default search action
Harald Garcke
Person information
Refine list
refinements active!
zoomed in on ?? of ?? records
view refined list in
export refined list as
2020 – today
- 2024
- [j50]Harald Garcke, Robert Nürnberg, Quan Zhao:
Arbitrary Lagrangian-Eulerian finite element approximations for axisymmetric two-phase flow. Comput. Math. Appl. 155: 209-223 (2024) - [j49]Harald Garcke, Dennis Trautwein:
Corrigendum to: Numerical analysis for a Cahn-Hilliard system modelling tumour growth with chemotaxis and active transport. J. Num. Math. 32(2): 213- (2024) - [j48]Tokuhiro Eto, Harald Garcke, Robert Nürnberg:
A structure-preserving finite element method for the multi-phase Mullins-Sekerka problem with triple junctions. Numerische Mathematik 156(4): 1479-1509 (2024) - [i26]Harald Garcke, Robert Nürnberg:
A finite element method for anisotropic crystal growth on surfaces. CoRR abs/2403.14206 (2024) - [i25]Harald Garcke, Robert Nürnberg, Dennis Trautwein:
Parametric finite element approximation of two-phase Navier-Stokes flow with viscoelasticity. CoRR abs/2406.13566 (2024) - [i24]Harald Garcke, Robert Nürnberg, Quan Zhao:
A variational front-tracking method for multiphase flow with triple junctions. CoRR abs/2407.18529 (2024) - [i23]Harald Garcke, Wei Jiang, Chunmei Su, Ganghui Zhang:
Structure-preserving parametric finite element method for curve diffusion based on Lagrange multiplier approaches. CoRR abs/2408.13443 (2024) - 2023
- [j47]Harald Garcke, Robert Nürnberg, Quan Zhao:
Structure-preserving discretizations of two-phase Navier-Stokes flow using fitted and unfitted approaches. J. Comput. Phys. 489: 112276 (2023) - [j46]Harald Garcke, Patrik Knopf, Robert Nürnberg, Quan Zhao:
A Diffuse-Interface Approach for Solid-State Dewetting with Anisotropic Surface Energies. J. Nonlinear Sci. 33(2): 34 (2023) - [j45]Harald Garcke, Robert Nürnberg, Quan Zhao:
Unfitted Finite Element Methods for Axisymmetric Two-Phase Flow. J. Sci. Comput. 97(1): 14 (2023) - [i22]Abramo Agosti, Pierluigi Colli, Harald Garcke, Elisabetta Rocca:
A Cahn-Hilliard phase field model coupled to an Allen-Cahn model of viscoelasticity at large strains. CoRR abs/2301.08341 (2023) - [i21]Harald Garcke, Robert Nürnberg, Quan Zhao:
Unfitted finite element methods for axisymmetric two-phase flow. CoRR abs/2303.03085 (2023) - [i20]Harald Garcke, Dennis Trautwein:
Approximation and existence of a viscoelastic phase-field model for tumour growth in two and three dimensions. CoRR abs/2305.14915 (2023) - [i19]Harald Garcke, Robert Nürnberg, Quan Zhao:
Arbitrary Lagrangian-Eulerian finite element approximations for axisymmetric two-phase flow. CoRR abs/2305.19434 (2023) - [i18]Tokuhiro Eto, Harald Garcke, Robert Nürnberg:
A structure-preserving finite element method for the multi-phase Mullins-Sekerka problem with triple junctions. CoRR abs/2309.11948 (2023) - 2022
- [j44]Weizhu Bao, Harald Garcke, Robert Nürnberg, Quan Zhao:
Volume-preserving parametric finite element methods for axisymmetric geometric evolution equations. J. Comput. Phys. 460: 111180 (2022) - [j43]Harald Garcke, Dennis Trautwein:
Numerical analysis for a Cahn-Hilliard system modelling tumour growth with chemotaxis and active transport. J. Num. Math. 30(4): 295-324 (2022) - [j42]Charles M. Elliott, Harald Garcke, Balázs Kovács:
Numerical analysis for the interaction of mean curvature flow and diffusion on closed surfaces. Numerische Mathematik 151(4): 873-925 (2022) - [j41]Philipp Werner, Martin Burger, Florian Frank, Harald Garcke:
A Diffuse Interface Model for Cell Blebbing Including Membrane-Cortex Coupling with Linker Dynamics. SIAM J. Appl. Math. 82(3): 1091-1112 (2022) - [j40]Harald Garcke, Sourav Mitra, Vanja Nikolic:
A Phase-Field Approach to Shape and Topology Optimization of Acoustic Waves in Dissipative Media. SIAM J. Control. Optim. 60(4): 2297-2319 (2022) - [i17]Charles M. Elliott, Harald Garcke, Balázs Kovács:
Numerical analysis for the interaction of mean curvature flow and diffusion on closed surfaces. CoRR abs/2202.03302 (2022) - [i16]Weizhu Bao, Harald Garcke, Robert Nürnberg, Quan Zhao:
A structure-preserving finite element approximation of surface diffusion for curve networks and surface clusters. CoRR abs/2202.06775 (2022) - [i15]Harald Garcke, Balázs Kovács, Dennis Trautwein:
Viscoelastic Cahn-Hilliard models for tumour growth. CoRR abs/2204.04147 (2022) - [i14]Harald Garcke, Patrik Knopf, Robert Nürnberg, Quan Zhao:
A diffuse-interface approach for solid-state dewetting with anisotropic surface energies. CoRR abs/2210.01698 (2022) - [i13]Harald Garcke, Robert Nürnberg, Quan Zhao:
Structure-preserving discretizations of two-phase Navier-Stokes flow using fitted and unfitted approaches. CoRR abs/2212.08398 (2022) - 2021
- [j39]Harald Garcke, Robert Nürnberg:
Numerical approximation of boundary value problems for curvature flow and elastic flow in Riemannian manifolds. Numerische Mathematik 149(2): 375-415 (2021) - [j38]Harald Garcke, Kei Fong Lam, Andrea Signori:
Sparse Optimal Control of a Phase Field Tumor Model with Mechanical Effects. SIAM J. Control. Optim. 59(2): 1555-1580 (2021) - [i12]Philipp Werner, Martin Burger, Florian Frank, Harald Garcke:
A Diffuse Interface Model for Cell Blebbing Including Membrane-Cortex Coupling with Linker Dynamics. CoRR abs/2107.06334 (2021) - [i11]Harald Garcke, Dennis Trautwein:
Numerical analysis for a Cahn-Hilliard system modelling tumour growth with chemotaxis and active transport. CoRR abs/2108.01507 (2021) - [i10]Weizhu Bao, Harald Garcke, Robert Nürnberg, Quan Zhao:
Volume-preserving parametric finite element methods for axisymmetric geometric evolution equations. CoRR abs/2111.13565 (2021) - 2020
- [j37]Harald Garcke, Patrik Knopf:
Weak Solutions of the Cahn-Hilliard System with Dynamic Boundary Conditions: A Gradient Flow Approach. SIAM J. Math. Anal. 52(1): 340-369 (2020) - [i9]Harald Garcke, Robert Nürnberg:
Structure preserving discretisations of gradient flows for axisymmetric two-phase biomembranes. CoRR abs/2003.03127 (2020) - [i8]Harald Garcke, Robert Nürnberg:
Numerical approximation of boundary value problems for curvature flow and elastic flow in Riemannian manifolds. CoRR abs/2012.02707 (2020)
2010 – 2019
- 2019
- [j36]John W. Barrett, Harald Garcke, Robert Nürnberg:
Finite element methods for fourth order axisymmetric geometric evolution equations. J. Comput. Phys. 376: 733-766 (2019) - [j35]John W. Barrett, Harald Garcke, Robert Nürnberg:
Variational discretization of axisymmetric curvature flows. Numerische Mathematik 141(3): 791-837 (2019) - [j34]Matthias Ebenbeck, Harald Garcke:
On a Cahn-Hilliard-Brinkman Model for Tumor Growth and Its Singular Limits. SIAM J. Math. Anal. 51(3): 1868-1912 (2019) - [j33]John W. Barrett, Harald Garcke, Robert Nürnberg:
Stable Discretizations of Elastic Flow in Riemannian Manifolds. SIAM J. Numer. Anal. 57(4): 1987-2018 (2019) - [i7]John W. Barrett, Harald Garcke, Robert Nürnberg:
Stable approximations for axisymmetric Willmore flow for closed and open surfaces. CoRR abs/1911.01132 (2019) - [i6]Abramo Agosti, Pasquale Ciarletta, Harald Garcke, Michael Hinze:
Learning patient-specific parameters for a diffuse interface glioblastoma model from neuroimaging data. CoRR abs/1912.08036 (2019) - 2018
- [j32]Harald Garcke, Michael Hinze, Christian Kahle, Kei Fong Lam:
A phase field approach to shape optimization in Navier-Stokes flow with integral state constraints. Adv. Comput. Math. 44(5): 1345-1383 (2018) - [j31]Harald Garcke, Kei Fong Lam, Vanessa Styles:
Cahn-Hilliard Inpainting with the Double Obstacle Potential. SIAM J. Imaging Sci. 11(3): 2064-2089 (2018) - [i5]Harald Garcke, Kei Fong Lam, Vanessa Styles:
Cahn-Hilliard inpainting with the double obstacle potential. CoRR abs/1801.05527 (2018) - 2017
- [j30]Martin Reitzle, Corine Kieffer-Roth, Harald Garcke, Bernhard Weigand:
A volume-of-fluid method for three-dimensional hexagonal solidification processes. J. Comput. Phys. 339: 356-369 (2017) - [j29]Heike Benninghoff, Harald Garcke:
Segmentation of Three-Dimensional Images with Parametric Active Surfaces and Topology Changes. J. Sci. Comput. 72(3): 1333-1367 (2017) - [j28]John W. Barrett, Harald Garcke, Robert Nürnberg:
Finite element approximation for the dynamics of asymmetric fluidic biomembranes. Math. Comput. 86(305): 1037-1069 (2017) - 2016
- [j27]Heike Benninghoff, Harald Garcke:
Segmentation and Restoration of Images on Surfaces by Parametric Active Contours with Topology Changes. J. Math. Imaging Vis. 55(1): 105-124 (2016) - [j26]John W. Barrett, Harald Garcke, Robert Nürnberg:
A stable numerical method for the dynamics of fluidic membranes. Numerische Mathematik 134(4): 783-822 (2016) - [j25]Luise Blank, Harald Garcke, Claudia Hecht, Christoph Rupprecht:
Sharp Interface Limit for a Phase Field Model in Structural Optimization. SIAM J. Control. Optim. 54(3): 1558-1584 (2016) - [j24]John W. Barrett, Harald Garcke, Robert Nürnberg:
Computational Parametric Willmore Flow with Spontaneous Curvature and Area Difference Elasticity Effects. SIAM J. Numer. Anal. 54(3): 1732-1762 (2016) - [j23]Heike Benninghoff, Harald Garcke:
Image Segmentation Using Parametric Contours With Free Endpoints. IEEE Trans. Image Process. 25(4): 1639-1648 (2016) - 2015
- [j22]John W. Barrett, Harald Garcke, Robert Nürnberg:
Stable finite element approximations of two-phase flow with soluble surfactant. J. Comput. Phys. 297: 530-564 (2015) - [j21]John W. Barrett, Harald Garcke, Robert Nürnberg:
A Stable Parametric Finite Element Discretization of Two-Phase Navier-Stokes Flow. J. Sci. Comput. 63(1): 78-117 (2015) - [j20]Harald Garcke, Claudia Hecht, Michael Hinze, Christian Kahle:
Numerical Approximation of Phase Field Based Shape and Topology Optimization for Fluids. SIAM J. Sci. Comput. 37(4) (2015) - [i4]Heike Benninghoff, Harald Garcke:
Image Segmentation and Restoration Using Parametric Contours With Free Endpoints. CoRR abs/1504.07259 (2015) - [i3]Heike Benninghoff, Harald Garcke:
Segmentation and Restoration of Images on Surfaces by Parametric Active Contours with Topology Changes. CoRR abs/1505.00193 (2015) - [i2]Heike Benninghoff, Harald Garcke:
Segmentation of Three-dimensional Images with Parametric Active Surfaces and Topology Changes. CoRR abs/1506.07136 (2015) - 2014
- [j19]Heike Benninghoff, Harald Garcke:
Efficient Image Segmentation and Restoration Using Parametric Curve Evolution with Junctions and Topology Changes. SIAM J. Imaging Sci. 7(3): 1451-1483 (2014) - 2013
- [i1]Heike Benninghoff, Harald Garcke:
Fast image segmentation and restoration using parametric curve evolution with junctions and topology changes. CoRR abs/1308.2292 (2013) - 2012
- [j18]John W. Barrett, Harald Garcke, Robert Nürnberg:
Parametric approximation of isotropic and anisotropic elastic flow for closed and open curves. Numerische Mathematik 120(3): 489-542 (2012) - [p2]Luise Blank, Martin Butz, Harald Garcke, Lavinia Sarbu, Vanessa Styles:
Allen-Cahn and Cahn-Hilliard Variational Inequalities Solved with Optimization Techniques. Constrained Optimization and Optimal Control for Partial Differential Equations 2012: 21-35 - [p1]Luise Blank, Harald Garcke, Lavinia Sarbu, Tarin Srisupattarawanit, Vanessa Styles, Axel Voigt:
Phase-field Approaches to Structural Topology Optimization. Constrained Optimization and Optimal Control for Partial Differential Equations 2012: 245-256 - 2010
- [j17]John W. Barrett, Harald Garcke, Robert Nürnberg:
On stable parametric finite element methods for the Stefan problem and the Mullins-Sekerka problem with applications to dendritic growth. J. Comput. Phys. 229(18): 6270-6299 (2010)
2000 – 2009
- 2008
- [j16]John W. Barrett, Harald Garcke, Robert Nürnberg:
On the parametric finite element approximation of evolving hypersurfaces in R3. J. Comput. Phys. 227(9): 4281-4307 (2008) - [j15]John W. Barrett, Harald Garcke, Robert Nürnberg:
A variational formulation of anisotropic geometric evolution equations in higher dimensions. Numerische Mathematik 109(1): 1-44 (2008) - [j14]Harald Garcke, Kazuo Ito, Yoshihito Kohsaka:
Nonlinear Stability of Stationary Solutions for Surface Diffusion with Boundary Conditions. SIAM J. Math. Anal. 40(2): 491-515 (2008) - [j13]John W. Barrett, Harald Garcke, Robert Nürnberg:
Parametric Approximation of Willmore Flow and Related Geometric Evolution Equations. SIAM J. Sci. Comput. 31(1): 225-253 (2008) - 2007
- [j12]John W. Barrett, Harald Garcke, Robert Nürnberg:
A parametric finite element method for fourth order geometric evolution equations. J. Comput. Phys. 222(1): 441-467 (2007) - [j11]John W. Barrett, Harald Garcke, Robert Nürnberg:
On the Variational Approximation of Combined Second and Fourth Order Geometric Evolution Equations. SIAM J. Sci. Comput. 29(3): 1006-1041 (2007) - 2006
- [j10]John W. Barrett, Harald Garcke, Robert Nürnberg:
Finite element approximation of a phase field model for surface diffusion of voids in a stressed solid. Math. Comput. 75(253): 7-41 (2006) - [j9]Harald Garcke, Sandra Wieland:
Surfactant Spreading on Thin Viscous Films: Nonnegative Solutions of A Coupled Degenerate System. SIAM J. Math. Anal. 37(6): 2025-2048 (2006) - 2005
- [j8]Harald Garcke, Ulrich Weikard:
Numerical approximation of the Cahn-Larché equation. Numerische Mathematik 100(4): 639-662 (2005) - [j7]Harald Garcke, Kazuo Ito, Yoshihito Kohsaka:
Linearized Stability Analysis of Stationary Solutions for Surface Diffusion with Boundary Conditions. SIAM J. Math. Anal. 36(4): 1031-1056 (2005) - 2004
- [j6]Björn Stinner, Britta Nestler, Harald Garcke:
A Diffuse Interface Model for Alloys with Multiple Components and Phases. SIAM J. Appl. Math. 64(3): 775-799 (2004) - 2003
- [j5]John W. Barrett, Harald Garcke, Robert Nürnberg:
Finite Element Approximation of Surfactant Spreading on a Thin Film. SIAM J. Numer. Anal. 41(4): 1427-1464 (2003) - 2001
- [j4]Harald Garcke, Tobias Preußer, Martin Rumpf, Alexandru C. Telea, Ulrich Weikard, Jarke J. van Wijk:
A Phase Field Model for Continuous Clustering on Vector Fields. IEEE Trans. Vis. Comput. Graph. 7(3): 230-241 (2001) - 2000
- [c1]Harald Garcke, Tobias Preußer, Martin Rumpf, Alexandru C. Telea, Ulrich Weikard, Jarke J. van Wijk:
A continuous clustering method for vector fields. IEEE Visualization 2000: 351-358
1990 – 1999
- 1999
- [j3]Harald Garcke, Britta Nestler, Barbara Stoth:
A MultiPhase Field Concept: Numerical Simulations of Moving Phase Boundaries and Multiple Junctions. SIAM J. Appl. Math. 60(1): 295-315 (1999) - [j2]John W. Barrett, James F. Blowey, Harald Garcke:
Finite Element Approximation of the Cahn-Hilliard Equation with Degenerate Mobility. SIAM J. Numer. Anal. 37(1): 286-318 (1999) - 1998
- [j1]John W. Barrett, James F. Blowey, Harald Garcke:
Finite element approximation of a fourth order nonlinear degenerate parabolic equation. Numerische Mathematik 80(4): 525-556 (1998)
Coauthor Index
manage site settings
To protect your privacy, all features that rely on external API calls from your browser are turned off by default. You need to opt-in for them to become active. All settings here will be stored as cookies with your web browser. For more information see our F.A.Q.
Unpaywalled article links
Add open access links from to the list of external document links (if available).
Privacy notice: By enabling the option above, your browser will contact the API of unpaywall.org to load hyperlinks to open access articles. Although we do not have any reason to believe that your call will be tracked, we do not have any control over how the remote server uses your data. So please proceed with care and consider checking the Unpaywall privacy policy.
Archived links via Wayback Machine
For web page which are no longer available, try to retrieve content from the of the Internet Archive (if available).
Privacy notice: By enabling the option above, your browser will contact the API of archive.org to check for archived content of web pages that are no longer available. Although we do not have any reason to believe that your call will be tracked, we do not have any control over how the remote server uses your data. So please proceed with care and consider checking the Internet Archive privacy policy.
Reference lists
Add a list of references from , , and to record detail pages.
load references from crossref.org and opencitations.net
Privacy notice: By enabling the option above, your browser will contact the APIs of crossref.org, opencitations.net, and semanticscholar.org to load article reference information. Although we do not have any reason to believe that your call will be tracked, we do not have any control over how the remote server uses your data. So please proceed with care and consider checking the Crossref privacy policy and the OpenCitations privacy policy, as well as the AI2 Privacy Policy covering Semantic Scholar.
Citation data
Add a list of citing articles from and to record detail pages.
load citations from opencitations.net
Privacy notice: By enabling the option above, your browser will contact the API of opencitations.net and semanticscholar.org to load citation information. Although we do not have any reason to believe that your call will be tracked, we do not have any control over how the remote server uses your data. So please proceed with care and consider checking the OpenCitations privacy policy as well as the AI2 Privacy Policy covering Semantic Scholar.
OpenAlex data
Load additional information about publications from .
Privacy notice: By enabling the option above, your browser will contact the API of openalex.org to load additional information. Although we do not have any reason to believe that your call will be tracked, we do not have any control over how the remote server uses your data. So please proceed with care and consider checking the information given by OpenAlex.
last updated on 2024-10-07 21:18 CEST by the dblp team
all metadata released as open data under CC0 1.0 license
see also: Terms of Use | Privacy Policy | Imprint