


default search action
MIUA 2021: Oxford, UK
- Bartlomiej W. Papiez, Mohammad Yaqub, Jianbo Jiao
, Ana I. L. Namburete
, J. Alison Noble
:
Medical Image Understanding and Analysis - 25th Annual Conference, MIUA 2021, Oxford, United Kingdom, July 12-14, 2021, Proceedings. Lecture Notes in Computer Science 12722, Springer 2021, ISBN 978-3-030-80431-2
Biomarker Detection
- Tamal Chowdhury, Angad R. S. Bajwa, Tapabrata Chakraborti, Jens Rittscher, Umapada Pal:
Exploring the Correlation Between Deep Learned and Clinical Features in Melanoma Detection. 3-17 - Yu Yang, Zijian Zhao, Pan Shi, Sanyuan Hu:
An Efficient One-Stage Detector for Real-Time Surgical Tools Detection in Robot-Assisted Surgery. 18-29 - Jarred Orfao
, Dustin van der Haar
:
A Comparison of Computer Vision Methods for the Combined Detection of Glaucoma, Diabetic Retinopathy and Cataracts. 30-42 - Liping Wang, Yuanjie Zheng, Andrik Rampun, Reyer Zwiggelaar:
Prostate Cancer Detection Using Image-Based Features in Dynamic Contrast Enhanced MRI. 43-55 - Zhe Min, Fernando J. Bianco
, Qianye Yang, Rachael Rodell, Wen Yan
, Dean C. Barratt, Yipeng Hu:
Controlling False Positive/Negative Rates for Deep-Learning-Based Prostate Cancer Detection on Multiparametric MR Images. 56-70 - Niamh Belton
, Ivan Welaratne
, Adil Dahlan
, Ronan T. Hearne
, Misgina Tsighe Hagos
, Aonghus Lawlor
, Kathleen M. Curran
:
Optimising Knee Injury Detection with Spatial Attention and Validating Localisation Ability. 71-86 - Ziang Xu, Sharib Ali
, Soumya Gupta
, Numan Celik, Jens Rittscher:
Improved Artifact Detection in Endoscopy Imaging Through Profile Pruning. 87-97 - Dewmini Hasara Wickremasinghe
, Natallia Khenkina
, Pier-Giorgio Masci
, Andrew P. King
, Esther Puyol-Antón
:
Automatic Detection of Extra-Cardiac Findings in Cardiovascular Magnetic Resonance. 98-107 - Suhita Karmakar, Dipayan Dewan
, Lidia Ghosh
, Abir Chowdhury
, Amit Konar, Atulya K. Nagar:
Brain-Connectivity Analysis to Differentiate Phasmophobic and Non-phasmophobic: An EEG Study. 108-122
Image Registration, and Reconstruction
- Miguel Martínez-Albaladejo
, Josep Sulé-Suso, David Lines, James Bisson, Simon Jassal, Craig Edwards:
Virtual Imaging for Patient Information on Radiotherapy Planning and Delivery for Prostate Cancer. 125-139 - Farnaz Khun Jush
, Peter Michael Dueppenbecker, Andreas Maier
:
Data-Driven Speed-of-Sound Reconstruction for Medical Ultrasound: Impacts of Training Data Format and Imperfections on Convergence. 140-150 - José Bernal
, William Xu
, Maria del C. Valdés Hernández
, Javier Escudero
, Angela C. C. Jochems
, Una Clancy
, Fergus N. Doubal
, Michael S. Stringer
, Michael J. Thrippleton
, Rhian M. Touyz
, Joanna M. Wardlaw
:
Selective Motion Artefact Reduction via Radiomics and k-space Reconstruction for Improving Perivascular Space Quantification in Brain Magnetic Resonance Imaging. 151-164 - Marjola Thanaj
, Nicolas Basty
, Yi Liu
, Madeleine Cule
, Elena P. Sorokin
, E. Louise Thomas
, Jimmy D. Bell
, Brandon J. Whitcher
:
Mass Univariate Regression Analysis for Three-Dimensional Liver Image-Derived Phenotypes. 165-176 - Lindsay Munroe, Gina Sajith, Ei Lin, Surjava Bhattacharya
, Kuberan Pushparajah, John M. Simpson, Julia A. Schnabel
, Gavin Wheeler, Alberto Gómez, Shujie Deng:
Automatic Re-orientation of 3D Echocardiographic Images in Virtual Reality Using Deep Learning. 177-188 - Meysam Dadgar, Szymon Parzych, Faranak Tayefi Ardebili:
A Simulation Study to Estimate Optimum LOR Angular Acceptance for the Image Reconstruction with the Total-Body J-PET. 189-200 - Abhirup Banerjee
, Ernesto Zacur
, Robin P. Choudhury, Vicente Grau
:
Optimised Misalignment Correction from Cine MR Slices Using Statistical Shape Model. 201-209 - Alexandre Triay Bagur
, Paul Aljabar
, Zobair Arya, John McGonigle, Michael Brady
, Daniel Bulte
:
Slice-to-Volume Registration Enables Automated Pancreas MRI Quantification in UK Biobank. 210-223
Image Segmentation
- Zobair Arya, Ged Ridgway, Arun Jandor, Paul Aljabar:
Deep Learning-Based Landmark Localisation in the Liver for Couinaud Segmentation. 227-237 - Darwon Rashid, Sophie Cai, Ylenia Giarratano, Calum D. Gray
, Charlene Hamid, Dilraj S. Grewal, Tom J. MacGillivray
, Sharon Fekrat
, Cason B. Robbins, Srinath Soundararajan, Justin P. Ma, Miguel O. Bernabeu:
Reproducibility of Retinal Vascular Phenotypes Obtained with Optical Coherence Tomography Angiography: Importance of Vessel Segmentation. 238-249 - Shihfan Jack Tu
, Jules Morel, Minsi Chen
, Stephen J. Mellon
:
Fast Automatic Bone Surface Segmentation in Ultrasound Images Without Machine Learning. 250-264 - James Owler, Alexandre Triay Bagur
, Scott Marriage, Zobair Arya, Paul Aljabar, John McGonigle, Michael Brady, Daniel Bulte:
Pancreas Volumetry in UK Biobank: Comparison of Models and Inference at Scale. 265-279 - Evan Hann
, Ricardo A. Gonzales
, Iulia A. Popescu
, Qiang Zhang
, Vanessa M. Ferreira
, Stefan K. Piechnik
:
Ensemble of Deep Convolutional Neural Networks with Monte Carlo Dropout Sampling for Automated Image Segmentation Quality Control and Robust Deep Learning Using Small Datasets. 280-293 - Seoin Chai, Daniel Rueckert, Ahmed E. Fetit:
Reducing Textural Bias Improves Robustness of Deep Segmentation Models. 294-304
Generative Models, Biomedical Simulation and Modelling
- Songlin Hou, Clifford Lindsay, Emmanuel Agu, Peder C. Pedersen, Bengisu Tulu, Diane M. Strong:
HDR-Like Image Generation to Mitigate Adverse Wound Illumination Using Deep Bi-directional Retinex and Exposure Fusion. 307-321 - Ann-Katrin Thebille, Esther Dietrich, Martin Klaus, Lukas Gernhold, Maximilian Lennartz, Christoph Kuppe, Rafael Kramann, Tobias B. Huber, Guido Sauter, Victor G. Puelles, Marina Zimmermann, Stefan Bonn:
Deep Learning-Based Bias Transfer for Overcoming Laboratory Differences of Microscopic Images. 322-336 - Zixin Yang, Richard A. Simon, Yangming Li, Cristian A. Linte:
Dense Depth Estimation from Stereo Endoscopy Videos Using Unsupervised Optical Flow Methods. 337-349 - Ruizhe Li
, Matteo Bastiani, Dorothee Auer
, Christian Wagner, Xin Chen:
Image Augmentation Using a Task Guided Generative Adversarial Network for Age Estimation on Brain MRI. 350-360 - Elizaveta Savochkina, Lok Hin Lee
