t, cast info AS ci, name AS n
WHERE t.id = ci.movie id AND ci.person id = n.id AND t.kind id = 3
ORDER BY t.production year, t.series years

Column Consistent ✓ ✓ - - -

Example Query q′

for Column Consistent

SELECT t.title, n.name FROM title AS t, cast info AS ci, name AS n
WHERE t.id = ci.movie id AND ci.person id = n.id AND t.kind id = 1
ORDER BY t.series years, t.production year

Shared Table ✓ ✓ ✓ ✓ ✓

Example Query q′

for Shared Table

SELECT t.title, n.name, ci.note FROM title AS t, cast info AS ci, name AS n
WHERE t.id = ci.movie id AND ci.person id = n.id
AND t.kind id = 3 AND n.gender = ’f’
ORDER BY t.production year, t.series years

TPC-H, TPC-DS, DSB [26]). For example, an online retailer
may issue a series of queries to compare the sales figures
of the same product in different seasons, pricing strategies,
or marketing campaigns. This perturbation constraint only
allows modifications on the predicate values, which cor-
respond to the templates with placeholders. An example is
displayed in Table I, the value in the predicate t.kind_id
= 1 is replaced with 3 to retrieve a different kind of movie.

• Column Consistent Perturbation [19], [27]
mimics the workload drift when users operate on the
same set of columns in daily transactions (e.g., CEB [19],
STATS [27]). For example, a customer changes the order
of columns in the search results of an E-commerce website
to display products according to different preferences.
This perturbation constraint allows modifications on
columns and values, but the modified columns can only
be chosen from the original column set. As shown in
Table I, the arrangement of columns in the ORDER BY
clause is changed to obtain results in different time order,
i.e., “t.production_year, t.series_years” →
“t.series_years, t.production_year”.

• Shared Table Perturbation [17], [19], [24], [25]
simulates the scenario when users in an exploratory analysis
change the payloads or add new predicates to the orig-
inal queries (e.g., JOB [24], CEB [19]). For instance, a
sales analyst may execute analysis workloads with differ-
ent filter predicates for the date range, product category,
or customer demographics to uncover trends or patterns
and assist inventory management decisions. The Shared
Table Perturbation restricts the perturbed queries q′

to be operated on the same table schema as q, and allows
modifications on other token types. An example is shown
in Table I, where the query variant contains a new payload
(ci.note) and a new predicate (n.gender = ’f’) to
obtain additional movie cast information of the actress.

IV. ADVERSARIAL WORKLOAD GENERATION

In this section, we introduce the details of TRAP. As shown
in Figure 2, TRAP contains several modules to generate effec-
tive adversarial workloads. First, to cope with the difficulty of
integrating various perturbations in a unified manner, TRAP for-
mulates the generation of perturbed queries as a sequence-
to-sequence problem based on an Encoder Decoder Network.
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Fig. 2: Overview of the Adversarial Workload Generation Framework TRAP.

Nevertheless, sequence models have shown catastrophic for-
getting issues that lead to the information loss of previous
input. To address this problem, TRAP adopts a SQL context
attention mechanism to capture the characters of SQL (e.g.,
the overall query structure) (Section IV-A). Second, to tailor
adversarial workloads for each index advisor, TRAP adopts a
two-phase training paradigm. Given the limited knowledge and
requirement of the generalization ability to index advisors with
diverse internal designs, TRAP resorts to Reinforced Perturba-
tion Policy Learning, where the encoder-decoder model acts
as the agent. However, reinforcement learning typically suffers
from time-consuming training procedures due to the sample
inefficiency problem in obtaining a good policy. To enhance
the training efficiency, TRAP employs an Index Advisor In-
dependent Pretraining, where the agent is bootstrapped with
SQL-related knowledge (e.g., the semantics of the queries).
This phase is an offline one-time effort, independent of any
index advisor, and transfers the knowledge to RL. Moreover,
since the reward might be inaccurate as it is calculated by
the estimated statistics from the optimizer, a Learned Index
Utility model is adopted. This model enables more accurate
quantification of performance drops of index advisors and
provides more explicit guidance for TRAP to effectively target
the performance loopholes (Section IV-B / IV-C). Finally, a
vanilla sequence model fails to guarantee the output queries
meet the perturbation constraints. Therefore, a novel structure,
i.e., Constraint-Aware Reference Tree is integrated into the
agent. This structure restricts the permissible tokens at each
step and enables TRAP to seamlessly accommodate various
perturbations constraints (Section IV-D).

A. Perturbation via Encoder-Decoder Network

First, we explain how to generate the perturbed queries
based on the encoder-decoder network equipped with an SQL
context attention mechanism and implement various perturba-
tions in a unified manner. As shown in Figure 3, the encoder of
TRAP is a Bi-directional Gated Recurrent Unit (Bi-GRU) [51]
layer, which consists of a forward GRU unit GRUf and a
backward GRU unit GRU b. The decoder is another GRU
layer. We leverage GRU since it is lightweight and effective
compared with the transformer-based models [52] (refer to

Fig. 3: Illustration of Encoder-Decoder Network in TRAP.
the results in Section V-C). For a SQL query2 of n tokens
q =< q1, ... ,qn >, TRAP proceeds as follows.

