


default search action
Souvik Kundu 0002
Person information
- affiliation: University of Southern California, Los Angeles, CA, USA
Other persons with the same name
- Souvik Kundu 0001
— BITS-Pilani Hyderabad Campus, Department of Electrical and Electronics Engineering, India (and 1 more)
- Souvik Kundu 0003 — National University of Singapore, School of Computing, Singapore
- Souvik Kundu 0004
— Vellore Institute of Technology, School of Electronics and Communication Engineering, India
- Souvik Kundu 0005 — Indian Institute of Engineering Science and Technology Shibpur, Department of Electronics and Telecommunication, India
- Souvik Kundu 0006
— Indian Institute of Technology Kharagpur, Department of Mathematics, India
- Souvik Kundu 0007 — Microsoft Dynamics 365 AI
- Souvik Kundu 0008 — University of Western Ontario, London, Canada
- Souvik Kundu 0009 — Intel Labs, San Diego, CA, USA
Refine list

refinements active!
zoomed in on ?? of ?? records
view refined list in
export refined list as
2020 – today
- 2024
- [c36]Zeyu Liu, Souvik Kundu, Anni Li, Junrui Wan, Lianghao Jiang, Peter A. Beerel:
AFLoRA: Adaptive Freezing of Low Rank Adaptation in Parameter Efficient Fine-Tuning of Large Models. ACL (Short Papers) 2024: 161-167 - [c35]Dake Chen, Shiduo Li, Yuke Zhang, Chenghao Li, Souvik Kundu, Peter A. Beerel:
DIA: Diffusion based Inverse Network Attack on Collaborative Inference. CVPR Workshops 2024: 124-130 - [c34]Sreetama Sarkar, Souvik Kundu, Peter A. Beerel:
RLNet: Robust Linearized Networks for Efficient Private Inference. CVPR Workshops 2024: 244-253 - [c33]Sreetama Sarkar, Souvik Kundu, Kai Zheng, Peter A. Beerel:
Block Selective Reprogramming for On-device Training of Vision Transformers. CVPR Workshops 2024: 8094-8103 - [c32]Akshat Ramachandran
, Souvik Kundu
, Tushar Krishna
:
CLAMP-ViT: Contrastive Data-Free Learning for Adaptive Post-training Quantization of ViTs. ECCV (67) 2024: 307-325 - [c31]Seyedarmin Azizi, Souvik Kundu, Massoud Pedram:
LaMDA: Large Model Fine-Tuning via Spectrally Decomposed Low-Dimensional Adaptation. EMNLP (Findings) 2024: 9635-9646 - [c30]Souvik Kundu, Sharath Nittur Sridhar, Maciej Szankin, Sairam Sundaresan:
Sensi-Bert: Towards Sensitivity Driven Fine-Tuning for Parameter-Efficient Language Model. ICASSP 2024: 10071-10075 - [c29]Souvik Kundu, Rui-Jie Zhu, Akhilesh Jaiswal, Peter A. Beerel:
Recent Advances in Scalable Energy-Efficient and Trustworthy Spiking Neural Networks: from Algorithms to Technology. ICASSP 2024: 13256-13260 - [c28]Xuan Zhou, Souvik Kundu, Dake Chen, Jie Huang, Peter A. Beerel:
What Makes Vision Transformers Robust Towards Bit-Flip Attack? ICPR (8) 2024: 424-438 - [c27]Yuchen Xia, Jiho Kim, Yuhan Chen, Haojie Ye, Souvik Kundu, Cong Callie Hao, Nishil Talati:
Understanding the Performance and Estimating the Cost of LLM Fine-Tuning. IISWC 2024: 210-223 - [i39]Sreetama Sarkar, Souvik Kundu, Peter A. Beerel:
Linearizing Models for Efficient yet Robust Private Inference. CoRR abs/2402.05521 (2024) - [i38]Souvik Kundu, Anthony Sarah, Vinay Joshi, Om Ji Omer, Sreenivas Subramoney:
CiMNet: Towards Joint Optimization for DNN Architecture and Configuration for Compute-In-Memory Hardware. CoRR abs/2402.11780 (2024) - [i37]Zeyu Liu, Souvik Kundu, Anni Li, Junrui Wan, Lianghao Jiang, Peter Anthony Beerel:
AFLoRA: Adaptive Freezing of Low Rank Adaptation in Parameter Efficient Fine-Tuning of Large Models. CoRR abs/2403.13269 (2024) - [i36]Sreetama Sarkar, Souvik Kundu, Kai Zheng, Peter A. Beerel:
Block Selective Reprogramming for On-device Training of Vision Transformers. CoRR abs/2405.10951 (2024) - [i35]Seyedarmin Azizi, Souvik Kundu, Massoud Pedram:
LaMDA: Large Model Fine-Tuning via Spectrally Decomposed Low-Dimensional Adaptation. CoRR abs/2406.12832 (2024) - [i34]Sreetama Sarkar, Gourav Datta, Souvik Kundu, Kai Zheng, Chirayata Bhattacharyya, Peter A. Beerel:
MaskVD: Region Masking for Efficient Video Object Detection. CoRR abs/2407.12067 (2024) - [i33]Yuchen Xia, Jiho Kim, Yuhan Chen, Haojie Ye, Souvik Kundu, Cong Hao, Nishil Talati:
Understanding the Performance and Estimating the Cost of LLM Fine-Tuning. CoRR abs/2408.04693 (2024) - 2023
- [j4]Sara Babakniya, Souvik Kundu, Saurav Prakash, Yue Niu, Salman Avestimehr:
Revisiting Sparsity Hunting in Federated Learning: Why does Sparsity Consensus Matter? Trans. Mach. Learn. Res. 2023 (2023) - [j3]Yue Niu, Saurav Prakash, Souvik Kundu, Sunwoo Lee, Salman Avestimehr:
Overcoming Resource Constraints in Federated Learning: Large Models Can Be Trained with only Weak Clients. Trans. Mach. Learn. Res. 2023 (2023) - [c26]Souvik Kundu, Yuke Zhang, Dake Chen, Peter A. Beerel
:
Making Models Shallow Again: Jointly Learning to Reduce Non-Linearity and Depth for Latency-Efficient Private Inference. CVPR Workshops 2023: 4685-4689 - [c25]Yuke Zhang, Dake Chen, Souvik Kundu, Haomei Liu, Ruiheng Peng, Peter A. Beerel
:
C2PI: An Efficient Crypto-Clear Two-Party Neural Network Private Inference. DAC 2023: 1-6 - [c24]Md. Abdullah-Al Kaiser
, Gourav Datta
, Sreetama Sarkar
, Souvik Kundu
, Zihan Yin
, Manas Garg
, Ajey P. Jacob
, Peter A. Beerel
, Akhilesh R. Jaiswal
:
Technology-Circuit-Algorithm Tri-Design for Processing-in-Pixel-in-Memory (P2M). ACM Great Lakes Symposium on VLSI 2023: 613-618 - [c23]Gourav Datta, Zeyu Liu, Md. Abdullah-Al Kaiser, Souvik Kundu, Joe Mathai, Zihan Yin, Ajey P. Jacob, Akhilesh R. Jaiswal, Peter A. Beerel
:
In-Sensor & Neuromorphic Computing Are all You Need for Energy Efficient Computer Vision. ICASSP 2023: 1-5 - [c22]Souvik Kundu, Sairam Sundaresan, Sharath Nittur Sridhar, Shunlin Lu, Han Tang, Peter A. Beerel
:
Sparse Mixture Once-for-all Adversarial Training for Efficient in-situ Trade-off between Accuracy and Robustness of DNNs. ICASSP 2023: 1-5 - [c21]Haonan Wang, Connor Imes, Souvik Kundu, Peter A. Beerel
, Stephen P. Crago, John Paul Walters
:
Quantpipe: Applying Adaptive Post-Training Quantization For Distributed Transformer Pipelines In Dynamic Edge Environments. ICASSP 2023: 1-5 - [c20]Dake Chen, Yuke Zhang, Souvik Kundu, Chenghao Li, Peter A. Beerel
:
RNA-ViT: Reduced-Dimension Approximate Normalized Attention Vision Transformers for Latency Efficient Private Inference. ICCAD 2023: 1-9 - [c19]Yuke Zhang, Dake Chen, Souvik Kundu, Chenghao Li, Peter A. Beerel
:
SAL-ViT: Towards Latency Efficient Private Inference on ViT using Selective Attention Search with a Learnable Softmax Approximation. ICCV 2023: 5093-5102 - [c18]Sharath Nittur Sridhar, Souvik Kundu, Sairam Sundaresan, Maciej Szankin, Anthony Sarah:
InstaTune: Instantaneous Neural Architecture Search During Fine-Tuning. ICCV (Workshops) 2023: 1515-1519 - [c17]Yue Hu, Xinan Ye, Yifei Liu, Souvik Kundu, Gourav Datta, Srikar Mutnuri, Namo Asavisanu, Nora Ayanian, Konstantinos Psounis, Peter A. Beerel
:
FireFly: A Synthetic Dataset for Ember Detection in Wildfire. ICCV (Workshops) 2023: 3767-3771 - [c16]Souvik Kundu, Shunlin Lu, Yuke Zhang, Jacqueline Tiffany Liu, Peter A. Beerel:
Learning to Linearize Deep Neural Networks for Secure and Efficient Private Inference. ICLR 2023 - [c15]Shashank Nag, Gourav Datta, Souvik Kundu, Nitin Chandrachoodan, Peter A. Beerel
:
ViTA: A Vision Transformer Inference Accelerator for Edge Applications. ISCAS 2023: 1-5 - [c14]Souvik Kundu, Sairam Sundaresan, Massoud Pedram, Peter A. Beerel
:
FLOAT: Fast Learnable Once-for-All Adversarial Training for Tunable Trade-off between Accuracy and Robustness. WACV 2023: 2348-2357 - [c13]Fang Chen, Gourav Datta, Souvik Kundu, Peter A. Beerel
:
Self-Attentive Pooling for Efficient Deep Learning. WACV 2023: 3963-3972 - [i32]Souvik Kundu, Shunlin Lu, Yuke Zhang
, Jacqueline Tiffany Liu, Peter A. Beerel:
Learning to Linearize Deep Neural Networks for Secure and Efficient Private Inference. CoRR abs/2301.09254 (2023) - [i31]Souvik Kundu, Sairam Sundaresan, Sharath Nittur Sridhar, Shunlin Lu, Han Tang, Peter A. Beerel:
Sparse Mixture Once-for-all Adversarial Training for Efficient In-Situ Trade-Off Between Accuracy and Robustness of DNNs. CoRR abs/2302.03523 (2023) - [i30]Shashank Nag, Gourav Datta, Souvik Kundu, Nitin Chandrachoodan, Peter A. Beerel:
ViTA: A Vision Transformer Inference Accelerator for Edge Applications. CoRR abs/2302.09108 (2023) - [i29]Md. Abdullah-Al Kaiser, Gourav Datta, Sreetama Sarkar, Souvik Kundu, Zihan Yin, Manas Garg, Ajey P. Jacob, Peter A. Beerel, Akhilesh R. Jaiswal:
Technology-Circuit-Algorithm Tri-Design for Processing-in-Pixel-in-Memory (P2M). CoRR abs/2304.02968 (2023) - [i28]Yuke Zhang, Dake Chen, Souvik Kundu, Haomei Liu, Ruiheng Peng, Peter A. Beerel:
C2PI: An Efficient Crypto-Clear Two-Party Neural Network Private Inference. CoRR abs/2304.13266 (2023) - [i27]Souvik Kundu, Yuke Zhang, Dake Chen, Peter A. Beerel:
Making Models Shallow Again: Jointly Learning to Reduce Non-Linearity and Depth for Latency-Efficient Private Inference. CoRR abs/2304.13274 (2023) - [i26]Souvik Kundu, Sharath Nittur Sridhar, Maciej Szankin, Sairam Sundaresan:
Sensi-BERT: Towards Sensitivity Driven Fine-Tuning for Parameter-Efficient BERT. CoRR abs/2307.11764 (2023) - [i25]Yue Hu, Xinan Ye, Yifei Liu, Souvik Kundu, Gourav Datta, Srikar Mutnuri, Namo Asavisanu, Nora Ayanian, Konstantinos Psounis, Peter A. Beerel:
FireFly A Synthetic Dataset for Ember Detection in Wildfire. CoRR abs/2308.03164 (2023) - [i24]Sharath Nittur Sridhar, Souvik Kundu, Sairam Sundaresan, Maciej Szankin, Anthony Sarah:
InstaTune: Instantaneous Neural Architecture Search During Fine-Tuning. CoRR abs/2308.15609 (2023) - [i23]Souvik Kundu, Rui-Jie Zhu, Akhilesh Jaiswal, Peter A. Beerel:
Recent Advances in Scalable Energy-Efficient and Trustworthy Spiking Neural networks: from Algorithms to Technology. CoRR abs/2312.01213 (2023) - 2022
- [j2]Souvik Kundu
, Yao Fu, Bill Ye, Peter A. Beerel
, Massoud Pedram:
Toward Adversary-aware Non-iterative Model Pruning through Dynamic Network Rewiring of DNNs. ACM Trans. Embed. Comput. Syst. 21(5): 52:1-52:24 (2022) - [c12]Souvik Kundu, Shikai Wang, Qirui Sun, Peter A. Beerel