, Lior Drukker, Aris T. Papageorghiou
, J. Alison Noble:
First Trimester Gaze Pattern Estimation Using Stochastic Augmentation Policy Search for Single Frame Saliency Prediction. 361-374
Classification
- Jun-En Ding
, Chi-Hsiang Chu
, Mong-Na Lo Huang, Chien-Ching Hsu:
Dopamine Transporter SPECT Image Classification for Neurodegenerative Parkinsonism via Diffusion Maps and Machine Learning Classifiers. 377-393 - Pankaj Pandey, Krishna Prasad Miyapuram
:
BRAIN2DEPTH: Lightweight CNN Model for Classification of Cognitive States from EEG Recordings. 394-407 - Jian Han Lim, Chun Shui Tan, Chee Seng Chan, Roshan Alex Welikala, Paolo Remagnino, Senthilmani Rajendran, Thomas George Kallarakkal, Rosnah Binti Zain
, Ruwan Duminda Jayasinghe, Jyotsna Rimal, Alexander Ross Kerr, Rahmi Amtha, Karthikeya Patil
, Wanninayake Mudiyanselage Tilakaratne, John Gibson, Sok Ching Cheong, Sarah Ann Barman:
D'OraCa: Deep Learning-Based Classification of Oral Lesions with Mouth Landmark Guidance for Early Detection of Oral Cancer. 408-422 - Ali Eskandari
, Hongbo Du, Alaa AlZoubi:
Towards Linking CNN Decisions with Cancer Signs for Breast Lesion Classification from Ultrasound Images. 423-437 - Mohammed Ahmed, Alaa AlZoubi, Hongbo Du:
Improving Generalization of ENAS-Based CNN Models for Breast Lesion Classification from Ultrasound Images. 438-453
Image Enhancement, Quality Assessment, and Data Privacy
- Manish Gawali, C. S. Arvind, Shriya Suryavanshi, Harshit Madaan, Ashrika Gaikwad, K. N. Bhanu Prakash, Viraj Kulkarni
, Aniruddha Pant:
Comparison of Privacy-Preserving Distributed Deep Learning Methods in Healthcare. 457-471 - Thiago V. M. Lima
, Silvan Melchior, Ismail Özden, Egbert Nitzsche, Jörg Binder, Gerd Lutters:
MAFIA-CT: MAchine Learning Tool for Image Quality Assessment in Computed Tomography. 472-487 - Robert B. Labs, Massoud Zolgharni
, Jonathan P. Loo
:
Echocardiographic Image Quality Assessment Using Deep Neural Networks. 488-502 - Eva Valterova
, Franziska G. Rauscher
, Radim Kolár
:
Robust Automatic Montaging of Adaptive Optics Flood Illumination Retinal Images. 503-513
Radiomics, Predictive Models, and Quantitative Imaging
- Joshua Bridge, Simon P. Harding
, Yalin Zheng:
End-to-End Deep Learning Vector Autoregressive Prognostic Models to Predict Disease Progression with Uneven Time Intervals. 517-531 - Roushanak Rahmat, David Harris-Birtill
, David Finn, Yang Feng, Dean Montgomery, William H. Nailon, Stephen McLaughlin
:
Radiomics-Led Monitoring of Non-small Cell Lung Cancer Patients During Radiotherapy. 532-546 - Declan Grant, Bartlomiej W. Papiez, Guy Parsons
, Lionel Tarassenko, Adam Mahdi:
Deep Learning Classification of Cardiomegaly Using Combined Imaging and Non-imaging ICU Data. 547-558

manage site settings
To protect your privacy, all features that rely on external API calls from your browser are turned off by default. You need to opt-in for them to become active. All settings here will be stored as cookies with your web browser. For more information see our F.A.Q.