Step 1: The encoder reads the query sequentially and
returns a hidden vector for the token at position i, hi =
[[hf

i ], [h
b
i ]](i = 1, ... , n), where hf

i = GRUf (qi,h
f
i−1),

hb
i = GRU b(qi,h

b
i+1) and [, ] is the concatenation operation.

Step 2: Suppose the output query q′ =< q′
1, ... ,q

′
m >

contains m tokens, the decoder outputs q′ in a token-by-token
manner. At each step t (t = 1, ... ,m), the decoder’s GRU cell
returns a hidden vector st = GRU(q′

t−1, st−1) based on the
previously generated tokens.

Step 3: A context vector ct is computed to encapsulate
the significant information of the whole input SQL query.
Since sequence models have shown catastrophic forgetting
issues [53] in deriving st, we leverage the attention mech-
anism [54] to learn to attend to different parts of the SQL.

eti = vT tanh(Whhi +Wsst + b), (i = 1, ..., n),

at
i =

exp(eti)∑n
i=1 exp(e

t
j)
, (j = 1, ..., n),

ct =
∑
i

at
ihi,

(3)

where hi is the encoder’s hidden state for token i, st is the
decoder’s hidden at timestep t, eti computes the matching score
between hi and st, ati is the attention weight that normalizes
the matching score et. The context vector ct aggregates over
all the encoder’s hidden states with the attention weights.
v,W,b are learnable parameters.

Step 4: The decoder forms a legitimate vocabulary Vt by
masking invalid tokens to guarantee the validity of the out-
put query based on the Constraint-Aware Reference
Tree (more details in Section IV-D).

Step 5: Given the context vector ct, previously generated
output q′

<t, and the input query q, the decoder samples the
next token q′

t from Vt based on the probability below.

P (q′
t|q′

<t,q,Vt) =
exp(W[ct; st;q

′
t−1] + b)i∑

q′
t∈Vt exp(W[ct; st;q′

t−1] + b)
(4)

where [ct; st;q
′
t−1] denotes the concatenation of the context

ct, the decoder’s hidden state st and the previous output q′
t−1.

B. Reinforced Perturbation Policy Learning

Since it is tricky to acquire sufficient effective labeled
perturbed workloads to conduct supervised learning [31],

2Note that we illustrate with a single SQL query. However, our framework
can support multi-query workloads by concatenating the queries.
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Fig. 4: Example of Feature Modelling on Query Plan.

we adopt Reinforcement Learning (RL) to train TRAP. The
benefit of RL is that it balances exploration and exploitation
among the numerous perturbation combinations, allowing it to
identify the effective ones. Specifically, the encoder-decoder
network in Section IV-A acts as an agent that takes action
(i.e., generates a SQL token) based on its policy, and the
agent receives a reward r to update its policy. The reward is
calculated considering the robustness in Definition 3.3, i.e.,
r = IUDR. If the generated workload effectively hinders
the index advisor, i.e., leading to the performance drop, then
r > 0. Otherwise, if the generated workload fails to detect the
index advisor’s performance loophole, then r < 0.

Note that to obtain r, we need a cost metric c(W,d, I)
to compute u(W ′,d, f). It is infeasible to use the actual
runtime due to the large overhead of index building and query
execution. We can turn to the estimated cost provided by
what-if calls. However, the reward is inaccurate due to the
estimation error [24]. Inspired by the successful applications of
the learned cost model, we utilize LightGBM [55] to estimate
the index utility c(W,d, I), which is both effective with high
estimation accuracy and efficient with fast inference [44], [56].
To train LightGBM, we collect a training dataset by randomly
generating and executing queries like [19], [38] (more details
in Section V), i.e., D =< f , y >, where f is a feature vector
extracted from the query plan and y is the actual runtime cost.

The feature vector f is derived as follows. As illustrated in
Figure 4, each node in a query plan has several properties:
the node type (e.g., “Seq Scan” and “Hash Join”), estimated
statistics (e.g., “Cost” and “Cardinality”), and its “Height”
in the query plan tree. We define the feature vector as the
concatenation of four field vectors, i.e., f ∈ R4×L. Each
field vector has the same length, i.e., f l ∈ RL(l = 1, ... , 4),
where L is the total number of the possible node types (i.e.,
operators) in the query plan. Node types absent in the query
plan will be assigned zero weight in their feature vectors. The
four field vectors are: Cost-Sum (f1), Cardinality-Sum (f2),
Cost-Weighted-Sum (f3) and Cardinality-Weighted-Sum (f4)
respectively. To obtain f , we first extract statistics “Cost” (cj),
“Cardinality” (aj), and “Height” (hj) for each node j. Then,
for each node j, we calculate the cost (g1j ), cardinality (g2j ),
weighted-cost (g3j ), and weighted-cardinality (g4j ) as follows.