, Massoud Pedram:
BMPQ: Bit-Gradient Sensitivity-Driven Mixed-Precision Quantization of DNNs from Scratch. DATE 2022: 588-591 - [c11]Yang Hu, Connor Imes, Xuanang Zhao, Souvik Kundu, Peter A. Beerel
, Stephen P. Crago, John Paul Walters
:
PipeEdge: Pipeline Parallelism for Large-Scale Model Inference on Heterogeneous Edge Devices. DSD 2022: 298-307 - [c10]Gourav Datta, Souvik Kundu, Zihan Yin, Joe Mathai, Zeyu Liu, Zixu Wang, Mulin Tian, Shunlin Lu, Ravi Teja Lakkireddy, Andrew G. Schmidt, Wael Abd-Almageed, Ajey P. Jacob, Akhilesh R. Jaiswal, Peter A. Beerel
:
P2M-DeTrack: Processing-in-Pixel-in-Memory for Energy-efficient and Real-Time Multi-Object Detection and Tracking. VLSI-SoC 2022: 1-6 - [i22]Gourav Datta, Souvik Kundu, Zihan Yin, Ravi Teja Lakkireddy, Joe Mathai, Ajey P. Jacob, Peter A. Beerel, Akhilesh R. Jaiswal:
P2M: A Processing-in-Pixel-in-Memory Paradigm for Resource-Constrained TinyML Applications. CoRR abs/2203.04737 (2022) - [i21]Souvik Kundu, Sairam Sundaresan, Massoud Pedram, Peter A. Beerel:
A Fast and Efficient Conditional Learning for Tunable Trade-Off between Accuracy and Robustness. CoRR abs/2204.00426 (2022) - [i20]Sara Babakniya, Souvik Kundu, Saurav Prakash
, Yue Niu, Salman Avestimehr:
Federated Sparse Training: Lottery Aware Model Compression for Resource Constrained Edge. CoRR abs/2208.13092 (2022) - [i19]Yue Niu, Saurav Prakash
, Souvik Kundu, Sunwoo Lee, Salman Avestimehr:
Federated Learning of Large Models at the Edge via Principal Sub-Model Training. CoRR abs/2208.13141 (2022) - [i18]Fang Chen, Gourav Datta, Souvik Kundu, Peter A. Beerel:
Self-Attentive Pooling for Efficient Deep Learning. CoRR abs/2209.07659 (2022) - [i17]Haonan Wang, Connor Imes, Souvik Kundu, Peter A. Beerel, Stephen P. Crago, John Paul Walters
:
QuantPipe: Applying Adaptive Post-Training Quantization for Distributed Transformer Pipelines in Dynamic Edge Environments. CoRR abs/2211.04515 (2022) - [i16]Gourav Datta, Zeyu Liu, Md. Abdullah-Al Kaiser, Souvik Kundu, Joe Mathai, Zihan Yin, Ajey P. Jacob, Akhilesh R. Jaiswal, Peter A. Beerel:
In-Sensor & Neuromorphic Computing are all you need for Energy Efficient Computer Vision. CoRR abs/2212.10881 (2022) - 2021
- [c9]Souvik Kundu, Mahdi Nazemi, Peter A. Beerel, Massoud Pedram:
DNR: A Tunable Robust Pruning Framework Through Dynamic Network Rewiring of DNNs. ASP-DAC 2021: 344-350 - [c8]Souvik Kundu, Sairam Sundaresan:
AttentionLite: Towards Efficient Self-Attention Models for Vision. ICASSP 2021: 2225-2229 - [c7]Souvik Kundu, Massoud Pedram, Peter A. Beerel:
HIRE-SNN: Harnessing the Inherent Robustness of Energy-Efficient Deep Spiking Neural Networks by Training with Crafted Input Noise. ICCV 2021: 5189-5198 - [c6]Gourav Datta, Souvik Kundu, Peter A. Beerel:
Training Energy-Efficient Deep Spiking Neural Networks with Single-Spike Hybrid Input Encoding. IJCNN 2021: 1-8 - [c5]Souvik Kundu, Qirui Sun, Yao Fu, Massoud Pedram, Peter A. Beerel:
Analyzing the Confidentiality of Undistillable Teachers in Knowledge Distillation. NeurIPS 2021: 9181-9192 - [c4]Souvik Kundu, Gourav Datta, Massoud Pedram, Peter A. Beerel:
Spike-Thrift: Towards Energy-Efficient Deep Spiking Neural Networks by Limiting Spiking Activity via Attention-Guided Compression. WACV 2021: 3952-3961 - [i15]Souvik Kundu, Sairam Sundaresan:
AttentionLite: Towards Efficient Self-Attention Models for Vision. CoRR abs/2101.05216 (2021) - [i14]Gourav Datta, Souvik Kundu, Akhilesh R. Jaiswal, Peter A. Beerel:
HYPER-SNN: Towards Energy-efficient Quantized Deep Spiking Neural Networks for Hyperspectral Image Classification. CoRR abs/2107.11979 (2021) - [i13]Gourav Datta, Souvik Kundu, Peter A. Beerel:
Training Energy-Efficient Deep Spiking Neural Networks with Single-Spike Hybrid Input Encoding. CoRR abs/2107.12374 (2021) - [i12]Souvik Kundu, Gourav Datta, Massoud Pedram, Peter A. Beerel:
Towards Low-Latency Energy-Efficient Deep SNNs via Attention-Guided Compression. CoRR abs/2107.12445 (2021) - [i11]Souvik Kundu, Massoud Pedram, Peter A. Beerel:
HIRE-SNN: Harnessing the Inherent Robustness of Energy-Efficient Deep Spiking Neural Networks by Training with Crafted Input Noise. CoRR abs/2110.11417 (2021) - [i10]Yang Hu, Connor Imes, Xuanang Zhao, Souvik Kundu, Peter A. Beerel, Stephen P. Crago, John Paul Walters:
Pipeline Parallelism for Inference on Heterogeneous Edge Computing. CoRR abs/2110.14895 (2021) - [i9]Souvik Kundu, Shikai Wang, Qirui Sun, Peter A. Beerel, Massoud Pedram:
BMPQ: Bit-Gradient Sensitivity Driven Mixed-Precision Quantization of DNNs from Scratch. CoRR abs/2112.13843 (2021) - 2020
- [j1]Souvik Kundu
, Mahdi Nazemi
, Massoud Pedram
, Keith M. Chugg, Peter A. Beerel
:
Pre-Defined Sparsity for Low-Complexity Convolutional Neural Networks. IEEE Trans. Computers 69(7): 1045-1058 (2020) - [i8]Souvik Kundu, Mahdi Nazemi, Massoud Pedram, Keith M. Chugg, Peter A. Beerel:
Pre-defined Sparsity for Low-Complexity Convolutional Neural Networks. CoRR abs/2001.10710 (2020) - [i7]Souvik Kundu, Gourav Datta, Peter A. Beerel, Massoud Pedram:
qBSA: Logic Design of a 32-bit Block-Skewed RSFQ Arithmetic Logic Unit. CoRR abs/2001.10715 (2020) - [i6]Souvik Kundu, Mahdi Nazemi, Peter A. Beerel, Massoud Pedram:
A Tunable Robust Pruning Framework Through Dynamic Network Rewiring of DNNs. CoRR abs/2011.03083 (2020) - [i5]Souvik Kundu, Hesham Mostafa, Sharath Nittur Sridhar, Sairam Sundaresan:
Attention-based Image Upsampling. CoRR abs/2012.09904 (2020)
2010 – 2019
- 2019
- [c3]Souvik Kundu
, Saurav Prakash
, Haleh Akrami, Peter A. Beerel, Keith M. Chugg:
pSConv: A Pre-defined S parse Kernel Based Convolution for Deep CNNs. Allerton 2019: 100-107 - [c2]Arash Fayyazi, Souvik Kundu
, Shahin Nazarian, Peter A. Beerel, Massoud Pedram:
CSrram: Area-Efficient Low-Power Ex-Situ Training Framework for Memristive Neuromorphic Circuits Based on Clustered Sparsity. ISVLSI 2019: 465-470 - [i4]Souvik Kundu, Saurav Prakash, Haleh Akrami, Peter A. Beerel, Keith M. Chugg:
A Pre-defined Sparse Kernel Based Convolution for Deep CNNs. CoRR abs/1910.00724 (2019) - [i3]Gourav Datta, Haolin Cong, Souvik Kundu, Peter A. Beerel:
Metastability-Resilient Synchronization FIFO for SFQ Logic. CoRR abs/1910.04907 (2019) - 2018
- [c1]Sourya Dey
, Diandian Chen, Zongyang Li, Souvik Kundu
, Kuan-Wen Huang, Keith M. Chugg, Peter A. Beerel:
A Highly Parallel FPGA Implementation of Sparse Neural Network Training. ReConFig 2018: 1-4 - [i2]Sourya Dey, Diandian Chen, Zongyang Li, Souvik Kundu, Kuan-Wen Huang, Keith M. Chugg, Peter A. Beerel:
A Highly Parallel FPGA Implementation of Sparse Neural Network Training. CoRR abs/1806.01087 (2018) - [i1]Arash Fayyazi, Souvik Kundu, Shahin Nazarian, Peter A. Beerel, Massoud Pedram:
SpRRAM: A Predefined Sparsity Based Memristive Neuromorphic Circuit for Low Power Application. CoRR abs/1809.03476 (2018)
Coauthor Index
aka: Peter Anthony Beerel
aka: Akhilesh R. Jaiswal

manage site settings
To protect your privacy, all features that rely on external API calls from your browser are turned off by default. You need to opt-in for them to become active. All settings here will be stored as cookies with your web browser. For more information see our F.A.Q.
Unpaywalled article links
Add open access links from to the list of external document links (if available).
Privacy notice: By enabling the option above, your browser will contact the API of unpaywall.org to load hyperlinks to open access articles. Although we do not have any reason to believe that your call will be tracked, we do not have any control over how the remote server uses your data. So please proceed with care and consider checking the Unpaywall privacy policy.
Archived links via Wayback Machine
For web page which are no longer available, try to retrieve content from the of the Internet Archive (if available).
Privacy notice: By enabling the option above, your browser will contact the API of archive.org to check for archived content of web pages that are no longer available. Although we do not have any reason to believe that your call will be tracked, we do not have any control over how the remote server uses your data. So please proceed with care and consider checking the Internet Archive privacy policy.
Reference lists
Add a list of references from ,
, and
to record detail pages.
load references from crossref.org and opencitations.net
Privacy notice: By enabling the option above, your browser will contact the APIs of crossref.org, opencitations.net, and semanticscholar.org to load article reference information. Although we do not have any reason to believe that your call will be tracked, we do not have any control over how the remote server uses your data. So please proceed with care and consider checking the Crossref privacy policy and the OpenCitations privacy policy, as well as the AI2 Privacy Policy covering Semantic Scholar.
Citation data
Add a list of citing articles from and
to record detail pages.
load citations from opencitations.net
Privacy notice: By enabling the option above, your browser will contact the API of opencitations.net and semanticscholar.org to load citation information. Although we do not have any reason to believe that your call will be tracked, we do not have any control over how the remote server uses your data. So please proceed with care and consider checking the OpenCitations privacy policy as well as the AI2 Privacy Policy covering Semantic Scholar.
OpenAlex data
Load additional information about publications from .
Privacy notice: By enabling the option above, your browser will contact the API of openalex.org to load additional information. Although we do not have any reason to believe that your call will be tracked, we do not have any control over how the remote server uses your data. So please proceed with care and consider checking the information given by OpenAlex.
last updated on 2025-03-13 20:22 CET by the dblp team
all metadata released as open data under CC0 1.0 license
see also: Terms of Use | Privacy Policy | Imprint