default search action
Environmental Modelling and Software, Volume 177
Volume 177, 2024
- Arne Rak, Peter Mewis, Stefan Guthe:
Accelerating flash flood simulations: An efficient GPU implementation for a slim shallow water solver. 106030 - Anastasia K. Fragkou, Christopher Old, Vengatesan Venugopal, Athanasios Angeloudis:
Thetis-SWAN: A Python-interfaced wave-current interactions coupled system. 106034 - Ross Towe, Emma Ross, David Randell, Philip Jonathan:
covXtreme : MATLAB software for non-stationary penalised piecewise constant marginal and conditional extreme value models. 106035 - Xue Li, Qi-Liang Sun, Yanfei Zhang, Jian Sha, Man Zhang:
Enhancing hydrological extremes prediction accuracy: Integrating diverse loss functions in Transformer models. 106042 - Hafssa Naciri, Nizar Ben Achhab, Fatima Ezahrae Ezzaher, Naoufal Raissouni:
AIRS: A QGIS plugin for time series forecasting using deep learning models. 106045 - Gonzalo García-Alén, C. Montalvo, Luis Cea, Jerónimo Puertas:
Iber-PEST: Automatic calibration in fully distributed hydrological models based on the 2D shallow water equations. 106047 - Matteo Sangiorgio, Giorgio Guariso:
Transfer learning in environmental data-driven models: A study of ozone forecast in the Alpine region. 106048 - Sanjukta Das, T. I. Eldho:
Aquifer flow parameter estimation using coupled meshless methods and metaheuristic algorithms. 106050 - César Quilodrán Casas, Qian Li, Ningbo Zhang, Sibo Cheng, Shiqiang Yan, Qingwei Ma, Rossella Arcucci:
Exploring unseen 3D scenarios of physics variables using machine learning-based synthetic data: An application to wave energy converters. 106051 - Yuqing Dai, Bowen Liu, Chengxu Tong, Zongbo Shi:
Aqpet - An R package for air quality policy evaluation. 106052 - Dane Liljestrand, Ryan Johnson, S. McKenzie Skiles, Steven Burian, Josh Christensen:
Quantifying regional variability of machine-learning-based snow water equivalent estimates across the Western United States. 106053 - Ryoma Tsujimoto, Tomohiro Fukuda, Nobuyoshi Yabuki:
Server-enabled mixed reality for flood risk communication: On-site visualization with digital twins and multi-client support. 106054 - Mohammed Basheer, Thomas Oommen:
PyLandslide: A Python tool for landslide susceptibility mapping and uncertainty analysis. 106055 - Christos Pouliaris, Marina Stika, Laura Foglia, Christoph Schüth, Andreas Kallioras:
Insights on modelling of karstic aquifers: A new methodology for the integration of fracture data in groundwater flow modelling. 106056 - Edigley Fraga, Ana Cortés, Tomàs Margalef, Porfidio Hernández, Carlos Carrillo:
Cloud-based urgent computing for forest fire spread prediction. 106057 - Bijing Jin, Taorui Zeng, Tengfei Wang, Zhan Zhang, Lei Gui, Kunlong Yin, Binbin Zhao:
Advanced risk assessment framework for land subsidence impacts on transmission towers in salt lake region. 106058 - Shubham Aggarwal, Viven Sharma, Srinivas Rallapalli, Christian Lenhart, Joe Magner:
Farmer adoption-based prompt networking and modeling for targeting optimal agro-conservation practices. 106060 - Javier Martínez-López, Juan Albaladejo, Joris de Vente:
Participatory modelling for sustainable development: Connecting coastal and rural social-ecological systems. 106061 - David Diwei Lv, Erin Cho:
Carbon-zero agility: Enabling carbon-zero organizations through agile management and ambiguous feedback algorithms. 106062 - Gebray H. Alene, Shafaq Irshad, Adina Moraru, Ivan Depina, Oddbjørn Bruland, Andrew Perkis, Vikas Thakur:
Virtual reality visualization of geophysical flows: A framework. 106063 - David I. Forrester, Jacqueline R. England, Keryn I. Paul, Dan F. Rosauer, Stephen H. Roxburgh:
Modelling carbon flows from live biomass to soils using the full Carbon Accounting Model (FullCAM). 106064 - Tri-Hai Nguyen, Minh Dang:
Automated marine litter investigation for underwater images using a zero-shot pipeline. 106065 - Razi Sheikholeslami, Mohammad Kian Golkar, Jim W. Hall:
Large uncertainty in global estimates of manure phosphorus runoff. 106067 - Tongbi Tu, Jiahao Wang, Chao Wang, Zhiming Liang, Kai Duan:
Reconstructing long-term natural flows by ensemble machine learning. 106069
manage site settings
To protect your privacy, all features that rely on external API calls from your browser are turned off by default. You need to opt-in for them to become active. All settings here will be stored as cookies with your web browser. For more information see our F.A.Q.