g1j = cj , g2j = aj ,

g3j =
∑

k is j’s child

hk × g3k, g4j =
∑

k is j’s child

hk × g4k.
(5)

TABLE II: A simplified version of the BNF grammar rules.
SQL ::= SELECT FROM WHERE [GROUPBY] [HAVING] [ORDERBY]
SELECT ::= ”select” (term (”,” term)? | SQL)
FROM ::= ”from” (table ((”,” table)? | (”join” table)?) | SQL)
WHERE ::= ”where” predicate (conjunction predicate)?
predicate ::= column operator (value | SQL)
term ::= column | aggregator ”(” column ”)”
table ::= <table> column ::= <column> operator ::= <operator>
aggregator ::= <aggregator> value ::= <value> conjunction ::= <conjunction>

Finally, we aggregate the weights with the same node type
and obtain the feature vector, i.e., f li =

∑
j’s node type is i g

l
j .

We use the learned index utility y(f) to replace c(W,d, I)
in computing the reward. We adopt the self-critic (SC)
method [57] to alleviate the high variance problem by sub-
tracting r with rb, which is based on the output obtained by
greedy search, i.e., choose with the highest probability. We
sample a batch of trajectories B and then average over these
trajectories to calculate the policy loss.

LRL =
1

|B|
∑
q′∈B

∑
t

logP (q′
t|q′

<t,q,Vt)× (r − rb), (6)

where r is calculated based on the learned index utility
y
(
f(q)

)
provided by LightGBM using query q’s feature vector

extracted by the above procedure and rb is calculated based
on qg , which is the query obtained by the greedy search.

C. Index Advisor Independent Pretraining

RL training in Section IV-B explores and exploits the space
of possible perturbation combinations but is typically time-
consuming due to the large trajectories for a good policy [58].
We propose to pre-train TRAP prior to RL to enhance the
training efficiency. This stage is irrelevant to any index advisor,
and its goal is to initialize TRAP with a better understanding
of the SQL (e.g., the overall syntactic structure) before RL.

Specifically, we pre-train TRAP based on a synthetic dataset
Q = {q,q′}. For each original query q, we randomly sample
and replace tokens to obtain the perturbed query q′ (more
details in Section V). Then, the parameters of TRAP are
updated to optimize the likelihood of generating q′ from q.

Lp = −
∑

(q,q′)∈Q

∑
t<|q|

logP (q′
t|q′

t−1,q,Vt). (7)

Note that although both the encoder and decoder of TRAP are
pre-trained, we only transfer the parameters of the encoder to
the RL stage [59]. The intuition is to enhance TRAP’s ability
to capture the overall context of the input SQL query. The
decoder is refreshed at the beginning of RL to explore various
perturbations and receive index-relevant signals directly.

D. Constraint-Aware Reference Tree

Although encoder-decoder structure [53] has been widely
applied in many NLP tasks, it fails to generate a valid
perturbed query that meets the perturbation constraints (Note
that the constrained decoding technique adopted in SQL gen-
eration tasks, e.g., the NL2SQL [60] only guarantees the SQL
grammar). Intuitively, since SQL is well-structured and each
token can be chosen from a limited set of tokens in the vo-
cabulary, our solution is to construct a Constraint-Aware
Reference Tree for each SQL query and locate the legit-
imate vocabulary at each step by traversing the tree.
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Fig. 5: Illustration of Constraint-Aware Reference Tree.

Construction of Constraint-Aware Reference Tree. Given
an input query q, we initialize G based on the Backus–Naur
Form (BNF) grammars [61]. Each BNF rule defines a non-
terminal symbol recursively by a set of terminals (i.e., query
tokens) or other non-terminals. A simplified version of BNF
rules is illustrated in Table II. Consequently, as shown in
Figure 5, G’s root node r corresponds to the SQL statement,
a leaf node l corresponds to an actual SQL token in q, and a
non-leaf node n corresponds to a non-terminal symbol in the
BNF rules. Such a tree structure can support complex queries
when a sub-query is represented as a sub-tree of G.

For each node i ∈ G, a node type pi is assigned. (1) For a
non-leaf node n, its node type pn is equivalent to the non-
terminal symbol in the BNF rule; (2) Each leaf node l is
assigned a node type based on the clause and its token type.

For example, in Figure 5, select and T1.COL1 are the
two leaf nodes under the node SELECT and their node types
are reserved and select#column respectively. The node
with a special type, i.e., (.*)? serves as the last child node
in each clause, i.e., the node SELECT and WHERE.

We maintain a global vocabulary V for G, segmented into
several regions to reduce the storage cost. We use the leaf
node l’s node type pl to locate a region Vpl

of the legitimate
tokens for l. Each region in the vocabulary is instantiated based
on the node type’s legitimate tokens. As shown in Figure 5,
the vocabulary contains a set of reserved SQL keywords for
node type reserverd. For from#table, tables in the
current dataset, d are included. Legitimate tokens for predicate
values are sampled from the current dataset and workloads.
For example, for T1.COL2#value, we sample the values of
column COL2 in table T1 or extract values from the predicates
in the workloads in Section V-A.

Masking Invalid Tokens Based on Constraint-Aware
Reference Tree. After G is initialized and V is instantiated,
while generating q′, we dynamically mask invalid tokens in
V and update G. Algorithm 1 depicts the overall process.
Starting from the first token (line 1), the perturbed query q′ is
generated in a token-by-token manner (line 2). At step t, we

Algorithm 1: Generation of q′ based on G

Input: Original queries q, Constraint-Aware Reference
Tree G, Perturbation constraint, Edit distance ϵ

Output: Perturbed queries q′

1 t = 1
2 while do
3 if current edit distance k(q,q′) < ϵ and (token

type can be modified or node t is (.*)?) ) then
4 Obtain the legitimate vocabulary Vpt

5 Sample q′
t from Vpt

by P (q′
t|q′

<t,q,Vt)
6 if qt ̸= q′

t then
7 Update current edit distance k(q,q′)
8 for each leaf node i behind t in G affected

by q′
t do

9 Update pi and Vpi

10 t++

first check if the edit distance has not been exceeded and the
modification is allowed in the perturbation constraints, then
a new token can be appended (line 3). Figure 5 presents an
example under the Shared Table Perturbation with
ϵ = 3, “T1.COL1” can be altered and a new column, i.e.,
T1.COL4 can be added to (.*?). Then we traverse to
the leaf node t and locate the legitimate vocabulary Vpt

of its node type (line 4). We sample a token q′
t from the

legitimate vocabulary Vpt

based on the probability calculated
in Equation 4 (line 5). If the sampled token q′

t is different from
the original token, then we update the edit distance (line 6).
We also look ahead to all the nodes that will be affected by
the current token and update their node types and legitimate
vocabulary (line 8). For instance, “T1.COL1” in Figure 5
is replaced by “T1.COL2”, then “T1.COL2” is masked in
Vselect#column to avoid the repetitive occurrence of columns
in the same clause. The node type T1.COL2#value for
node “0.02” will be updated by ?#value, where ? is a
placeholder for a column in the predicate and is instantiated
by “T1.COL2” since “T1.COL2” remains unchanged.

V. EXPERIMENTS

In this section, we conduct experiments to answer two
research questions. (1) Can current index advisors deliver high
and stable performance over the perturbation-based workloads
(Section V-B)? (2) Are the components of TRAP effective
in generating perturbation-based adversarial workloads that
successfully incur performance drops of the index advisors
(Section V-C)? Furthermore, we present an in-depth analysis
and discoveries about these index advisors in Section VI.

A. Experimental Setup

Index Advisors. As shown in Table III, we assess the ro-
bustness of ten index advisors, including heuristic-based index
advisors, i.e., Extend [3], DB2Advis [4], AutoAdmin [5],
Drop [6], Relaxation [29] and DTA [11]; learning-based index
advisors, i.e., SWIRL [7], DRLindex [9], [13], DQN [8]
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TABLE III: Index advisors include heuristic-based and learning-based meth-
ods that select single-column (S) and multi-column (M) indexes within the
storage and #index constraints, using different selection criteria, strategies etc.

Heuristic-based Index Advisors
Victim Constraint Type Criterion Strategy

Extend [3] Storage S/M Cost
Storage

Incremental
DB2Advis [4] Storage S/M Cost

Storage
Incremental

AutoAdmin [5] #index S/M Cost Incremental
Drop [6] #index S Cost Decremental

Relaxation [29] Storage S/M Cost
Storage

Decremental
DTA [11] Storage S/M Cost Incremental

Learning-based Index Advisors
Victim Constraint Type Learning Ib

SWIRL [7] Storage S/M PPO Extend
DRLindex [9] #index S DQN Drop

DQN [8] #index S/M DQN AutoAdmin
MCTS [10], [62] #index S/M MCTS AutoAdmin

and MCTS [10], [62]. According to Table III, these index
advisors cover a wide range of variety, including different
tuning constraints (i.e., storage budget or #index), index types
(i.e., single and multi-column indexes), selection criteria and
strategies, and the underlying reinforcement learning methods.
Datasets. (1) TPC-H is an open-source OLAP benchmark
that contains 8 tables and 61 columns; (2) TPC-DS is an
open-source OLAP benchmark that contains 25 tables and 429
columns; (3) TRANSACTION is a real-world OLTP bench-
mark of banking that contains 10 tables and 189 columns.
Queries. For TRANSACTION, we adopt the queries from
real-world transactions. For TPC-H and TPC-DS, we follow
the method in [19], [38] to enrich the diversity of queries,
which synthesizes additional Select-Project-Aggregate-Join
(SPAJ) queries according to a meaningful join graph.
Workloads. We randomly sample from the queries and con-
struct workloads with random sizes in [1, 50]. Since not all the
index advisors have explicitly considered the query frequency,
we assign a unit frequency (i.e., 1) to each query in the
workload for a fair assessment. However, the frequency is
implicitly considered if multiple identical queries appear in
the workload. Besides, our framework can support different
frequencies with little effort by multiplying the reward with the
frequency in Equation 6. We do not model the arrival timing
of queries because the index advisors assessed cope with
queries in a batch manner. Modeling the explicit arrival timing
is beyond their capabilities. Nevertheless, TRAP is general
and can be adapted to investigate the impact of periodic
templates. For example, given the possible variants in the next
period, we can modify the legitimate tokens in the perturbation
constraints.

We construct 20,000 workloads and randomly perturb them
to pre-train TRAP (Note that this process is an offline one-
time effort without the interaction with specific index advisor.
The comparison among other pre-trained models are presented
in Section V-C). We construct another 5,000 workloads to
train the learning-based index advisors and the learned cost
model, i.e., LightGBM in Section IV-B. Then, we split the
5,000 workloads into the training/testing/validation sets (8:1:1)
to train and evaluate TRAP. According to Definition 3.3, if
the utility of an index advisor u(W,d, f) > θ, i.e., high
performance for a workload W in the set, then we generate

W ′ by TRAP or other competitors and compute IUDR based
on u(W,d, f) and u(W ′,d, f). Note that we detect and
exclude all the potential non-sargable workloads from W ′,
i.e., u(W ′,d, f) < θ for all the index advisors (Definition 3.3),
which are not in the region of the assessment, and the analysis
over these workloads is in Section VI-C.

Evaluation Metric. We strictly adopt the same tuning con-
straints (i.e., the storage budget) in the assessment process.
For index advisors with cardinality constraints (e.g., Drop [6]),
they are allowed to build indexes that don’t exceed the same
storage budget given. We identify a moderate value of the
storage budget (e.g., half of the dataset size) to ensure that
index advisors can cope with the given workloads without
significantly impacting the results. The evaluation metric is
IUDR. Similar to the focus of previous studies, it measures
the relative cost reduction, and a higher IUDR means a larger
performance drop (i.e., less robust). We get the final indexes
returned by each index advisor and observe that the time
budget does not exhibit variations spanning several orders of
magnitude under the same tuning constraint.

In computing the index utility u in Definition 3.2, the
relative cost reduction of the index advisor is compared with a
baseline configuration Ib. For heuristic-based index advisors,
Ib is the null set, i.e., using no index at all. For learning-based
index advisors, Ib is given by a heuristic-based index advisor
since learning-based index advisors are claimed to outperform
heuristic-based index advisors [7], [8] and we intend to verify
their superiority [8], [62], identify workloads they fail to do
well and give improvement insights specifically. In particular,
because the performance is affected by the tuning constraints
and the index type, a fair baseline configuration is chosen with
the same constraint and index type to exclude the influence of
these external factors. For example, as shown in Table III, the
baseline for SWIRL is Extend because they meet the same
storage tuning constraint and support multi-column indexes.
Moreover, their IUDR with the null set can be acquired when
also considering the corresponding IUDR of heuristic-based
index advisors referred. We repeat the overall process three
times and report the average IUDR.

Implementation. All the experiments are conducted with
Python 3.7 PostgreSQL 12.5 on a workstation with two
Intel(R) Xeon(R) CPU E5-2678 v3 @ 2.50GHz, 256 GB main
memory, and a GeForce RTX 2080 Ti graphics card. We
leverage the open-source implementation of heuristic-based
index advisors [2], SWIRL [7], and DQN [8]. We implement
DRLindex [9] and the UCT version of MCTS [62] and train
all the learning-based index advisors according to the details
illustrated in the original paper. Unless stated, the default
initial index utility is θ = 0.1, and the maximum edit distance
allowed is ϵ = 5. For TRAP, the embedding size of GRU is set
to be 128, the learning rate is 0.001, and it is trained for 200
and 100 epochs in pre-training and reinforcement learning. We
use feature normalization, implement log-transformation [63]
and minimize the Mean Square Error to train LightGBM.
Codes of TRAP, implementation details, and more experimental

8



Fig. 6: IUDR of index advisors on workloads generated by different methods (A higher IUDR means a larger performance drop, i.e., less robust).

results are publicly available3.

B. Robustness Assessment of Index Advisors

We generate perturbation-based adversarial workloads W ′

with four different methods. (1) Random: Randomly replace
tokens of the queries in the original workload to synthesize
perturbed queries. (2) GRU: Generate the perturbed queries in
a token-by-token manner using a GRU layer. (3) Seq2Seq:
Generate the perturbed queries by a vanilla Seq2Seq model,
where the encoder is the Bi-GRU layer and the decoder is the
GRU layer. (4) TRAP: The method described in Section IV. All
the above methods are equipped with the same tree structure
to guarantee the validity of queries, and Random is allowed
to generate 5× more perturbed queries to verify its capability.

From Figure 6, we observe that both heuristic-based
and learning-based index advisors are vulnerable to the
perturbation-based adversarial workloads generated by
TRAP. Specifically, the average IUDR is 0.4946 on TPC-H,
0.3893 on TPC-DS, and 0.5177 on TRANSACTION under the
three perturbation constraints. Among heuristic-based index
advisors, DB2Advis exhibits high performance oscillation,
which might due to limited index interaction [64] considered.
Specifically, it only invokes a one-time what-if call from the

3https://github.com/XMUDM/TRAP

optimizer to acquire the index utility with all the indexes built,
and the utility of various index combinations is not accurately
measured. SWIRL is generally the most robust learning-based
index advisor. This might be attributed to the most fine-grained
state representation adopted in the workload modeling and
the invalid action masking strategy over the action space of
candidate indexes (More details in Section VI-A).

Comparison among different workload generation methods
verifies the necessity of designing a workload generation
framework for robustness assessment. A naive workload
generation method, e.g., the random method, cannot accu-
rately measure the index advisors’ robustness. Its IUDR is
barely noticeable (IUDR < 0.005) over many index advisors
on the TPC-DS benchmark. For example, it can not distin-
guish the performance of Extend, DB2Advis, AutoAdmin,
and Drop on TPC-DS benchmark. Furthermore, the values of
IUDR are inconsistent with other workload generation meth-
ods. For example, other methods achieve a larger IUDR un-
der Column Consistent Perturbation than Value
Only Perturbation, while random can not differen-
tiate the two perturbations, i.e., the resulting IUDR does
not show significant differences among these perturbations.
TRAP outperforms other workload generation competitors. The
reasons are two-fold: (1) the attention mechanism adopted in

9
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Fig. 7: Performance with different generation modules.
TABLE IV: Efficiency analysis over different generation modules.

Method GRU Bert Bart CodeBert StarEncoder TRAP
#params 1,774,176 110,850,144 140,788,320 126,013,536 125,554,272 2,815,584
Generation

Time (s) 14.5549 42.6194 57.1841 47.2636 47.0761 19.3845

TRAP better captures the overall SQL context and facilitates
the exploration over more effective perturbation combina-
tions; (2) the proposed pre-training step relieves TRAP from
learning a basic understanding about the SQL in RL and
therefore TRAP can focus on the index-sensitive parts (e.g.,
the critical predicates in the WHERE clause) and improves
the training effectiveness (more details in Section V-C). Index
advisors are less robust to perturbed queries with more flexible
perturbations. We can observe that all the workload gen-
eration methods under Shared Table Perturbation
and Column Consistent Perturbation achieve a
higher IUDR than under Value Only Perturbation.
For Shared Table Perturbation, TRAP, Seq2Seq
and GRU achieves 88.56%, 95.59% and 143.95% higher
IUDR than Value Only Perturbation on average.
For Column Consistent Perturbation, a 89.62%,
98.41% and 121.44% higher IUDR are obtained by TRAP,
Seq2Seq and GRU on average. The reason is that the first two
perturbation constraints are more flexible. Accordingly, the
generation methods can explore perturbations on more index-
sensitive parts and degrade the performance more severely.

We further evaluate the scalability of TRAP over larger
databases. Figure 10 presents results of real-world complex
databases over Extend, where the numbers of columns range
from 809 to 1265. We observe that TRAP still outperforms
other methods when databases are large and complex. The
masking mechanism of the Constraint-Aware Reference Tree
in TRAP significantly reduces the number of valid schema
tokens and improves its scalability in large databases.

C. Ablation Study and Impacts of Parameters

Ablation on Generation Module. To investigate the impact
of the generation module of TRAP, we consider the pre-trained
language model (PLM) [65], [66] and implement the following
variants: (1) GRU: The encoder is a GRU layer, and the decoder
is removed; (2) Bert: The encoder is equipped with the
transformer-based pre-trained model Bert [67]; (3) Bart: The
pre-trained bart [68] (transformer encoder-decoder model) is
adopted for the generation; (4) CodeBert: The bert-based
model pre-trained with the large bi-modal data (documents
& code) corpus [69]; (5) StarEncoder: The encoder is
equipped with a recent transformer-based model [70] trained

Fig. 8: Performance under different training paradigms.

Fig. 9: IUDR v.s. initial utility θ, edit distance ϵ and workload size |W|.

on 80+ programming languages. We report the IUDR and the
training trace of Extend and SWIRL on TPC-H benchmark.

From Figure 7, we can see that the proposed module in
TRAP does improve the effectiveness of the workload genera-
tion. Specifically, TRAP achieves a 41.04% higher IUDR with
less parameters (i.e., nearly the same as GRU) and lower
computation complexity (i.e., the time of Bart is 2.95× in
generating 1000 queries) over transformer-based models in
Table IV. Nevertheless, the pre-trained models, which adopt a
more advanced architecture, fail to achieve a higher IUDR.
The inferior performance of the pre-trained models might
be attributed to the following reasons: (1) The large-scale
transformer architecture needs to be further optimized when
applied to the RL paradigm [71], [72], which is sensitive to
the underlying model design [73] and typically requires a large
number of samples to learn a good policy; (2) These models
are typically pre-trained on a generic corpus deviating greatly
from the SQL, which needs a large effort to handle the domain
adaption issue [74] in the fine-tune process.

Ablation on Training Paradigm. We investigate the impact
of the presented training paradigms. Specifically, we imple-
ment two training paradigms: (1) w/o Cost Model: In the
RL training, use the what-if calls to acquire the estimated cost;
(2) w/o Pretrain: Train TRAP using only reinforcement
learning. As displayed in Figure 8 (a), without the learned
index utility model, the IUDR is 47.46% and 41.46% worse
on average. The cost estimation model provides a more
accurate estimation than the what-if optimizer [24] to guide
the perturbation procedure of TRAP. In Figure 8 (b), without
pre-training, it takes more than 2.72× and 2.37× more epochs
to reach a desired value of IUDR for SWIRL and Extend on
average. The underlying reason is that pre-training transfers
the understanding of SQL from supervised learning and boosts
the training efficiency of RL.

Impact of Hyper-parameters. We investigate the impacts
of parameters on the robustness assessment of index advi-
sors, i.e., (1) the initial index utility threshold θ, (2) the
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Fig. 10: Scalability analysis over large and complex real-world databases.

Fig. 11: The relation between IUDR and the storage budget.

maximal edit distance allowed ϵ, (3) the workload size |W|,
and (4) the value of the tuning constraint, i.e., the storage
budget. The experiment is conducted under Shared Table
Perturbation against Extend on the TPC-H benchmark.
Figure 9 (a) reports IUDR with respect to θ from 0.0 to 0.5.
For an index advisor, its robustness is positively correlated
with its performance on the original workload. The IUDR of
all the methods increases as θ increases. The underlying reason
is the difficulty of deteriorating a poorly performed algorithm.
random method fails to generate workloads that deteriorate
the performance of Extend (i.e., IUDR < 0). Next, we conduct
perturbation with different amplitudes. Figure 9 (b) reports
IUDR with different values of edit distance ϵ. We observe that
the robustness is dependent on the amplitude of perturbation.
A smaller ϵ produces workloads that are more similar to the
original workload, and thus the index advisor is more likely
to perform well. We finally generate workloads of a fixed size
ranging from 1 to 50 and report IUDR in Figure 9 (c). It
shows that TRAP outperforms other methods on the multi-query
workloads with different workload sizes. Figure 11 presents
the results over the varying storage budget. We observe that
the indexing utility stabilizes as the budget increases, and TRAP

still achieves comparable performance, i.e., nearly the same
IUDR when this value is large (i.e., 900MB). The underlying
reason might be attributed to the fact that a large budget only
allows index advisors to return more indexes. It fails to prevent
them from the selection of sub-optimal or useless indexes.

VI. ANALYSIS AND DISCOVERY

In this section, we analyze the robustness of index advi-
sors from the following aspects: (1) the impact of module
designs on the robustness of learning-based index advisors
(Section VI-A); (2) the impact of strategy choices on the
robustness of heuristic-based index advisors (Section VI-B);
(3) the effect of query changes (Section VI-C).

A. Learning-based Index Advisors

Our first discovery is that the granularity of state repre-
sentation affects the robustness of learning-based index
advisors. From the study in Section II, we choose two
typical state representations: (1) fine-grained state
in SWIRL [7], which captures the workload characteris-
tics, including the operators and estimated cost extracted
from the query plans and the corresponding frequency; (2)

Fig. 12: IUDR vs. the adopted state representations.

Fig. 13: IUDR vs. the candidate pruning in the action space.

coarse-grained state in DRLindex [9], which adopts
a matrix to indicate the existence of columns in the workload
and an access vector to count the total occurrence of these
columns. Then we change the state representations on three
index advisor backbones. We only replace the state repre-
sentations with these two types while keeping the rest of
the backbones fixed. We use TRAP to generate adversarial
workloads and report IUDR in Figure 12. We can see that
index advisors with the coarse-grained state are more
vulnerable to adversarial workloads. For example, all index
advisors show significantly higher IUDR (14.41% and 22.20%
higher on average) under Shared Table Perturbation
and Column Consistent Perturbation respectively.

Our second discovery is that candidate pruning in action
space affects the robustness of learning-based index ad-
visors. Both SWIRL and DQN adopt the candidate pruning
techniques in the action space. SWIRL [7] adopts invalid
action masking [75] to remove invalid candidates that (1)
are syntactically irrelevant to the workload, (2) exceed the
storage budget, (3) are selected already, and (4) meet the
invalid precondition principle. DQN [8] classifies the columns
considering the syntactic structure and leverages five heuristic
rules to generate promising candidates. We report the IUDR of
index advisors with different pruning techniques in Figure 13.
We observe that both SWIRL and DQN are more vulnerable
without candidate pruning in the action space.

B. Heuristic-based Index Advisors

We divide the index advisors into two groups based on
tuning constraints (i.e., storage or #index) and compare the
number of sub-optimal solutions over all the adversarial work-
loads generated in Section V. We find that Extend [3] and
Drop [6] are the worst performers in each group.

Extend is inferior since it sometimes neglects the index in-
teraction due to the predefined heuristic (e.g., it only considers
independent, single-column indexes in the first step). Index
interaction [64] refers to the phenomenon that the benefit of
one index can be affected by the presence of another index.

We conduct the following experiment to verify that ne-
glecting the index interaction hurdles the robustness of
heuristic-based index advisors. Specifically, we modify the
implementation of heuristic-based index advisors and utilize
two methods to calculate the benefit of multiple indexes during
the selection process. (1) w/ interaction: calculate the
benefit with all the indexes built; (2) w/o interaction:
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Fig. 14: IUDR vs. the consideration of the index interaction.

Fig. 15: IUDR vs. the usage of the multi-column indexes.

calculate the benefit of every single index with them built
independently and then obtain the benefit of multiple indexes
by averaging the benefits over all the indexes. As shown in
Figure 14, a smaller IUDR is achieved if they consider the
index interaction when calculating the index benefits.

Apart from the index interaction, we notice that the index
type, i.e., the single-column and multi-column indexes,
also have an impact on the robustness. Compared with
AutoAdmin, Drop only recommends single-column indexes.
To verify the impact of the multi-column indexes, we modify
the implementation of different heuristic-based index advisors
and make them consider the index candidates with (1) only the
single-column indexes and (2) also the multi-column
indexes. As shown in Figure 15, all the index advisors exhibit
a smaller IUDR if multi-column indexes are considered.

C. Impact of Query Change

We study types of SQL changes that are considered to
be factors relevant to the performance of index4: (1) the
Resultset Size has been dramatically enlarged after per-
turbation; (2) an operator is changed to Unequal operator
“̸=”; (3) change the operator “=” to a range (i.e., “≥,≤, <
,>”); (4) columns in the SELECT clause are uncovered in
the WHERE clause after perturbation; (5) the conjunction is
replaced by OR Conjunction; (6) change the columns in
ORDER BY and GROUP BY to enlarge the discrepancy.

We find these types of SQL changes can make a query
non-sargable. A sargable query [45], [46] means that the
DBMS engine can take advantage of an index to speed up
its execution. To verify our discovery, we first use causal
models [76] to determine whether there is a causal relationship
between the aforementioned types and IUDR. A causal model
computes a causation score between two random variables,
i.e., X and Y . If the causation score is positive, it means
that X is a cause that leads to the effect of Y . We collect
pairs of (x, y) from our experiments to compute the causation
score. If a perturbed workload W ′ has the following property:
all the index advisors have a small index utility on it, i.e.,
∀f, u(W ′,d, f) < θ, it means W ′ is non-sargable. Then we
construct the pair (x, y), where x is the occurrence of one of
six query change types in the perturbed workload W ′ and y is
the IUDR. We utilize three causal models in [77]. As shown

4https://docs.oracle.com/cd/B19306 01/server.102/b14211/data acc.htm

Fig. 16: Effect of six types of query changes.

Fig. 17: Visualization of SQL vectors before/after perturbation and the pro-
portion of outliers detected in perturbations with IUDR > 0 and IUDR < 0.

in Figure 16 (a), most causal models agree the changes above
cause the decrease of index utility, i.e., the causation scores are
positive. Figure 16 (b) shows the distribution of six categories
of changes in the non-sargable queries. We can see that a large
proportion (> 70%) of non-sargable queries are changing to
OR Conjunction or expanding the ResultSet Size.

Finally, we find that workloads W ′ generated by TRAP,
affecting robustness, are not Out-of-Distribution (OOD)
samples. We first visualize the representation vector of queries
obtained by TRAP’s encoder before and after perturbation with
t-SNE [78]. As shown in Figure 17 (a), the original and output
queries are indistinguishable and follow the same distribution.
Moreover, we mix the original and perturbed queries and
use anomaly detection algorithms [79]–[81] to detect outlier
queries. As shown in Figure 17 (b), the percentage of outlier
queries in effective perturbations (IUDR > 0) and ineffective
perturbations (IUDR < 0) are similar. The main fraction (i.e.,
97% ∼ 99%) of effective perturbed queries are “normal”.

VII. CONCLUSION

We propose a framework that generates perturbation-based
workloads to assess index advisors’ robustness. We conduct
comprehensive robustness assessments of ten index advisors
on various benchmarks. We provide insightful discoveries for
both heuristic-based and learning-based index advisors.

Summarized Findings. Our findings suggest that: (1)
Perturbation-based adversarial workloads are effective in as-
sessing the robustness of the index advisor because they do not
deviate too much from the original workloads but can identify
the performance loopholes due to the workload drifts in prac-
tice; (2) To design a more robust learning-based index advisor,
it is beneficial to adopt a fine-grained state representation to
capture the workload characteristics and a candidate pruning
strategy in the action space to prune syntactic irrelevant or
useless candidates; (3) To design a more robust heuristic-
based index advisor, it is vital to consider the index interaction
during the selection process and the usage of the multi-column
indexes. To increase applicability on more indexes advisors
and workloads, we have implemented TRAP in openGauss5.

5https://gitee.com/opengauss/openGauss-DBMind/
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