default search action
Jong Chul Ye
Person information
Refine list
refinements active!
zoomed in on ?? of ?? records
view refined list in
export refined list as
2020 – today
- 2024
- [j95]Sangjoon Park, Eun Sun Lee, Kyung Sook Shin, Jeong Eun Lee, Jong Chul Ye:
Self-supervised multi-modal training from uncurated images and reports enables monitoring AI in radiology. Medical Image Anal. 91: 103021 (2024) - [j94]Boah Kim, Yujin Oh, Bradford J. Wood, Ronald M. Summers, Jong Chul Ye:
C-DARL: Contrastive diffusion adversarial representation learning for label-free blood vessel segmentation. Medical Image Anal. 91: 103022 (2024) - [j93]Gyutaek Oh, Yeonsil Moon, Won-Jin Moon, Jong Chul Ye:
Unpaired deep learning for pharmacokinetic parameter estimation from dynamic contrast-enhanced MRI without AIF measurements. NeuroImage 291: 120571 (2024) - [j92]Sangmin Lee, Byeongsu Sim, Jong Chul Ye:
Magnitude and angle dynamics in training single ReLU neurons. Neural Networks 178: 106435 (2024) - [j91]Gyutaek Oh, Sukyoung Jung, Jeong Eun Lee, Jong Chul Ye:
Annealed Score-Based Diffusion Model for MR Motion Artifact Reduction. IEEE Trans. Computational Imaging 10: 43-53 (2024) - [j90]Jaeyoung Huh, Sangjoon Park, Jeong Eun Lee, Jong Chul Ye:
Improving Medical Speech-to-Text Accuracy using Vision-Language Pre-training Models. IEEE J. Biomed. Health Informatics 28(3): 1692-1703 (2024) - [j89]Sangjoon Park, Ik-Jae Lee, Jun Won Kim, Jong Chul Ye:
MS-DINO: Masked Self-Supervised Distributed Learning Using Vision Transformer. IEEE J. Biomed. Health Informatics 28(10): 6180-6192 (2024) - [c133]Chanyong Jung, Gihyun Kwon, Jong Chul Ye:
Patch-Wise Graph Contrastive Learning for Image Translation. AAAI 2024: 13013-13021 - [c132]Gihyun Kwon, Simon Jenni, Dingzeyu Li, Joon-Young Lee, Jong Chul Ye, Fabian Caba Heilbron:
Concept Weaver: Enabling Multi-Concept Fusion in Text-to-Image Models. CVPR 2024: 8880-8889 - [c131]Hyelin Nam, Gihyun Kwon, Geon Yeong Park, Jong Chul Ye:
Contrastive Denoising Score for Text-Guided Latent Diffusion Image Editing. CVPR 2024: 9192-9201 - [c130]Hyeonho Jeong, Geon Yeong Park, Jong Chul Ye:
VMC: Video Motion Customization Using Temporal Attention Adaption for Text-to-Video Diffusion Models. CVPR 2024: 9212-9221 - [c129]Geon Yeong Park, Chanyong Jung, Sangmin Lee, Jong Chul Ye, Sang Wan Lee:
Self-Supervised Debiasing Using Low Rank Regularization. CVPR 2024: 12395-12405 - [c128]Kwanyoung Kim, Yujin Oh, Jong Chul Ye:
OTSeg: Multi-Prompt Sinkhorn Attention for Zero-Shot Semantic Segmentation. ECCV (77) 2024: 200-217 - [c127]Hyeonho Jeong, Jinho Chang, Geon Yeong Park, Jong Chul Ye:
DreamMotion: Space-Time Self-similar Score Distillation for Zero-Shot Video Editing. ECCV (30) 2024: 358-376 - [c126]Jeongsol Kim, Geon Yeong Park, Jong Chul Ye:
DreamSampler: Unifying Diffusion Sampling and Score Distillation for Image Manipulation. ECCV (82) 2024: 398-414 - [c125]Hyungjin Chung, Jong Chul Ye:
Deep Diffusion Image Prior for Efficient OOD Adaptation in 3D Inverse Problems. ECCV (75) 2024: 432-455 - [c124]Kwanyoung Kim, Jong Chul Ye:
Noise2one: One-Shot Image Denoising with Local Implicit Learning. ICASSP 2024: 13036-13040 - [c123]Suhyeon Lee, Won Jun Kim, Jinho Chang, Jong Chul Ye:
LLM-CXR: Instruction-Finetuned LLM for CXR Image Understanding and Generation. ICLR 2024 - [c122]Hyungjin Chung, Suhyeon Lee, Jong Chul Ye:
Decomposed Diffusion Sampler for Accelerating Large-Scale Inverse Problems. ICLR 2024 - [c121]Hyeonho Jeong, Jong Chul Ye:
Ground-A-Video: Zero-shot Grounded Video Editing using Text-to-image Diffusion Models. ICLR 2024 - [c120]Beomsu Kim, Gihyun Kwon, Kwanyoung Kim, Jong Chul Ye:
Unpaired Image-to-Image Translation via Neural Schrödinger Bridge. ICLR 2024 - [c119]Jangho Park, Gihyun Kwon, Jong Chul Ye:
ED-NeRF: Efficient Text-Guided Editing of 3D Scene With Latent Space NeRF. ICLR 2024 - [c118]Soobin Um, Suhyeon Lee, Jong Chul Ye:
Don't Play Favorites: Minority Guidance for Diffusion Models. ICLR 2024 - [c117]Sangmin Lee, Abbas Mammadov, Jong Chul Ye:
Defining Neural Network Architecture through Polytope Structures of Datasets. ICML 2024 - [c116]Hyungjin Chung, Jong Chul Ye, Peyman Milanfar, Mauricio Delbracio:
Prompt-tuning Latent Diffusion Models for Inverse Problems. ICML 2024 - [d1]Hyungjin Chung, Se Hie Park, Eui-Sang Chung, Kayoung Yi, Jong Chul Ye:
Fundus Photo Enhancement dataset. IEEE DataPort, 2024 - [i179]Sangmin Lee, Abbas Mammadov, Jong Chul Ye:
Defining Neural Network Architecture through Polytope Structures of Dataset. CoRR abs/2402.02407 (2024) - [i178]Yunji Jung, Seokju Lee, Tair Djanibekov, Hyunjung Shim, Jong Chul Ye:
Latent Inversion with Timestep-aware Sampling for Training-free Non-rigid Editing. CoRR abs/2402.08601 (2024) - [i177]Kwanyoung Kim, Jaa-Yeon Lee, Jong Chul Ye:
UNICORN: Ultrasound Nakagami Imaging via Score Matching and Adaptation. CoRR abs/2403.06275 (2024) - [i176]Jeongsol Kim, Geon Yeong Park, Jong Chul Ye:
DreamSampler: Unifying Diffusion Sampling and Score Distillation for Image Manipulation. CoRR abs/2403.11415 (2024) - [i175]Hyeonho Jeong, Jinho Chang, Geon Yeong Park, Jong Chul Ye:
DreamMotion: Space-Time Self-Similarity Score Distillation for Zero-Shot Video Editing. CoRR abs/2403.12002 (2024) - [i174]Beomsu Kim, Jaemin Kim, Jeongsol Kim, Jong Chul Ye:
Generalized Consistency Trajectory Models for Image Manipulation. CoRR abs/2403.12510 (2024) - [i173]Hangeol Chang, Jinho Chang, Jong Chul Ye:
Ground-A-Score: Scaling Up the Score Distillation for Multi-Attribute Editing. CoRR abs/2403.13551 (2024) - [i172]Kwanyoung Kim, Yujin Oh, Jong Chul Ye:
OTSeg: Multi-prompt Sinkhorn Attention for Zero-Shot Semantic Segmentation. CoRR abs/2403.14183 (2024) - [i171]Geon Yeong Park, Hyeonho Jeong, Sang Wan Lee, Jong Chul Ye:
Spectral Motion Alignment for Video Motion Transfer using Diffusion Models. CoRR abs/2403.15249 (2024) - [i170]Gihyun Kwon, Simon Jenni, Dingzeyu Li, Joon-Young Lee, Jong Chul Ye, Fabian Caba Heilbron:
Concept Weaver: Enabling Multi-Concept Fusion in Text-to-Image Models. CoRR abs/2404.03913 (2024) - [i169]Gihyun Kwon, Jangho Park, Jong Chul Ye:
Unified Editing of Panorama, 3D Scenes, and Videos Through Disentangled Self-Attention Injection. CoRR abs/2405.16823 (2024) - [i168]Inhwa Han, Jaayeon Lee, Jong Chul Ye:
MindFormer: A Transformer Architecture for Multi-Subject Brain Decoding via fMRI. CoRR abs/2405.17720 (2024) - [i167]Jinho Chang, Jong Chul Ye:
LDMol: Text-Conditioned Molecule Diffusion Model Leveraging Chemically Informative Latent Space. CoRR abs/2405.17829 (2024) - [i166]Hyungjin Chung, Jeongsol Kim, Geon Yeong Park, Hyelin Nam, Jong Chul Ye:
CFG++: Manifold-constrained Classifier Free Guidance for Diffusion Models. CoRR abs/2406.08070 (2024) - [i165]Hyungjin Chung, Jong Chul Ye:
Deep Diffusion Image Prior for Efficient OOD Adaptation in 3D Inverse Problems. CoRR abs/2407.10641 (2024) - [i164]Beomsu Kim, Michael Puthawala, Jong Chul Ye, Emanuele Sansone:
(Deep) Generative Geodesics. CoRR abs/2407.11244 (2024) - [i163]Soobin Um, Jong Chul Ye:
Self-Guided Generation of Minority Samples Using Diffusion Models. CoRR abs/2407.11555 (2024) - [i162]Abbas Mammadov, Hyungjin Chung, Jong Chul Ye:
Amortized Posterior Sampling with Diffusion Prior Distillation. CoRR abs/2407.17907 (2024) - [i161]Taesung Kwon, Jong Chul Ye:
Solving Video Inverse Problems Using Image Diffusion Models. CoRR abs/2409.02574 (2024) - [i160]Sehui Kim, Hyungjin Chung, Se Hie Park, Eui-Sang Chung, Kayoung Yi, Jong Chul Ye:
Fundus image enhancement through direct diffusion bridges. CoRR abs/2409.12377 (2024) - [i159]Giannis Daras, Hyungjin Chung, Chieh-Hsin Lai, Yuki Mitsufuji, Jong Chul Ye, Peyman Milanfar, Alexandros G. Dimakis, Mauricio Delbracio:
A Survey on Diffusion Models for Inverse Problems. CoRR abs/2410.00083 (2024) - [i158]Dohun Lee, Bryan S. Kim, Geon Yeong Park, Jong Chul Ye:
VideoGuide: Improving Video Diffusion Models without Training Through a Teacher's Guide. CoRR abs/2410.04364 (2024) - [i157]Hyungjin Chung, Dohun Lee, Jong Chul Ye:
ACDC: Autoregressive Coherent Multimodal Generation using Diffusion Correction. CoRR abs/2410.04721 (2024) - [i156]Gihyun Kwon, Jong Chul Ye:
TweedieMix: Improving Multi-Concept Fusion for Diffusion-based Image/Video Generation. CoRR abs/2410.05591 (2024) - [i155]Serin Yang, Taesung Kwon, Jong Chul Ye:
ViBiDSampler: Enhancing Video Interpolation Using Bidirectional Diffusion Sampler. CoRR abs/2410.05651 (2024) - [i154]Beomsu Kim, Yu-Guan Hsieh, Michal Klein, Marco Cuturi, Jong Chul Ye, Bahjat Kawar, James Thornton:
Simple ReFlow: Improved Techniques for Fast Flow Models. CoRR abs/2410.07815 (2024) - [i153]Soobin Um, Jong Chul Ye:
MinorityPrompt: Text to Minority Image Generation via Prompt Optimization. CoRR abs/2410.07838 (2024) - 2023
- [j88]Jaeyoung Huh, Shujaat Khan, Sungjin Choi, Dongkuk Shin, Jeong Eun Lee, Eun Sun Lee, Jong Chul Ye:
Tunable image quality control of 3-D ultrasound using switchable CycleGAN. Medical Image Anal. 83: 102651 (2023) - [j87]Chanseok Lee, Gookho Song, Hyeonggeon Kim, Jong Chul Ye, Mooseok Jang:
Deep learning based on parameterized physical forward model for adaptive holographic imaging with unpaired data. Nat. Mac. Intell. 5(1): 35-45 (2023) - [j86]Gihyun Kwon, Jong Chul Ye:
One-Shot Adaptation of GAN in Just One CLIP. IEEE Trans. Pattern Anal. Mach. Intell. 45(10): 12179-12191 (2023) - [j85]Bihan Wen, Saiprasad Ravishankar, Zhizhen Zhao, Raja Giryes, Jong Chul Ye:
Physics-Driven Machine Learning for Computational Imaging [From the Guest Editor]. IEEE Signal Process. Mag. 40(1): 28-30 (2023) - [j84]Zhizhen Zhao, Jong Chul Ye, Yoram Bresler:
Generative Models for Inverse Imaging Problems: From mathematical foundations to physics-driven applications. IEEE Signal Process. Mag. 40(1): 148-163 (2023) - [j83]Bihan Wen, Saiprasad Ravishankar, Zhizhen Zhao, Raja Giryes, Jong Chul Ye:
Physics-Driven Machine Learning for Computational Imaging: Part 2 [From the Guest Editors]. IEEE Signal Process. Mag. 40(2): 13-15 (2023) - [j82]W. Clem Karl, James E. Fowler, Charles A. Bouman, Müjdat Çetin, Brendt Wohlberg, Jong Chul Ye:
The Foundations of Computational Imaging: A signal processing perspective. IEEE Signal Process. Mag. 40(5): 40-53 (2023) - [j81]Boah Kim, Jeongsol Kim, Jong Chul Ye:
Task-Agnostic Vision Transformer for Distributed Learning of Image Processing. IEEE Trans. Image Process. 32: 203-218 (2023) - [j80]Yujin Oh, Go Eun Bae, Kyung-Hee Kim, Min-Kyung Yeo, Jong Chul Ye:
Multi-Scale Hybrid Vision Transformer for Learning Gastric Histology: AI-Based Decision Support System for Gastric Cancer Treatment. IEEE J. Biomed. Health Informatics 27(8): 4143-4153 (2023) - [j79]Hyungjin Chung, Eun Sun Lee, Jong Chul Ye:
MR Image Denoising and Super-Resolution Using Regularized Reverse Diffusion. IEEE Trans. Medical Imaging 42(4): 922-934 (2023) - [j78]Sangjoon Park, Jong Chul Ye:
Multi-Task Distributed Learning Using Vision Transformer With Random Patch Permutation. IEEE Trans. Medical Imaging 42(7): 2091-2105 (2023) - [c115]Hyungjin Chung, Jeongsol Kim, Sehui Kim, Jong Chul Ye:
Parallel Diffusion Models of Operator and Image for Blind Inverse Problems. CVPR 2023: 6059-6069 - [c114]Geon Yeong Park, Sangmin Lee, Sang Wan Lee, Jong Chul Ye:
Training Debiased Subnetworks with Contrastive Weight Pruning. CVPR 2023: 7929-7938 - [c113]Hyungjin Chung, Dohoon Ryu, Michael T. McCann, Marc Louis Klasky, Jong Chul Ye:
Solving 3D Inverse Problems Using Pre-Trained 2D Diffusion Models. CVPR 2023: 22542-22551 - [c112]Jaeyoung Huh, Shujaat Khan, Eun Sun Lee, Jong Chul Ye:
Ultrasound Image Quality Control Using Speech-Assisted Switchable CycleGAN. ICASSP 2023: 1-5 - [c111]Suhyeon Lee, Hyungjin Chung, Minyoung Park, Jonghyuk Park, Wi-Sun Ryu, Jong Chul Ye:
Improving 3D Imaging with Pre-Trained Perpendicular 2D Diffusion Models. ICCV 2023: 10676-10686 - [c110]Serin Yang, Hyunmin Hwang, Jong Chul Ye:
Zero-Shot Contrastive Loss for Text-Guided Diffusion Image Style Transfer. ICCV 2023: 22816-22825 - [c109]Michael T. McCann, Hyungjin Chung, Jong Chul Ye, Marc Louis Klasky:
Score-Based Diffusion Models for Bayesian Image Reconstruction. ICIP 2023: 111-115 - [c108]Hyungjin Chung, Jeongsol Kim, Michael Thompson McCann, Marc Louis Klasky, Jong Chul Ye:
Diffusion Posterior Sampling for General Noisy Inverse Problems. ICLR 2023 - [c107]Boah Kim, Yujin Oh, Jong Chul Ye:
Diffusion Adversarial Representation Learning for Self-supervised Vessel Segmentation. ICLR 2023 - [c106]Gihyun Kwon, Jong Chul Ye:
Diffusion-based Image Translation using disentangled style and content representation. ICLR 2023 - [c105]Beomsu Kim, Jong Chul Ye:
Denoising MCMC for Accelerating Diffusion-Based Generative Models. ICML 2023: 16955-16977 - [c104]Sangyun Lee, Beomsu Kim, Jong Chul Ye:
Minimizing Trajectory Curvature of ODE-based Generative Models. ICML 2023: 18957-18973 - [c103]Hyungjin Chung, Jeongsol Kim, Jong Chul Ye:
Direct Diffusion Bridge using Data Consistency for Inverse Problems. NeurIPS 2023 - [c102]Geon Yeong Park, Jeongsol Kim, Beomsu Kim, Sang Wan Lee, Jong Chul Ye:
Energy-Based Cross Attention for Bayesian Context Update in Text-to-Image Diffusion Models. NeurIPS 2023 - [i152]Sangjoon Park, Ik-Jae Lee, Jun Won Kim, Jong Chul Ye:
MS-DINO: Efficient Distributed Training of Vision Transformer Foundation Model in Medical Domain through Masked Sampling. CoRR abs/2301.02064 (2023) - [i151]Gyutaek Oh, Jeong Eun Lee, Jong Chul Ye:
Annealed Score-Based Diffusion Model for MR Motion Artifact Reduction. CoRR abs/2301.03027 (2023) - [i150]Sangyun Lee, Beomsu Kim, Jong Chul Ye:
Minimizing Trajectory Curvature of ODE-based Generative Models. CoRR abs/2301.12003 (2023) - [i149]Kwanyoung Kim, Yujin Oh, Jong Chul Ye:
ZegOT: Zero-shot Segmentation Through Optimal Transport of Text Prompts. CoRR abs/2301.12171 (2023) - [i148]Soobin Um, Jong Chul Ye:
Don't Play Favorites: Minority Guidance for Diffusion Models. CoRR abs/2301.12334 (2023) - [i147]Hyeonho Jeong, Gihyun Kwon, Jong Chul Ye:
Zero-shot Generation of Coherent Storybook from Plain Text Story using Diffusion Models. CoRR abs/2302.03900 (2023) - [i146]Jaeyoung Huh, Sangjoon Park, Jeong Eun Lee, Jong Chul Ye:
Improving Medical Speech-to-Text Accuracy with Vision-Language Pre-training Model. CoRR abs/2303.00091 (2023) - [i145]Hyungjin Chung, Suhyeon Lee, Jong Chul Ye:
Fast Diffusion Sampler for Inverse Problems by Geometric Decomposition. CoRR abs/2303.05754 (2023) - [i144]Suhyeon Lee, Hyungjin Chung, Minyoung Park, Jonghyuk Park, Wi-Sun Ryu, Jong Chul Ye:
Improving 3D Imaging with Pre-Trained Perpendicular 2D Diffusion Models. CoRR abs/2303.08440 (2023) - [i143]Serin Yang, Hyunmin Hwang, Jong Chul Ye:
Zero-Shot Contrastive Loss for Text-Guided Diffusion Image Style Transfer. CoRR abs/2303.08622 (2023) - [i142]Inhwa Han, Serin Yang, Taesung Kwon, Jong Chul Ye:
Highly Personalized Text Embedding for Image Manipulation by Stable Diffusion. CoRR abs/2303.08767 (2023) - [i141]Suhyeon Lee, Won Jun Kim, Jong Chul Ye:
LLM Itself Can Read and Generate CXR Images. CoRR abs/2305.11490 (2023) - [i140]Beomsu Kim, Gihyun Kwon, Kwanyoung Kim, Jong Chul Ye:
Unpaired Image-to-Image Translation via Neural Schrödinger Bridge. CoRR abs/2305.15086 (2023) - [i139]Sangmin Lee, Jong Chul Ye:
Data Topology-Dependent Upper Bounds of Neural Network Widths. CoRR abs/2305.16375 (2023) - [i138]Hyungjin Chung, Jeongsol Kim, Jong Chul Ye:
Direct Diffusion Bridge using Data Consistency for Inverse Problems. CoRR abs/2305.19809 (2023) - [i137]Gyutaek Oh, Won-Jin Moon, Jong Chul Ye:
Unpaired Deep Learning for Pharmacokinetic Parameter Estimation from Dynamic Contrast-Enhanced MRI. CoRR abs/2306.04339 (2023) - [i136]Gihyun Kwon, Jong Chul Ye:
Improving Diffusion-based Image Translation using Asymmetric Gradient Guidance. CoRR abs/2306.04396 (2023) - [i135]Geon Yeong Park, Jeongsol Kim, Beomsu Kim, Sang Wan Lee, Jong Chul Ye:
Energy-Based Cross Attention for Bayesian Context Update in Text-to-Image Diffusion Models. CoRR abs/2306.09869 (2023) - [i134]Walter H. L. Pinaya, Mark S. Graham, Eric Kerfoot, Petru-Daniel Tudosiu, Jessica Dafflon, Virginia Fernandez, Pedro Sanchez, Julia Wolleb, Pedro F. Da Costa, Ashay Patel, Hyungjin Chung, Can Zhao, Wei Peng, Zelong Liu, XueYan Mei, Oeslle Lucena, Jong Chul Ye, Sotirios A. Tsaftaris, Prerna Dogra, Andrew Feng, Marc Modat, Parashkev Nachev, Sébastien Ourselin, M. Jorge Cardoso:
Generative AI for Medical Imaging: extending the MONAI Framework. CoRR abs/2307.15208 (2023) - [i133]Boah Kim, Yujin Oh, Bradford J. Wood, Ronald M. Summers, Jong Chul Ye:
C-DARL: Contrastive diffusion adversarial representation learning for label-free blood vessel segmentation. CoRR abs/2308.00193 (2023) - [i132]Riccardo Barbano, Alexander Denker, Hyungjin Chung, Tae-Hoon Roh, Simon Arrdige, Peter Maass, Bangti Jin, Jong Chul Ye:
Steerable Conditional Diffusion for Out-of-Distribution Adaptation in Imaging Inverse Problems. CoRR abs/2308.14409 (2023) - [i131]Hyeonho Jeong, Jong Chul Ye:
Ground-A-Video: Zero-shot Grounded Video Editing using Text-to-image Diffusion Models. CoRR abs/2310.01107 (2023) - [i130]Hyungjin Chung, Jong Chul Ye, Peyman Milanfar, Mauricio Delbracio:
Prompt-tuning latent diffusion models for inverse problems. CoRR abs/2310.01110 (2023) - [i129]Jangho Park, Gihyun Kwon, Jong Chul Ye:
ED-NeRF: Efficient Text-Guided Editing of 3D Scene using Latent Space NeRF. CoRR abs/2310.02712 (2023) - [i128]Gyutaek Oh, Baekgyu Choi, Inkyung Jung, Jong Chul Ye:
scHyena: Foundation Model for Full-Length Single-Cell RNA-Seq Analysis in Brain. CoRR abs/2310.02713 (2023) - [i127]Yujin Oh, Sangjoon Park, Hwa Kyung Byun, Jin Sung Kim, Jong Chul Ye:
LLM-driven Multimodal Target Volume Contouring in Radiation Oncology. CoRR abs/2311.01908 (2023) - [i126]Jeongsol Kim, Geon Yeong Park, Hyungjin Chung, Jong Chul Ye:
Regularization by Texts for Latent Diffusion Inverse Solvers. CoRR abs/2311.15658 (2023) - [i125]Kwanyoung Kim, Yujin Oh, Sangjoon Park, Hwa Kyung Byun, Jin Sung Kim, Yong Bae Kim, Jong Chul Ye:
RO-LLaMA: Generalist LLM for Radiation Oncology via Noise Augmentation and Consistency Regularization. CoRR abs/2311.15876 (2023) - [i124]Hyelin Nam, Gihyun Kwon, Geon Yeong Park, Jong Chul Ye:
Contrastive Denoising Score for Text-guided Latent Diffusion Image Editing. CoRR abs/2311.18608 (2023) - [i123]Hyeonho Jeong, Geon Yeong Park, Jong Chul Ye:
VMC: Video Motion Customization using Temporal Attention Adaption for Text-to-Video Diffusion Models. CoRR abs/2312.00845 (2023) - [i122]Jaeyoung Huh, Hyun Jeong Park, Jong Chul Ye:
Breast Ultrasound Report Generation using LangChain. CoRR abs/2312.03013 (2023) - [i121]Chanyong Jung, Gihyun Kwon, Jong Chul Ye:
Patch-wise Graph Contrastive Learning for Image Translation. CoRR abs/2312.08223 (2023) - 2022
- [j77]Sangjoon Park, Gwanghyun Kim, Yujin Oh, Joon Beom Seo, Sang Min Lee, Jin Hwan Kim, Sungjun Moon, Jae-Kwang Lim, Jong Chul Ye:
Multi-task vision transformer using low-level chest X-ray feature corpus for COVID-19 diagnosis and severity quantification. Medical Image Anal. 75: 102299 (2022) - [j76]Gyutaek Oh, Hyokyoung Bae, Hyun-Seo Ahn, Sung-Hong Park, Won-Jin Moon, Jong Chul Ye:
Unsupervised resolution-agnostic quantitative susceptibility mapping using adaptive instance normalization. Medical Image Anal. 79: 102477 (2022) - [j75]Hyungjin Chung, Jong Chul Ye:
Score-based diffusion models for accelerated MRI. Medical Image Anal. 80: 102479 (2022) - [j74]Eunju Cha, Chanseok Lee, Mooseok Jang, Jong Chul Ye:
DeepPhaseCut: Deep Relaxation in Phase for Unsupervised Fourier Phase Retrieval. IEEE Trans. Pattern Anal. Mach. Intell. 44(12): 9931-9943 (2022) - [j73]Erik Meijering, Vince D. Calhoun, Gloria Menegaz, David J. Miller, Jong Chul Ye:
Deep Learning in Biological Image and Signal Processing [From the Guest Editors]. IEEE Signal Process. Mag. 39(2): 24-26 (2022) - [j72]Mehmet Akçakaya, Burhaneddin Yaman, Hyungjin Chung, Jong Chul Ye:
Unsupervised Deep Learning Methods for Biological Image Reconstruction and Enhancement: An overview from a signal processing perspective. IEEE Signal Process. Mag. 39(2): 28-44 (2022) - [j71]Shujaat Khan, Jaeyoung Huh, Jong Chul Ye:
Switchable and Tunable Deep Beamformer Using Adaptive Instance Normalization for Medical Ultrasound. IEEE Trans. Medical Imaging 41(2): 266-278 (2022) - [j70]Abdul Wahab, Shujaat Khan, Imran Naseem, Jong Chul Ye:
Performance Analysis of Fractional Learning Algorithms. IEEE Trans. Signal Process. 70: 5164-5177 (2022) - [c101]Inhwa Han, Boah Kim, Eung-Yeop Kim, Jong Chul Ye:
Contrast Agent Removal for Brain CT Angiography Using Switchable CycleGAN with AdaIN and Histogram Equalization. AICAS 2022: 262-265 - [c100]Kwanyoung Kim, Taesung Kwon, Jong Chul Ye:
Noise Distribution Adaptive Self-Supervised Image Denoising using Tweedie Distribution and Score Matching. CVPR 2022: 1998-2006 - [c99]Gwanghyun Kim, Taesung Kwon, Jong Chul Ye:
DiffusionCLIP: Text-Guided Diffusion Models for Robust Image Manipulation. CVPR 2022: 2416-2425 - [c98]Hyungjin Chung, Byeongsu Sim, Jong Chul Ye:
Come-Closer-Diffuse-Faster: Accelerating Conditional Diffusion Models for Inverse Problems through Stochastic Contraction. CVPR 2022: 12403-12412 - [c97]Gihyun Kwon, Jong Chul Ye:
CLIPstyler: Image Style Transfer with a Single Text Condition. CVPR 2022: 18041-18050 - [c96]Chanyong Jung, Gihyun Kwon, Jong Chul Ye:
Exploring Patch-wise Semantic Relation for Contrastive Learning in Image-to-Image Translation Tasks. CVPR 2022: 18239-18248 - [c95]Boah Kim, Inhwa Han, Jong Chul Ye:
DiffuseMorph: Unsupervised Deformable Image Registration Using Diffusion Model. ECCV (31) 2022: 347-364 - [c94]Yujin Oh, Jong Chul Ye:
CXR Segmentation by AdaIN-Based Domain Adaptation and Knowledge Distillation. ECCV (21) 2022: 627-643 - [c93]Jaeyoung Huh, Shujaat Khan, Jong Chul Ye:
Multi-Domain Unpaired Ultrasound Image Artifact Removal Using a Single Convolutional Neural Network. ICASSP 2022: 1206-1210 - [c92]Boah Kim, Jong Chul Ye:
Diffusion Deformable Model for 4D Temporal Medical Image Generation. MICCAI (1) 2022: 539-548 - [c91]Chanyong Jung, Joonhyung Lee, Sunkyoung You, Jong Chul Ye:
Patch-Wise Deep Metric Learning for Unsupervised Low-Dose CT Denoising. MICCAI (6) 2022: 634-643 - [c90]Hyungjin Chung, Byeongsu Sim, Dohoon Ryu, Jong Chul Ye:
Improving Diffusion Models for Inverse Problems using Manifold Constraints. NeurIPS 2022 - [c89]Beomsu Kim, Jong Chul Ye:
Energy-Based Contrastive Learning of Visual Representations. NeurIPS 2022 - [e3]Marc Louis Klasky, Jong Chul Ye:
Machine Learning for Scientific Imaging 2022, online, January 15-26, 2022. Society for Imaging Science and Technology 2022 [contents] - [i120]Beomsu Kim, Jong Chul Ye:
Energy-Based Contrastive Learning of Visual Representations. CoRR abs/2202.04933 (2022) - [i119]Sangmin Lee, Byeongsu Sim, Jong Chul Ye:
Support Vectors and Gradient Dynamics for Implicit Bias in ReLU Networks. CoRR abs/2202.05510 (2022) - [i118]Sangjoon Park, Gwanghyun Kim, Yujin Oh, Joon Beom Seo, Sang Min Lee, Jin Hwan Kim, Sungjun Moon, Jae-Kwang Lim, Chang Min Park, Jong Chul Ye:
AI can evolve without labels: self-evolving vision transformer for chest X-ray diagnosis through knowledge distillation. CoRR abs/2202.06431 (2022) - [i117]Shujaat Khan, Jaeyoung Huh, Jong Chul Ye:
Phase Aberration Robust Beamformer for Planewave US Using Self-Supervised Learning. CoRR abs/2202.08262 (2022) - [i116]Yujin Oh, Go Eun Bae, Kyung-Hee Kim, Min-Kyung Yeo, Jong Chul Ye:
A hybrid 2-stage vision transformer for AI-assisted 5 class pathologic diagnosis of gastric endoscopic biopsies. CoRR abs/2202.08510 (2022) - [i115]Chanyong Jung, Gihyun Kwon, Jong Chul Ye:
Exploring Patch-wise Semantic Relation for Contrastive Learning in Image-to-Image Translation Tasks. CoRR abs/2203.01532 (2022) - [i114]Gihyun Kwon, Jong Chul Ye:
One-Shot Adaptation of GAN in Just One CLIP. CoRR abs/2203.09301 (2022) - [i113]Hyungjin Chung, Eun Sun Lee, Jong Chul Ye:
MR Image Denoising and Super-Resolution Using Regularized Reverse Diffusion. CoRR abs/2203.12621 (2022) - [i112]Sangjoon Park, Jong Chul Ye:
Multi-Task Distributed Learning using Vision Transformer with Random Patch Permutation. CoRR abs/2204.03500 (2022) - [i111]Beomsu Kim, Jong Chul Ye:
Mitigating Out-of-Distribution Data Density Overestimation in Energy-Based Models. CoRR abs/2205.14817 (2022) - [i110]Hyungjin Chung, Byeongsu Sim, Dohoon Ryu, Jong Chul Ye:
Improving Diffusion Models for Inverse Problems using Manifold Constraints. CoRR abs/2206.00941 (2022) - [i109]Boah Kim, Jong Chul Ye:
Diffusion Deformable Model for 4D Temporal Medical Image Generation. CoRR abs/2206.13295 (2022) - [i108]Chanyong Jung, Joonhyung Lee, Sunkyoung You, Jong Chul Ye:
Patch-wise Deep Metric Learning for Unsupervised Low-Dose CT Denoising. CoRR abs/2207.02377 (2022) - [i107]Sangyun Lee, Hyungjin Chung, Jaehyeon Kim, Jong Chul Ye:
Progressive Deblurring of Diffusion Models for Coarse-to-Fine Image Synthesis. CoRR abs/2207.11192 (2022) - [i106]Dohoon Ryu, Jong Chul Ye:
Pyramidal Denoising Diffusion Probabilistic Models. CoRR abs/2208.01864 (2022) - [i105]Sangjoon Park, Eun Sun Lee, Jeong Eun Lee, Jong Chul Ye:
Alternating Cross-attention Vision-Language Model for Efficient Learning with Medical Image and Report without Curation. CoRR abs/2208.05140 (2022) - [i104]Sangmin Lee, Byeongsu Sim, Jong Chul Ye:
Magnitude and Angle Dynamics in Training Single ReLU Neurons. CoRR abs/2209.13394 (2022) - [i103]Boah Kim, Yujin Oh, Jong Chul Ye:
Diffusion Adversarial Representation Learning for Self-supervised Vessel Segmentation. CoRR abs/2209.14566 (2022) - [i102]Beomsu Kim, Jong Chul Ye:
Denoising MCMC for Accelerating Diffusion-Based Generative Models. CoRR abs/2209.14593 (2022) - [i101]Hyungjin Chung, Jeongsol Kim, Michael T. McCann, Marc Louis Klasky, Jong Chul Ye:
Diffusion Posterior Sampling for General Noisy Inverse Problems. CoRR abs/2209.14687 (2022) - [i100]Gihyun Kwon, Jong Chul Ye:
Diffusion-based Image Translation using Disentangled Style and Content Representation. CoRR abs/2209.15264 (2022) - [i99]Geon Yeong Park, Sangmin Lee, Sang Wan Lee, Jong Chul Ye:
Efficient debiasing with contrastive weight pruning. CoRR abs/2210.05247 (2022) - [i98]Geon Yeong Park, Chanyong Jung, Jong Chul Ye, Sang Wan Lee:
Self-supervised debiasing using low rank regularization. CoRR abs/2210.05248 (2022) - [i97]Jinho Chang, Jong Chul Ye:
Molecular Structure-Property Co-Trained Foundation Model for In Silico Chemistry. CoRR abs/2211.10590 (2022) - [i96]Hyungjin Chung, Dohoon Ryu, Michael T. McCann, Marc Louis Klasky, Jong Chul Ye:
Solving 3D Inverse Problems using Pre-trained 2D Diffusion Models. CoRR abs/2211.10655 (2022) - [i95]Hyungjin Chung, Jeongsol Kim, Sehui Kim, Jong Chul Ye:
Parallel Diffusion Models of Operator and Image for Blind Inverse Problems. CoRR abs/2211.10656 (2022) - 2021
- [j69]Boah Kim, Dong Hwan Kim, Seong Ho Park, Jieun Kim, June-Goo Lee, Jong Chul Ye:
CycleMorph: Cycle consistent unsupervised deformable image registration. Medical Image Anal. 71: 102036 (2021) - [j68]Hyungjin Chung, Eunju Cha, Leonard Sunwoo, Jong Chul Ye:
Two-stage deep learning for accelerated 3D time-of-flight MRA without matched training data. Medical Image Anal. 71: 102047 (2021) - [j67]Jawook Gu, Tae Seong Yang, Jong Chul Ye, Dong Hyun Yang:
CycleGAN denoising of extreme low-dose cardiac CT using wavelet-assisted noise disentanglement. Medical Image Anal. 74: 102209 (2021) - [j66]Yoseob Han, Jaeduck Jang, Eunju Cha, Junho Lee, Hyungjin Chung, Myoungho Jeong, Tae-Gon Kim, Byeong Gyu Chae, Hee Goo Kim, Shinae Jun, Sungwoo Hwang, Eunha Lee, Jong Chul Ye:
Deep learning STEM-EDX tomography of nanocrystals. Nat. Mach. Intell. 3(3): 267-274 (2021) - [j65]Hyungjin Chung, Jong Chul Ye:
Reusability report: Feature disentanglement in generating a three-dimensional structure from a two-dimensional slice with sliceGAN. Nat. Mach. Intell. 3(10): 861-863 (2021) - [j64]Jawook Gu, Jong Chul Ye:
AdaIN-Based Tunable CycleGAN for Efficient Unsupervised Low-Dose CT Denoising. IEEE Trans. Computational Imaging 7: 73-85 (2021) - [j63]Hyungjin Chung, Jaeyoung Huh, Geon Kim, YongKeun Park, Jong Chul Ye:
Missing Cone Artifact Removal in ODT Using Unsupervised Deep Learning in the Projection Domain. IEEE Trans. Computational Imaging 7: 747-758 (2021) - [j62]Taesung Kwon, Jong Chul Ye:
Cycle-Free CycleGAN Using Invertible Generator for Unsupervised Low-Dose CT Denoising. IEEE Trans. Computational Imaging 7: 1354-1368 (2021) - [j61]Joonyoung Song, Jaeheon Jeong, Dae-Soon Park, Hyun-Ho Kim, Doo-Chun Seo, Jong Chul Ye:
Unsupervised Denoising for Satellite Imagery Using Wavelet Directional CycleGAN. IEEE Trans. Geosci. Remote. Sens. 59(8): 6823-6839 (2021) - [j60]Eunju Cha, Hyungjin Chung, Eung-Yeop Kim, Jong Chul Ye:
Unpaired Training of Deep Learning tMRA for Flexible Spatio-Temporal Resolution. IEEE Trans. Medical Imaging 40(1): 166-179 (2021) - [j59]DongHun Ryu, Dongmin Ryu, YoonSeok Baek, Hyungjoo Cho, Geon Kim, Young Seo Kim, Yongki Lee, Yoosik Kim, Jong Chul Ye, Hyunseok Min, YongKeun Park:
DeepRegularizer: Rapid Resolution Enhancement of Tomographic Imaging Using Deep Learning. IEEE Trans. Medical Imaging 40(5): 1508-1518 (2021) - [j58]Serin Yang, Eung-Yeop Kim, Jong Chul Ye:
Continuous Conversion of CT Kernel Using Switchable CycleGAN With AdaIN. IEEE Trans. Medical Imaging 40(11): 3015-3029 (2021) - [j57]Gyutaek Oh, Jeong Eun Lee, Jong Chul Ye:
Unpaired MR Motion Artifact Deep Learning Using Outlier-Rejecting Bootstrap Aggregation. IEEE Trans. Medical Imaging 40(11): 3125-3139 (2021) - [j56]Junghyun Lee, Jawook Gu, Jong Chul Ye:
Unsupervised CT Metal Artifact Learning Using Attention-Guided β-CycleGAN. IEEE Trans. Medical Imaging 40(12): 3932-3944 (2021) - [c88]Gihyun Kwon, Jong Chul Ye:
Diagonal Attention and Style-based GAN for Content-Style Disentanglement in Image Generation and Translation. ICCV 2021: 13960-13969 - [c87]Shujaat Khan, Jaeyoung Huh, Jong Chul Ye:
Switchable Deep Beamformer For Ultrasound Imaging Using Adain. ISBI 2021: 677-680 - [c86]Shujaat Khan, Jaeyoung Huh, Jong Chul Ye:
Unsupervised Deep Learning For Accelerated High Quality Echocardiography. ISBI 2021: 1738-1741 - [c85]Shujaat Khan, Jaeyoung Huh, Jong Chul Ye:
Contrast and Resolution Improvement of POCUS Using Self-consistent CycleGAN. DART/FAIR@MICCAI 2021: 158-167 - [c84]Kwanyoung Kim, Jong Chul Ye:
Noise2Score: Tweedie's Approach to Self-Supervised Image Denoising without Clean Images. NeurIPS 2021: 864-874 - [c83]Byung-Hoon Kim, Jong Chul Ye, Jae-Jin Kim:
Learning Dynamic Graph Representation of Brain Connectome with Spatio-Temporal Attention. NeurIPS 2021: 4314-4327 - [c82]Sangjoon Park, Gwanghyun Kim, Jeongsol Kim, Boah Kim, Jong Chul Ye:
Federated Split Task-Agnostic Vision Transformer for COVID-19 CXR Diagnosis. NeurIPS 2021: 24617-24630 - [i94]Sangjoon Park, Gwanghyun Kim, Yujin Oh, Joon Beom Seo, Sang Min Lee, Jin Hwan Kim, Sungjun Moon, Jae-Kwang Lim, Jong Chul Ye:
Vision Transformer for COVID-19 CXR Diagnosis using Chest X-ray Feature Corpus. CoRR abs/2103.07055 (2021) - [i93]Gwanghyun Kim, Sangjoon Park, Yujin Oh, Joon Beom Seo, Sang Min Lee, Jin Hwan Kim, Sungjun Moon, Jae-Kwang Lim, Jong Chul Ye:
Severity Quantification and Lesion Localization of COVID-19 on CXR using Vision Transformer. CoRR abs/2103.07062 (2021) - [i92]Hyungjin Chung, Jaeyoung Huh, Geon Kim, YongKeun Park, Jong Chul Ye:
Unsupervised Missing Cone Deep Learning in Optical Diffraction Tomography. CoRR abs/2103.09022 (2021) - [i91]Gihyun Kwon, Jong Chul Ye:
Diagonal Attention and Style-based GAN for Content-Style Disentanglement in Image Generation and Translation. CoRR abs/2103.16146 (2021) - [i90]Byung-Hoon Kim, Joonyoung Song, Jong Chul Ye, JaeHyun Baek:
PyNET-CA: Enhanced PyNET with Channel Attention for End-to-End Mobile Image Signal Processing. CoRR abs/2104.02895 (2021) - [i89]Yujin Oh, Jong Chul Ye:
Unifying domain adaptation and self-supervised learning for CXR segmentation via AdaIN-based knowledge distillation. CoRR abs/2104.05892 (2021) - [i88]Sangjoon Park, Gwanghyun Kim, Yujin Oh, Joon Beom Seo, Sang Min Lee, Jin Hwan Kim, Sungjun Moon, Jae-Kwang Lim, Jong Chul Ye:
Vision Transformer using Low-level Chest X-ray Feature Corpus for COVID-19 Diagnosis and Severity Quantification. CoRR abs/2104.07235 (2021) - [i87]Taesung Kwon, Jong Chul Ye:
Cycle-free CycleGAN using Invertible Generator for Unsupervised Low-Dose CT Denoising. CoRR abs/2104.08538 (2021) - [i86]Hyoungjun Park, Myeongsu Na, Bumju Kim, Soohyun Park, Ki Hean Kim, Sunghoe Chang, Jong Chul Ye:
Axial-to-lateral super-resolution for 3D fluorescence microscopy using unsupervised deep learning. CoRR abs/2104.09435 (2021) - [i85]Hyungjin Chung, Jong Chul Ye:
Feature Disentanglement in generating three-dimensional structure from two-dimensional slice with sliceGAN. CoRR abs/2105.00194 (2021) - [i84]Hyungjin Chung, Jaehyun Kim, Jeong Hee Yoon, Jeong Min Lee, Jong Chul Ye:
Simultaneous super-resolution and motion artifact removal in diffusion-weighted MRI using unsupervised deep learning. CoRR abs/2105.00240 (2021) - [i83]Mehmet Akçakaya, Burhaneddin Yaman, Hyungjin Chung, Jong Chul Ye:
Unsupervised Deep Learning Methods for Biological Image Reconstruction. CoRR abs/2105.08040 (2021) - [i82]Byung-Hoon Kim, Jong Chul Ye, Jae-Jin Kim:
Learning Dynamic Graph Representation of Brain Connectome with Spatio-Temporal Attention. CoRR abs/2105.13495 (2021) - [i81]Kwanyoung Kim, Jong Chul Ye:
Noise2Score: Tweedie's Approach to Self-Supervised Image Denoising without Clean Images. CoRR abs/2106.07009 (2021) - [i80]Joonyoung Song, Jong Chul Ye:
Federated CycleGAN for Privacy-Preserving Image-to-Image Translation. CoRR abs/2106.09246 (2021) - [i79]Ruud J. G. van Sloun, Jong Chul Ye, Yonina C. Eldar:
Deep Learning for Ultrasound Beamforming. CoRR abs/2109.11431 (2021) - [i78]Gwanghyun Kim, Jong Chul Ye:
DiffusionCLIP: Text-guided Image Manipulation Using Diffusion Models. CoRR abs/2110.02711 (2021) - [i77]Abdul Wahab, Shujaat Khan, Imran Naseem, Jong Chul Ye:
Performance Analysis of Fractional Learning Algorithms. CoRR abs/2110.05201 (2021) - [i76]Hyungjin Chung, Jong Chul Ye:
Score-based diffusion models for accelerated MRI. CoRR abs/2110.05243 (2021) - [i75]Sangjoon Park, Gwanghyun Kim, Jeongsol Kim, Boah Kim, Jong Chul Ye:
Federated Split Vision Transformer for COVID-19 CXR Diagnosis using Task-Agnostic Training. CoRR abs/2111.01338 (2021) - [i74]Gihyun Kwon, Jong Chul Ye:
CLIPstyler: Image Style Transfer with a Single Text Condition. CoRR abs/2112.00374 (2021) - [i73]Jaeyoung Huh, Shujaat Khan, Sungjin Choi, Dongkuk Shin, Eun Sun Lee, Jong Chul Ye:
Tunable Image Quality Control of 3-D Ultrasound using Switchable CycleGAN. CoRR abs/2112.02896 (2021) - [i72]Kwanyoung Kim, Taesung Kwon, Jong Chul Ye:
Noise Distribution Adaptive Self-Supervised Image Denoising using Tweedie Distribution and Score Matching. CoRR abs/2112.03696 (2021) - [i71]Hyungjin Chung, Byeongsu Sim, Jong Chul Ye:
Come-Closer-Diffuse-Faster: Accelerating Conditional Diffusion Models for Inverse Problems through Stochastic Contraction. CoRR abs/2112.05146 (2021) - [i70]Boah Kim, Inhwa Han, Jong Chul Ye:
DiffuseMorph: Unsupervised Deformable Image Registration Along Continuous Trajectory Using Diffusion Models. CoRR abs/2112.05149 (2021) - 2020
- [j55]Mi-Sun Kang, Eunju Cha, Eunhee Kang, Jong Chul Ye, Nam-Gu Her, Jeong-Woo Oh, Do-Hyun Nam, Myoung-Hee Kim, Sejung Yang:
Accuracy improvement of quantification information using super-resolution with convolutional neural network for microscopy images. Biomed. Signal Process. Control. 58: 101846 (2020) - [j54]Vishal Monga, Scott T. Acton, Abd-Krim Seghouane, Arrate Muñoz-Barrutia, Jong Chul Ye:
Editorial: Introduction to the Issue on Domain Enriched Learning for Medical Imaging. IEEE J. Sel. Top. Signal Process. 14(6): 1068-1071 (2020) - [j53]Eunju Cha, Gyutaek Oh, Jong Chul Ye:
Geometric Approaches to Increase the Expressivity of Deep Neural Networks for MR Reconstruction. IEEE J. Sel. Top. Signal Process. 14(6): 1292-1305 (2020) - [j52]Dongwook Lee, Won-Jin Moon, Jong Chul Ye:
Assessing the importance of magnetic resonance contrasts using collaborative generative adversarial networks. Nat. Mach. Intell. 2(1): 34-42 (2020) - [j51]Ge Wang, Jong Chul Ye, Bruno De Man:
Deep learning for tomographic image reconstruction. Nat. Mach. Intell. 2(12): 737-748 (2020) - [j50]Saiprasad Ravishankar, Jong Chul Ye, Jeffrey A. Fessler:
Image Reconstruction: From Sparsity to Data-Adaptive Methods and Machine Learning. Proc. IEEE 108(1): 86-109 (2020) - [j49]Byeongsu Sim, Gyutaek Oh, Jeongsol Kim, Chanyong Jung, Jong Chul Ye:
Optimal Transport Driven CycleGAN for Unsupervised Learning in Inverse Problems. SIAM J. Imaging Sci. 13(4): 2281-2306 (2020) - [j48]Mathews Jacob, Jong Chul Ye, Leslie Ying, Mariya Doneva:
Computational MRI: Compressive Sensing and Beyond [From the Guest Editors]. IEEE Signal Process. Mag. 37(1): 21-23 (2020) - [j47]Mathews Jacob, Merry P. Mani, Jong Chul Ye:
Structured Low-Rank Algorithms: Theory, Magnetic Resonance Applications, and Links to Machine Learning. IEEE Signal Process. Mag. 37(1): 54-68 (2020) - [j46]Sungjun Lim, Hyoungjun Park, Sang-Eun Lee, Sunghoe Chang, Byeongsu Sim, Jong Chul Ye:
CycleGAN With a Blur Kernel for Deconvolution Microscopy: Optimal Transport Geometry. IEEE Trans. Computational Imaging 6: 1127-1138 (2020) - [j45]Gyutaek Oh, Byeongsu Sim, Hyungjin Chung, Leonard Sunwoo, Jong Chul Ye:
Unpaired Deep Learning for Accelerated MRI Using Optimal Transport Driven CycleGAN. IEEE Trans. Computational Imaging 6: 1285-1296 (2020) - [j44]Boah Kim, Jong Chul Ye:
Mumford-Shah Loss Functional for Image Segmentation With Deep Learning. IEEE Trans. Image Process. 29: 1856-1866 (2020) - [j43]Yoseob Han, Leonard Sunwoo, Jong Chul Ye:
k-Space Deep Learning for Accelerated MRI. IEEE Trans. Medical Imaging 39(2): 377-386 (2020) - [j42]Jaejun Yoo, Sohail Sabir, Duchang Heo, Kee Hyun Kim, Abdul Wahab, Yoonseok Choi, Seul-I Lee, Eun Young Chae, Hak Hee Kim, Young Min Bae, Young-Wook Choi, Seungryong Cho, Jong Chul Ye:
Deep Learning Diffuse Optical Tomography. IEEE Trans. Medical Imaging 39(4): 877-887 (2020) - [j41]Yujin Oh, Sangjoon Park, Jong Chul Ye:
Deep Learning COVID-19 Features on CXR Using Limited Training Data Sets. IEEE Trans. Medical Imaging 39(8): 2688-2700 (2020) - [j40]Yoseob Han, Junyoung Kim, Jong Chul Ye:
Differentiated Backprojection Domain Deep Learning for Conebeam Artifact Removal. IEEE Trans. Medical Imaging 39(11): 3571-3582 (2020) - [c81]Kai Zhang, Shuhang Gu, Radu Timofte, Taizhang Shang, Qiuju Dai, Shengchen Zhu, Tong Yang, Yandong Guo, Younghyun Jo, Sejong Yang, Seon Joo Kim, Lin Zha, Jiande Jiang, Xinbo Gao, Wen Lu, Jing Liu, Kwangjin Yoon, Taegyun Jeon, Kazutoshi Akita, Takeru Ooba, Norimichi Ukita, Zhipeng Luo, Yuehan Yao, Zhenyu Xu, Dongliang He, Wenhao Wu, Yukang Ding, Chao Li, Fu Li, Shilei Wen, Jianwei Li, Fuzhi Yang, Huan Yang, Jianlong Fu, Byung-Hoon Kim, JaeHyun Baek, Jong Chul Ye, Yuchen Fan, Thomas S. Huang, Junyeop Lee, Bokyeung Lee, Jungki Min, Gwantae Kim, Kanghyu Lee, Jaihyun Park, Mykola Mykhailych, Haoyu Zhong, Yukai Shi, Xiaojun Yang, Zhijing Yang, Liang Lin, Tongtong Zhao, Jinjia Peng, Huibing Wang, Zhi Jin, Jiahao Wu, Yifu Chen, Chenming Shang, Huanrong Zhang, Jeongki Min, Hrishikesh P. S, Densen Puthussery, C. V. Jiji:
NTIRE 2020 Challenge on Perceptual Extreme Super-Resolution: Methods and Results. CVPR Workshops 2020: 2045-2057 - [c80]Andrey Ignatov, Radu Timofte, Zhilu Zhang, Ming Liu, Haolin Wang, Wangmeng Zuo, Jiawei Zhang, Ruimao Zhang, Zhanglin Peng, Sijie Ren, Linhui Dai, Xiaohong Liu, Chengqi Li, Jun Chen, Yuichi Ito, Bhavya Vasudeva, Puneesh Deora, Umapada Pal, Zhenyu Guo, Yu Zhu, Tian Liang, Chenghua Li, Cong Leng, Zhihong Pan, Baopu Li, Byung-Hoon Kim, Joonyoung Song, Jong Chul Ye, JaeHyun Baek, Magauiya Zhussip, Yeskendir Koishekenov, Hwechul Cho Ye, Xin Liu, Xueying Hu, Jun Jiang, Jinwei Gu, Kai Li, Pengliang Tang, Bingxin Hou:
AIM 2020 Challenge on Learned Image Signal Processing Pipeline. ECCV Workshops (3) 2020: 152-170 - [c79]Byung-Hoon Kim, Joonyoung Song, Jong Chul Ye, JaeHyun Baek:
PyNET-CA: Enhanced PyNET with Channel Attention for End-to-End Mobile Image Signal Processing. ECCV Workshops (3) 2020: 202-212 - [c78]Byeongsu Sim, Gyutaek Oh, Jong Chul Ye:
Optimal Transport Structure of CycleGAN for Unsupervised Learning for Inverse Problems. ICASSP 2020: 8644-8647 - [c77]Sangjoon Park, Jong Chul Ye:
Unsupervised Cone-Beam Artifact Removal Using CycleGAN and Spectral Blending for Adaptive Radiotherapy. ISBI 2020: 638-641 - [c76]Junyoung Kim, Yoseob Han, Jong Chul Ye:
Cone-Angle Artifact Removal Using Differentiated Backprojection Domain Deep Learning. ISBI 2020: 642-645 - [c75]Joonhyung Lee, Hyunjong Kim, Hyungjin Chung, Jong Chul Ye:
Deep Learning Fast MRI Using Channel Attention in Magnitude Domain. ISBI 2020: 917-920 - [c74]Gyutaek Oh, Byeongsu Sim, Jong Chul Ye:
Unsupervised Learning for Compressed Sensing MRI Using Cyclegan. ISBI 2020: 1082-1085 - [e2]Farah Deeba, Patricia Johnson, Tobias Würfl, Jong Chul Ye:
Machine Learning for Medical Image Reconstruction - Third International Workshop, MLMIR 2020, Held in Conjunction with MICCAI 2020, Lima, Peru, October 8, 2020, Proceedings. Lecture Notes in Computer Science 12450, Springer 2020, ISBN 978-3-030-61597-0 [contents] - [i69]Byung-Hoon Kim, Jong Chul Ye:
Understanding Graph Isomorphism Network for Brain MR Functional Connectivity Analysis. CoRR abs/2001.03690 (2020) - [i68]Joonyoung Song, Jae-Heon Jeong, Dae-Soon Park, Hyun-Ho Kim, Doo-Chun Seo, Jong Chul Ye:
Unsupervised Denoising for Satellite Imagery using Wavelet Subband CycleGAN. CoRR abs/2002.09847 (2020) - [i67]Eunju Cha, Gyutaek Oh, Jong Chul Ye:
Geometric Approaches to Increase the Expressivity of Deep Neural Networks for MR Reconstruction. CoRR abs/2003.07740 (2020) - [i66]Eunju Cha, Hyungjin Chung, Eung-Yeop Kim, Jong Chul Ye:
Unsupervised Deep Learning for MR Angiography with Flexible Temporal Resolution. CoRR abs/2003.13096 (2020) - [i65]Yujin Oh, Sangjoon Park, Jong Chul Ye:
Deep Learning COVID-19 Features on CXR using Limited Training Data Sets. CoRR abs/2004.05758 (2020) - [i64]Kai Zhang, Shuhang Gu, Radu Timofte, Taizhang Shang, Qiuju Dai, Shengchen Zhu, Tong Yang, Yandong Guo, Younghyun Jo, Sejong Yang, Seon Joo Kim, Lin Zha, Jiande Jiang, Xinbo Gao, Wen Lu, Jing Liu, Kwangjin Yoon, Taegyun Jeon, Kazutoshi Akita, Takeru Ooba, Norimichi Ukita, Zhipeng Luo, Yuehan Yao, Zhenyu Xu, Dongliang He, Wenhao Wu, Yukang Ding, Chao Li, Fu Li, Shilei Wen, Jianwei Li, Fuzhi Yang, Huan Yang, Jianlong Fu, Byung-Hoon Kim, JaeHyun Baek, Jong Chul Ye, Yuchen Fan, Thomas S. Huang, Junyeop Lee, Bokyeung Lee, Jungki Min, Gwantae Kim, Kanghyu Lee, Jaihyun Park, Mykola Mykhailych, Haoyu Zhong, Yukai Shi, Xiaojun Yang, Zhijing Yang, Liang Lin, Tongtong Zhao, Jinjia Peng, Huibing Wang, Zhi Jin, Jiahao Wu, Yifu Chen, Chenming Shang, Huanrong Zhang, Jeongki Min, Hrishikesh P. S, Densen Puthussery, C. V. Jiji:
NTIRE 2020 Challenge on Perceptual Extreme Super-Resolution: Methods and Results. CoRR abs/2005.01056 (2020) - [i63]Shujaat Khan, Jaeyoung Huh, Jong Chul Ye:
Pushing the Limit of Unsupervised Learning for Ultrasound Image Artifact Removal. CoRR abs/2006.14773 (2020) - [i62]Junghyun Lee, Jawook Gu, Jong Chul Ye:
Unsupervised CT Metal Artifact Learning using Attention-guided beta-CycleGAN. CoRR abs/2007.03480 (2020) - [i61]Jaeyoung Huh, Shujaat Khan, Jong Chul Ye:
OT-driven Multi-Domain Unsupervised Ultrasound Image Artifact Removal using a Single CNN. CoRR abs/2007.05205 (2020) - [i60]Hyungjin Chung, Eunju Cha, Leonard Sunwoo, Jong Chul Ye:
Two-Stage Deep Learning for Accelerated 3D Time-of-Flight MRA without Matched Training Data. CoRR abs/2008.01362 (2020) - [i59]Jawook Gu, Jong Chul Ye:
AdaIN-Switchable CycleGAN for Efficient Unsupervised Low-Dose CT Denoising. CoRR abs/2008.05753 (2020) - [i58]Boah Kim, Dong Hwan Kim, Seong Ho Park, Jieun Kim, June-Goo Lee, Jong Chul Ye:
CycleMorph: Cycle Consistent Unsupervised Deformable Image Registration. CoRR abs/2008.05772 (2020) - [i57]Gyutaek Oh, Byeongsu Sim, Hyungjin Chung, Leonard Sunwoo, Jong Chul Ye:
Unpaired Deep Learning for Accelerated MRI using Optimal Transport Driven CycleGAN. CoRR abs/2008.12967 (2020) - [i56]Shujaat Khan, Jaeyoung Huh, Jong Chul Ye:
Switchable Deep Beamformer. CoRR abs/2008.13646 (2020) - [i55]Andrey Ignatov, Radu Timofte, Zhilu Zhang, Ming Liu, Haolin Wang, Wangmeng Zuo, Jiawei Zhang, Ruimao Zhang, Zhanglin Peng, Sijie Ren, Linhui Dai, Xiaohong Liu, Chengqi Li, Jun Chen, Yuichi Ito, Bhavya Vasudeva, Puneesh Deora, Umapada Pal, Zhenyu Guo, Yu Zhu, Tian Liang, Chenghua Li, Cong Leng, Zhihong Pan, Baopu Li, Byung-Hoon Kim, Joonyoung Song, Jong Chul Ye, JaeHyun Baek, Magauiya Zhussip, Yeskendir Koishekenov, Hwechul Cho, Xin Liu, Xueying Hu, Jun Jiang, Jinwei Gu, Kai Li, Pengliang Tang, Bingxin Hou:
AIM 2020 Challenge on Learned Image Signal Processing Pipeline. CoRR abs/2011.04994 (2020) - [i54]Gyutaek Oh, Jeong Eun Lee, Jong Chul Ye:
Unsupervised MR Motion Artifact Deep Learning using Outlier-Rejecting Bootstrap Aggregation. CoRR abs/2011.06337 (2020) - [i53]Eunju Cha, Chanseok Lee, Mooseok Jang, Jong Chul Ye:
DeepPhaseCut: Deep Relaxation in Phase for Unsupervised Fourier Phase Retrieval. CoRR abs/2011.10475 (2020) - [i52]Serin Yang, Eung-Yeop Kim, Jong Chul Ye:
Continuous Conversion of CT Kernel using Switchable CycleGAN with AdaIN. CoRR abs/2011.13150 (2020) - [i51]Gyutaek Oh, Hyokyoung Bae, Hyun-Seo Ahn, Sung-Hong Park, Jong Chul Ye:
CycleQSM: Unsupervised QSM Deep Learning using Physics-Informed CycleGAN. CoRR abs/2012.03842 (2020)
2010 – 2019
- 2019
- [j39]Yeo Hun Yoon, Shujaat Khan, Jaeyoung Huh, Jong Chul Ye:
Efficient B-Mode Ultrasound Image Reconstruction From Sub-Sampled RF Data Using Deep Learning. IEEE Trans. Medical Imaging 38(2): 325-336 (2019) - [c73]Dongwook Lee, Junyoung Kim, Won-Jin Moon, Jong Chul Ye:
CollaGAN: Collaborative GAN for Missing Image Data Imputation. CVPR 2019: 2487-2496 - [c72]Jong Chul Ye, Woon Kyoung Sung:
Understanding Geometry of Encoder-Decoder CNNs. ICML 2019: 7064-7073 - [c71]Boah Kim, Jieun Kim, June-Goo Lee, Dong Hwan Kim, Seong Ho Park, Jong Chul Ye:
Unsupervised Deformable Image Registration Using Cycle-Consistent CNN. MICCAI (6) 2019: 166-174 - [c70]Sungjun Lim, Jong Chul Ye:
Blind Deconvolution Microscopy Using Cycle Consistent CNN with Explicit PSF Layer. MLMIR@MICCAI 2019: 173-180 - [c69]Shujaat Khan, Jaeyoung Huh, Jong Chul Ye:
Deep Learning-Based Universal Beamformer for Ultrasound Imaging. MICCAI (5) 2019: 619-627 - [e1]Florian Knoll, Andreas Maier, Daniel Rueckert, Jong Chul Ye:
Machine Learning for Medical Image Reconstruction - Second International Workshop, MLMIR 2019, Held in Conjunction with MICCAI 2019, Shenzhen, China, October 17, 2019, Proceedings. Lecture Notes in Computer Science 11905, Springer 2019, ISBN 978-3-030-33842-8 [contents] - [i50]Shujaat Khan, Jaeyoung Huh, Jong Chul Ye:
Universal Deep Beamformer for Variable Rate Ultrasound Imaging. CoRR abs/1901.01706 (2019) - [i49]Jong Chul Ye, Woon Kyoung Sung:
Understanding Geometry of Encoder-Decoder CNNs. CoRR abs/1901.07647 (2019) - [i48]Dongwook Lee, Junyoung Kim, Won-Jin Moon, Jong Chul Ye:
CollaGAN : Collaborative GAN for Missing Image Data Imputation. CoRR abs/1901.09764 (2019) - [i47]Saiprasad Ravishankar, Jong Chul Ye, Jeffrey A. Fessler:
Image Reconstruction: From Sparsity to Data-adaptive Methods and Machine Learning. CoRR abs/1904.02816 (2019) - [i46]Shujaat Khan, Jaeyoung Huh, Jong Chul Ye:
Deep Learning-based Universal Beamformer for Ultrasound Imaging. CoRR abs/1904.02843 (2019) - [i45]Boah Kim, Jong Chul Ye:
Multiphase Level-Set Loss for Semi-Supervised and Unsupervised Segmentation with Deep Learning. CoRR abs/1904.02872 (2019) - [i44]Sungjun Lim, Sang-Eun Lee, Sunghoe Chang, Jong Chul Ye:
Blind Deconvolution Microscopy Using Cycle Consistent CNN with Explicit PSF Layer. CoRR abs/1904.02910 (2019) - [i43]Dongwook Lee, Won-Jin Moon, Jong Chul Ye:
Which Contrast Does Matter? Towards a Deep Understanding of MR Contrast using Collaborative GAN. CoRR abs/1905.04105 (2019) - [i42]Yoseob Han, Junyoung Kim, Jong Chul Ye:
Differentiated Backprojection Domain Deep Learning for Conebeam Artifact Removal. CoRR abs/1906.06854 (2019) - [i41]Eunju Cha, Jaeduck Jang, Junho Lee, Eunha Lee, Jong Chul Ye:
Boosting CNN beyond Label in Inverse Problems. CoRR abs/1906.07330 (2019) - [i40]Boah Kim, Jieun Kim, June-Goo Lee, Dong Hwan Kim, Seong Ho Park, Jong Chul Ye:
Unsupervised Deformable Image Registration Using Cycle-Consistent CNN. CoRR abs/1907.01319 (2019) - [i39]Shujaat Khan, Jaeyoung Huh, Jong Chul Ye:
Adaptive and Compressive Beamforming using Deep Learning for Medical Ultrasound. CoRR abs/1907.10257 (2019) - [i38]Sungjun Lim, Sang-Eun Lee, Sunghoe Chang, Jong Chul Ye:
CycleGAN with a Blur Kernel for Deconvolution Microscopy: Optimal Transport Geometry. CoRR abs/1908.09414 (2019) - [i37]Byeongsu Sim, Gyutaek Oh, Sungjun Lim, Jong Chul Ye:
Optimal Transport, CycleGAN, and Penalized LS for Unsupervised Learning in Inverse Problems. CoRR abs/1909.12116 (2019) - [i36]Mathews Jacob, Merry P. Mani, Jong Chul Ye:
Structured Low-Rank Algorithms: Theory, MR Applications, and Links to Machine Learning. CoRR abs/1910.12162 (2019) - 2018
- [j38]Jaejun Yoo, Abdul Wahab, Jong Chul Ye:
A Mathematical Framework for Deep Learning in Elastic Source Imaging. SIAM J. Appl. Math. 78(5): 2791-2818 (2018) - [j37]Jong Chul Ye, Yoseob Han, Eunju Cha:
Deep Convolutional Framelets: A General Deep Learning Framework for Inverse Problems. SIAM J. Imaging Sci. 11(2): 991-1048 (2018) - [j36]Dongwook Lee, Jaejun Yoo, Sungho Tak, Jong Chul Ye:
Deep Residual Learning for Accelerated MRI Using Magnitude and Phase Networks. IEEE Trans. Biomed. Eng. 65(9): 1985-1995 (2018) - [j35]Kyong Hwan Jin, Jong Chul Ye:
Sparse and Low-Rank Decomposition of a Hankel Structured Matrix for Impulse Noise Removal. IEEE Trans. Image Process. 27(3): 1448-1461 (2018) - [j34]Junhong Min, Kyong Hwan Jin, Michael Unser, Jong Chul Ye:
Grid-Free Localization Algorithm Using Low-Rank Hankel Matrix for Super-Resolution Microscopy. IEEE Trans. Image Process. 27(10): 4771-4786 (2018) - [j33]Kiryung Lee, Yanjun Li, Kyong Hwan Jin, Jong Chul Ye:
Unified Theory for Recovery of Sparse Signals in a General Transform Domain. IEEE Trans. Inf. Theory 64(8): 5457-5477 (2018) - [j32]Ge Wang, Jong Chul Ye, Klaus Mueller, Jeffrey A. Fessler:
Image Reconstruction is a New Frontier of Machine Learning. IEEE Trans. Medical Imaging 37(6): 1289-1296 (2018) - [j31]Eunhee Kang, Won Chang, Jaejun Yoo, Jong Chul Ye:
Deep Convolutional Framelet Denosing for Low-Dose CT via Wavelet Residual Network. IEEE Trans. Medical Imaging 37(6): 1358-1369 (2018) - [j30]Yoseob Han, Jong Chul Ye:
Framing U-Net via Deep Convolutional Framelets: Application to Sparse-View CT. IEEE Trans. Medical Imaging 37(6): 1418-1429 (2018) - [c68]Yeo Hun Yoon, Jong Chul Ye:
Deep Learning for Accelerated Ultrasound Imaging. ICASSP 2018: 6673-6676 - [c67]Eunhee Kang, Jong Chul Ye:
Framelet denoising for low-dose CT using deep learning. ISBI 2018: 311-314 - [c66]Eunju Cha, Eung-Yeop Kim, Jong Chul Ye:
Improved Time-Resolved MRA Using k-Space Deep Learning. MLMIR@MICCAI 2018: 47-54 - [i35]Yoseob Han, Jingu Kang, Jong Chul Ye:
Deep Learning Reconstruction for 9-View Dual Energy CT Baggage Scanner. CoRR abs/1801.01258 (2018) - [i34]Jaejun Yoo, Abdul Wahab, Jong Chul Ye:
A Mathematical Framework for Deep Learning in Elastic Source Imaging. CoRR abs/1802.10055 (2018) - [i33]Dongwook Lee, Jaejun Yoo, Sungho Tak, Jong Chul Ye:
Deep Residual Learning for Accelerated MRI using Magnitude and Phase Networks. CoRR abs/1804.00432 (2018) - [i32]Hyun-Seo Ahn, Sunghong Park, Jong Chul Ye:
Quantitative Susceptibility Map Reconstruction Using Annihilating Filter-based Low-Rank Hankel Matrix Approach. CoRR abs/1804.09396 (2018) - [i31]Yoseob Han, Jong Chul Ye:
k-Space Deep Learning for Accelerated MRI. CoRR abs/1805.03779 (2018) - [i30]Juyoung Lee, Yoseob Han, Jong Chul Ye:
k-Space Deep Learning for Reference-free EPI Ghost Correction. CoRR abs/1806.00153 (2018) - [i29]Eunju Cha, Eung-Yeop Kim, Jong Chul Ye:
k-Space Deep Learning for Parallel MRI: Application to Time-Resolved MR Angiography. CoRR abs/1806.00806 (2018) - [i28]Eunhee Kang, Hyun Jung Koo, Dong Hyun Yang, Joon Bum Seo, Jong Chul Ye:
Cycle Consistent Adversarial Denoising Network for Multiphase Coronary CT Angiography. CoRR abs/1806.09748 (2018) - [i27]Kyong Hwan Jin, Gain Kim, Yusuf Leblebici, Jong Chul Ye, Michael Unser:
Direct Reconstruction of Saturated Samples in Band-Limited OFDM Signals. CoRR abs/1809.07188 (2018) - [i26]Yoseob Han, Jong Chul Ye:
One Network to Solve All ROIs: Deep Learning CT for Any ROI using Differentiated Backprojection. CoRR abs/1810.00500 (2018) - 2017
- [j29]Jaejun Yoo, Younghoon Jung, Mikyoung Lim, Jong Chul Ye, Abdul Wahab:
A Joint Sparse Recovery Framework for Accurate Reconstruction of Inclusions in Elastic Media. SIAM J. Imaging Sci. 10(3): 1104-1138 (2017) - [j28]Jong Chul Ye, Jong Min Kim, Kyong Hwan Jin, Kiryung Lee:
Compressive Sampling Using Annihilating Filter-Based Low-Rank Interpolation. IEEE Trans. Inf. Theory 63(2): 777-801 (2017) - [c65]Radu Timofte, Eirikur Agustsson, Luc Van Gool, Ming-Hsuan Yang, Lei Zhang, Bee Lim, Sanghyun Son, Heewon Kim, Seungjun Nah, Kyoung Mu Lee, Xintao Wang, Yapeng Tian, Ke Yu, Yulun Zhang, Shixiang Wu, Chao Dong, Liang Lin, Yu Qiao, Chen Change Loy, Woong Bae, Jaejun Yoo, Yoseob Han, Jong Chul Ye, Jae-Seok Choi, Munchurl Kim, Yuchen Fan, Jiahui Yu, Wei Han, Ding Liu, Haichao Yu, Zhangyang Wang, Honghui Shi, Xinchao Wang, Thomas S. Huang, Yunjin Chen, Kai Zhang, Wangmeng Zuo, Zhimin Tang, Linkai Luo, Shaohui Li, Min Fu, Lei Cao, Wen Heng, Giang Bui, Truc Le, Ye Duan, Dacheng Tao, Ruxin Wang, Xu Lin, Jianxin Pang, Jinchang Xu, Yu Zhao, Xiangyu Xu, Jin-shan Pan, Deqing Sun, Yujin Zhang, Xibin Song, Yuchao Dai, Xueying Qin, Xuan-Phung Huynh, Tiantong Guo, Hojjat Seyed Mousavi, Tiep Huu Vu, Vishal Monga, Cristóvão Cruz, Karen O. Egiazarian, Vladimir Katkovnik, Rakesh Mehta, Arnav Kumar Jain, Abhinav Agarwalla, Ch V. Sai Praveen, Ruofan Zhou, Hongdiao Wen, Che Zhu, Zhiqiang Xia, Zhengtao Wang, Qi Guo:
NTIRE 2017 Challenge on Single Image Super-Resolution: Methods and Results. CVPR Workshops 2017: 1110-1121 - [c64]Woong Bae, Jaejun Yoo, Jong Chul Ye:
Beyond Deep Residual Learning for Image Restoration: Persistent Homology-Guided Manifold Simplification. CVPR Workshops 2017: 1141-1149 - [c63]Dongwook Lee, Jaejun Yoo, Jong Chul Ye:
Deep residual learning for compressed sensing MRI. ISBI 2017: 15-18 - [i25]Dongwook Lee, Jaejun Yoo, Jong Chul Ye:
Deep artifact learning for compressed sensing and parallel MRI. CoRR abs/1703.01120 (2017) - [i24]Yoseob Han, Jaejun Yoo, Jong Chul Ye:
Deep Learning with Domain Adaptation for Accelerated Projection Reconstruction MR. CoRR abs/1703.01135 (2017) - [i23]Jawook Gu, Jong Chul Ye:
Multi-Scale Wavelet Domain Residual Learning for Limited-Angle CT Reconstruction. CoRR abs/1703.01382 (2017) - [i22]Eunhee Kang, Junhong Min, Jong Chul Ye:
Wavelet Domain Residual Network (WavResNet) for Low-Dose X-ray CT Reconstruction. CoRR abs/1703.01383 (2017) - [i21]Jae Hyun Lim, Jong Chul Ye:
Geometric GAN. CoRR abs/1705.02894 (2017) - [i20]Jong Chul Ye, Yoseob Han:
Deep Convolutional Framelets: A General Deep Learning for Inverse Problems. CoRR abs/1707.00372 (2017) - [i19]Eunhee Kang, Jaejun Yoo, Jong Chul Ye:
Wavelet Residual Network for Low-Dose CT via Deep Convolutional Framelets. CoRR abs/1707.09938 (2017) - [i18]Yoseob Han, Jong Chul Ye:
Framing U-Net via Deep Convolutional Framelets: Application to Sparse-view CT. CoRR abs/1708.08333 (2017) - [i17]Yeo Hun Yoon, Jong Chul Ye:
Deep Learning for Accelerated Ultrasound Imaging. CoRR abs/1710.10006 (2017) - [i16]Jaejun Yoo, Sohail Sabir, Duchang Heo, Kee Hyun Kim, Abdul Wahab, Yoonseok Choi, Seul-I Lee, Eun Young Chae, Hak Hee Kim, Young Min Bae, Young-Wook Choi, Seungryong Cho, Jong Chul Ye:
Deep Learning Can Reverse Photon Migration for Diffuse Optical Tomography. CoRR abs/1712.00912 (2017) - [i15]Yeo Hun Yoon, Shujaat Khan, Jaeyoung Huh, Jong Chul Ye:
Deep Learning in RF Sub-sampled B-mode Ultrasound Imaging. CoRR abs/1712.06096 (2017) - [i14]Yoseob Han, Jawook Gu, Jong Chul Ye:
Deep Learning Interior Tomography for Region-of-Interest Reconstruction. CoRR abs/1712.10248 (2017) - 2016
- [j27]Young-Beom Lee, Jeonghyeon Lee, Sungho Tak, Kangjoo Lee, Duk L. Na, Sang Won Seo, Yong Jeong, Jong Chul Ye:
Sparse SPM: Group Sparse-dictionary learning in SPM framework for resting-state functional connectivity MRI analysis. NeuroImage 125: 1032-1045 (2016) - [j26]Kyong Hwan Jin, Dongwook Lee, Jong Chul Ye:
A General Framework for Compressed Sensing and Parallel MRI Using Annihilating Filter Based Low-Rank Hankel Matrix. IEEE Trans. Computational Imaging 2(4): 480-495 (2016) - [c62]Kyong Hwan Jin, Dongwook Lee, Juyoung Lee, Jong Chul Ye:
Recent progresses of accelerated MRI using annihilating filter-based low-rank interpolation. ICIP 2016: 968-972 - [c61]Kyong Hwan Jin, Jong Chul Ye:
Random impulse noise removal using sparse and low rank decomposition of annihilating filter-based Hankel matrix. ICIP 2016: 3877-3881 - [c60]Eun Ju Cha, Kyong Hwan Jin, Dongwook Lee, Eung-Yeop Kim, Seung Hong Choi, Jong Chul Ye:
Improved temporal resolution of twist imaging using annihilating filter-based low rank Hankel matrix approach. ISBI 2016: 314-317 - [c59]Yoseob Han, Kyong Hwan Jin, Kyung Sang Kim, Jong Chul Ye:
Sparse-view X-ray spectral CT reconstruction using annihilating filter-based low rank hankel matrix approach. ISBI 2016: 573-576 - [c58]Kyong Hwan Jin, Yoseob Han, Jong Chul Ye:
Compressive dynamic aperture B-mode ultrasound imaging using annihilating filter-based low-rank interpolation. ISBI 2016: 1009-1012 - [c57]Juyoung Lee, Kyong Hwan Jin, Jong Chul Ye:
Reference-free EPI Nyquist ghost correction using annihilating filter-based low rank hankel matrix for K-space interpolation. ISBI 2016: 1380-1383 - [c56]Kyong Hwan Jin, Juyoung Lee, Dongwook Lee, Jong Chul Ye:
Sparse and low-rank decomposition of MR artifact images using annihilating filter-based Hankel matrix. ISBI 2016: 1388-1391 - [i13]Eunhee Kang, Junhong Min, Jong Chul Ye:
WaveNet: a deep convolutional neural network using directional wavelets for low-dose X-ray CT reconstruction. CoRR abs/1610.09736 (2016) - [i12]Woong Bae, Jaejun Yoo, Jong Chul Ye:
Beyond Deep Residual Learning for Image Restoration: Persistent Homology-Guided Manifold Simplification. CoRR abs/1611.06345 (2016) - [i11]Yoseob Han, Jaejun Yoo, Jong Chul Ye:
Deep Residual Learning for Compressed Sensing CT Reconstruction via Persistent Homology Analysis. CoRR abs/1611.06391 (2016) - [i10]Kiryung Lee, Yanjun Li, Kyong Hwan Jin, Jong Chul Ye:
Unified Theory for Recovery of Sparse Signals in a General Transform Domain. CoRR abs/1612.09565 (2016) - 2015
- [j25]John Paul Ward, Minji Lee, Jong Chul Ye, Michael Unser:
Interior Tomography Using 1D Generalized Total Variation. Part I: Mathematical Foundation. SIAM J. Imaging Sci. 8(1): 226-247 (2015) - [j24]Minji Lee, Yoseob Han, John Paul Ward, Michael Unser, Jong Chul Ye:
Interior Tomography Using 1D Generalized Total Variation. Part II: Multiscale Implementation. SIAM J. Imaging Sci. 8(4): 2452-2486 (2015) - [j23]Kyong Hwan Jin, Jong Chul Ye:
Annihilating Filter-Based Low-Rank Hankel Matrix Approach for Image Inpainting. IEEE Trans. Image Process. 24(11): 3498-3511 (2015) - [j22]Kyung Sang Kim, Jong Chul Ye, William Worstell, Jinsong Ouyang, Yothin Rakvongthai, Georges El Fakhri, Quanzheng Li:
Sparse-View Spectral CT Reconstruction Using Spectral Patch-Based Low-Rank Penalty. IEEE Trans. Medical Imaging 34(3): 748-760 (2015) - [j21]Ok Kyun Lee, Sungho Tak, Jong Chul Ye:
A Unified Sparse Recovery and Inference Framework for Functional Diffuse Optical Tomography Using Random Effect Model. IEEE Trans. Medical Imaging 34(7): 1602-1615 (2015) - [j20]Jong Chul Ye, Jong Min Kim, Yoram Bresler:
Improving M-SBL for Joint Sparse Recovery Using a Subspace Penalty. IEEE Trans. Signal Process. 63(24): 6595-6605 (2015) - [c55]Kyong Hwan Jin, Dongwook Lee, Jong Chul Ye:
A novel k-space annihilating filter method for unification between compressed sensing and parallel MRI. ISBI 2015: 327-330 - [c54]Huisu Yoon, Dongwook Lee, Juyoung Lee, Seung Hong Choi, Sunghong Park, Jong Chul Ye:
Multiband dynamic compressed sensing. ISBI 2015: 922-925 - [c53]Ok Kyun Lee, Hyeonbae Kang, Mikyoung Lim, Jong Chul Ye:
Joint sparsity recovery method for the EIT problem to reconstruct anomalies. ISBI 2015: 1024-1027 - [c52]Kyong Hwan Jin, Junhong Min, Jong Chul Ye:
Patch based low rank structured matrix completion for accelerated scanning microscopy. ISBI 2015: 1236-1239 - [i9]Jong Chul Ye, Jong Min Kim, Yoram Bresler:
Improving M-SBL for Joint Sparse Recovery using a Subspace Penalty. CoRR abs/1503.06679 (2015) - [i8]Kyong Hwan Jin, Dongwook Lee, Jong Chul Ye:
A general framework for compressed sensing and parallel MRI using annihilating filter based low-rank Hankel matrix. CoRR abs/1504.00532 (2015) - [i7]Kyong Hwan Jin, Jong Chul Ye:
Sparse + Low Rank Decomposition of Annihilating Filter-based Hankel Matrix for Impulse Noise Removal. CoRR abs/1510.05559 (2015) - [i6]Jong Chul Ye, Jong Min Kim, Kyong Hwan Jin, Kiryung Lee:
Compressive Sampling using Annihilating Filter-based Low-Rank Interpolation. CoRR abs/1511.08975 (2015) - 2014
- [j19]Sungho Tak, Jong Chul Ye:
Statistical analysis of fNIRS data: A comprehensive review. NeuroImage 85: 72-91 (2014) - [j18]Xiaopeng Zong, Juyoung Lee, Alexander John Poplawsky, Seong-Gi Kim, Jong Chul Ye:
Compressed sensing fMRI using gradient-recalled echo and EPI sequences. NeuroImage 92: 312-321 (2014) - [j17]Arshi Khalid, Byung Sun Kim, Moo K. Chung, Jong Chul Ye, Daejong Jeon:
Tracing the evolution of multi-scale functional networks in a mouse model of depression using persistent brain network homology. NeuroImage 101: 351-363 (2014) - [j16]Kyung Sang Kim, Young-Don Son, Zang-Hee Cho, Jong Beom Ra, Jong Chul Ye:
Ultra-Fast Hybrid CPU-GPU Multiple Scatter Simulation for 3-D PET. IEEE J. Biomed. Health Informatics 18(1): 148-156 (2014) - [j15]Huisu Yoon, Kyung Sang Kim, Daniel Kim, Yoram Bresler, Jong Chul Ye:
Motion Adaptive Patch-Based Low-Rank Approach for Compressed Sensing Cardiac Cine MRI. IEEE Trans. Medical Imaging 33(11): 2069-2085 (2014) - [c51]Huisu Yoon, Sunghong Park, Jong Chul Ye:
Improved volumetric imaging for DCE-MRI using parallel imaging and dynamic compressed sensing. GlobalSIP 2014: 483-486 - [c50]Kyung Sang Kim, Jong Chul Ye:
ECG-gated cardiac CT reconstruction using patch based low rank regularization. ISBI 2014: 437-440 - [c49]Dongwook Lee, Eung-Yeop Kim, Huisu Yoon, Sunghong Park, Jong Chul Ye:
T2 prime mapping from highly undersampled data using compressed sensing with patch based low rank penalty. ISBI 2014: 645-648 - [c48]Ok Kyun Lee, Jong Chul Ye:
Accurate inversion of absorption and scattering in diffuse optical tomography without iterative Green's function update. ISBI 2014: 661-664 - [c47]Kyung Sang Kim, Jong Chul Ye, Li Cheng, Kui Ying, Georges El Fakhri, Quanzheng Li:
TOF-PET ordered subset reconstruction using non-uniform separable quadratic surrogates algorithm. ISBI 2014: 963-966 - 2013
- [j14]Jong Min Kim, Jong Chul Ye:
Corrections to "Compressive MUSIC: Revisiting the Link Between Compressive Sensing and Array Signal Processing". IEEE Trans. Inf. Theory 59(9): 6148-6149 (2013) - [c46]Jong Chul Ye, Jong Min Kim, Yoram Bresler:
Subspace penalized sparse learning for joint sparse recovery. ICASSP 2013: 6039-6042 - [c45]Junhong Min, Cédric Vonesch, Nicolas Olivier, Hagai Kirshner, Suliana Manley, Jong Chul Ye, Michael Unser:
Continuous localization using sparsity constraints for high-density super-resolution microscopy. ISBI 2013: 177-180 - [c44]Huisu Yoon, Kyung Sang Kim, Jong Chul Ye:
Motion compensated compressed sensing dynamic MRI with low-rank patch-based residual reconstruction. ISBI 2013: 314-317 - [c43]Jeonghyeon Lee, Yong Jeong, Jong Chul Ye:
Group sparse dictionary learning and inference for resting-state fMRI analysis of Alzheimer'S disease. ISBI 2013: 540-543 - [c42]Jaejun Yoo, Jongmin Kim, Chang-Hwan Im, Jong Chul Ye:
Neuroelectromagnetic imaging of correlated sources using a novel subspace penalized sparse learning. ISBI 2013: 552-555 - [c41]Jong Chul Ye, Junhong Min, Jaeduck Jang:
Improving resolution of fluorescent microscopy using speckle illumination and joint sparse recovery. ISBI 2013: 596-599 - [c40]Kyung Sang Kim, Young-Don Son, Zang-Hee Cho, Jong Beom Ra, Jong Chul Ye:
Globally convergent 3D dynamic PET reconstruction with patch-based non-convex low rank regularization. ISBI 2013: 1158-1161 - [c39]Minji Lee, Jong Chul Ye:
Parallel proximal algorithm for interior tomography problems in x-ray CT with tiny a priori knowledge. ISBI 2013: 1256-1259 - 2012
- [j13]Jong Min Kim, Ok Kyun Lee, Jong Chul Ye:
Compressive MUSIC: Revisiting the Link Between Compressive Sensing and Array Signal Processing. IEEE Trans. Inf. Theory 58(1): 278-301 (2012) - [j12]Jong Min Kim, Ok Kyun Lee, Jong Chul Ye:
Improving Noise Robustness in Subspace-Based Joint Sparse Recovery. IEEE Trans. Signal Process. 60(11): 5799-5809 (2012) - [c38]Jong Min Kim, Ok Kyun Lee, Jong Chul Ye:
Dynamic sparse support tracking with multiple measurement vectors using compressive MUSIC. ICASSP 2012: 2717-2720 - [c37]Ok Kyun Lee, Hua Li, Sungho Tak, Jong Chul Ye:
Compressed sensing reconstruction of statistical parameter map for functional diffuse optical tomography. ISBI 2012: 94-97 - [c36]Huisu Yoon, Jong Chul Ye:
MMSE optimal non-local motion compensated k-t FOCUSS for compressed sensing cardiac cine imaging. ISBI 2012: 630-633 - [c35]Kyung Sang Kim, Young Hoon Seong, Jongha Lee, Kwang Eun Jang, Jong Chul Ye:
Iterative scatter correction for digital tomosynthesis using composition ratio update and GPU based Monte Carlo simulation. ISBI 2012: 1016-1019 - [c34]Jiyoung Choi, Dong-Goo Kang, Sunghoon Kang, Younghun Sung, Jong Chul Ye:
A statistical framework for material decomposition using multi-energy photon counting x-ray detector. ISBI 2012: 1300-1303 - [c33]Jeonghyeon Lee, Jong Chul Ye:
Resting-state fMRI analysis of Alzheimer's disease progress using sparse dictionary learning. SMC 2012: 1051-1053 - [c32]Jong Min Kim, Ok Kyun Lee, Jong Chul Ye:
Compressive subspace fitting for multiple measurement vectors. SSP 2012: 576-579 - 2011
- [j11]Sungho Tak, Soo Jin Yoon, Jaeduck Jang, Kwangsun Yoo, Yong Jeong, Jong Chul Ye:
Quantitative analysis of hemodynamic and metabolic changes in subcortical vascular dementia using simultaneous near-infrared spectroscopy and fMRI measurements. NeuroImage 55(1): 176-184 (2011) - [j10]Kangjoo Lee, Sungho Tak, Jong Chul Ye:
A Data-Driven Sparse GLM for fMRI Analysis Using Sparse Dictionary Learning With MDL Criterion. IEEE Trans. Medical Imaging 30(5): 1076-1089 (2011) - [j9]Ok Kyun Lee, Jong Min Kim, Yoram Bresler, Jong Chul Ye:
Compressive Diffuse Optical Tomography: Noniterative Exact Reconstruction Using Joint Sparsity. IEEE Trans. Medical Imaging 30(5): 1129-1142 (2011) - [c31]Kangjoo Lee, Sungho Tak, Jong Chul Ye:
A data-driven spatially adaptive sparse generalized linear model for functional MRI analysis. ISBI 2011: 1027-1030 - [c30]Hong Jung, Huisu Yoon, Jong Chul Ye:
L0-compressed sensing for parallel dynamic MRI using sparse Bayesian learning. ISBI 2011: 1048-1051 - [c29]Moo K. Chung, Hyekyoung Lee, Peter T. Kim, Jong Chul Ye:
Sparse topological data recovery in medical images. ISBI 2011: 1125-1129 - [c28]Ok Kyun Lee, Jongmin Kim, Yoram Bresler, Jong Chul Ye:
Diffuse optical tomography using generalized music algorithm. ISBI 2011: 1142-1145 - [c27]Jong Min Kim, Ok Kyun Lee, Jong Chul Ye:
Compressive MUSIC with optimized partial support for joint sparse recovery. ISIT 2011: 658-662 - [i5]Jong Min Kim, Ok Kyun Lee, Jong Chul Ye:
Compressive MUSIC with optimized partial support for joint sparse recovery. CoRR abs/1102.3288 (2011) - [i4]Jongmin Kim, Woohyuk Chang, Bang Chul Jung, Dror Baron, Jong Chul Ye:
Belief propagation for joint sparse recovery. CoRR abs/1102.3289 (2011) - [i3]Jong Min Kim, Ok Kyun Lee, Jong Chul Ye:
Exact Dynamic Support Tracking with Multiple Measurement Vectors using Compressive MUSIC. CoRR abs/1110.0378 (2011) - [i2]Jong Min Kim, Ok Kyun Lee, Jong Chul Ye:
Noise Robust Joint Sparse Recovery using Compressive Subspace Fitting. CoRR abs/1112.3446 (2011) - 2010
- [j8]Hong Jung, Jong Chul Ye:
Motion estimated and compensated compressed sensing dynamic magnetic resonance imaging: What we can learn from video compression techniques. Int. J. Imaging Syst. Technol. 20(2): 81-98 (2010) - [c26]Kyung Hwan Jin, Kanghee Lee, Jaewook Ahn, Jong Chul Ye:
Compressive inverse scattering using ultrashort pulses. Computational Imaging 2010: 75330 - [c25]Hong Jung, Jong Chul Ye:
A sparse Bayesian learning for highly accelerated dynamic MRI. ISBI 2010: 253-256 - [c24]Kangjoo Lee, Jong Chul Ye:
Statistical parametric mapping of FMRI data using sparse dictionary learning. ISBI 2010: 660-663 - [i1]Jong Min Kim, Ok Kyun Lee, Jong Chul Ye:
Compressive MUSIC: A Missing Link Between Compressive Sensing and Array Signal Processing. CoRR abs/1004.4398 (2010)
2000 – 2009
- 2009
- [j7]Jong Chul Ye, Sungho Tak, Kwang Eun Jang, Jinwook Jung, Jaeduck Jang:
NIRS-SPM: Statistical parametric mapping for near-infrared spectroscopy. NeuroImage 44(2): 428-447 (2009) - [c23]Kwang Eun Jang, Hee Won Yang, Jong Chul Ye:
Single channel 2-D and 3-D blind image deconvolution for circularly symmetric fir blurs. ICIP 2009: 1313-1316 - [c22]Min Woo Kim, Jong Chul Ye:
AB Initio Maximum Likelihood Reconstruction of Helical Macromolecules Using Electron Microscopy. ISBI 2009: 294-297 - [c21]Jiyoung Choi, Min Woo Kim, Won Seong, Jong Chul Ye:
Compressed Sensing Metal Artifact Removal in Dental CT. ISBI 2009: 334-337 - [c20]Hong Jung, Jong Chul Ye:
Performance Evaluation of Accelerated Functional MRI Acquisition Using Compressed Sensing. ISBI 2009: 702-705 - 2008
- [c19]Min Woo Kim, Jiyoung Choi, Jong Chul Ye:
3D macromolecule structure reconstruction from electron micrograph by exploiting symmetry and sparsity. Computational Imaging 2008: 68140 - [c18]Jong Chul Ye, Su Yeon Lee:
Non-iterative exact inverse scattering using simultaneous orthogonal matching pursuit (S-OMP). ICASSP 2008: 2457-2460 - [c17]Sungho Tak, Kwang Eun Jang, Jinwook Jung, Jaeduck Jang, Jong Chul Ye:
General linear model and inference for near infrared spectroscopy using global confidence region analysis. ISBI 2008: 476-479 - [c16]Hong Jung, Jong Chul Ye:
High resolution dynamic MRI using motion estimated and compensated compressed sensing. ISBI 2008: 1617-1620 - [c15]Jong Chul Ye, Su Yeon Lee, Yoram Bresler:
Exact reconstruction formula for diffuse optical tomography using simultaneous sparse representation. ISBI 2008: 1621-1624 - 2007
- [j6]Jong Chul Ye:
Compressed Sensing Shape Estimation of Star-Shaped Objects in Fourier Imaging. IEEE Signal Process. Lett. 14(10): 750-753 (2007) - [c14]Min Woo Kim, Jiyoung Choi, Liu Yu, Kyung Eun Lee, Sung-Sik Han, Jong Chul Ye:
Cryo-electron microscopy single particle reconstruction of virus particles using compressed sensing theory. Computational Imaging 2007: 64981G - [c13]Sungho Tak, Jaeheung Yoo, Jong Chul Ye:
High resolution projection reconstruction MR imaging using FOCUSS. Computational Imaging 2007: 64981A - [c12]Hong Jung, Jaeheung Yoo, Jong Chul Ye:
Generalized K-T Blast and K-T Sense Using Focuss. ISBI 2007: 145-148 - [c11]Kwang Eun Jang, Jong Chul Ye:
Single Channel Exact Blind Image Deconvolution from Radially Symmmetric Fir Blur. ISBI 2007: 672-674 - 2006
- [j5]Jong Chul Ye, Pierre Moulin, Yoram Bresler:
Asymptotic Global Confidence Regions for 3-D Parametric Shape Estimation in Inverse Problems. IEEE Trans. Image Process. 15(10): 2904-2919 (2006) - [c10]Jinhee Kim, Jong Chul Ye, Jaehung Yoo:
x-f SENSE: optimal spatio-temporal sensitivity encoding for dynamic MR imaging. ISBI 2006: 13-16 - 2005
- [c9]Jong Chul Ye, Kevin J. Webb, Rick P. Millane, Charles A. Bouman:
In vivo optical molecular imaging: principles and signal processing issues. ICASSP (5) 2005: 849-852 - 2003
- [j4]Jong Chul Ye, Yoram Bresler, Pierre Moulin:
Cramer-Rao bounds for parametric shape estimation in inverse problems. IEEE Trans. Image Process. 12(1): 71-84 (2003) - [c8]Jong Chul Ye, Yingwei Chen:
Rate-distortion optimized data partitioning for video using backward adaptation. ICASSP (3) 2003: 637-640 - [c7]Yingwei Chen, Jong Chul Ye, Carles Ruiz Floriach, Kiran S. Challapali:
Video streaming over wireless LAN with efficient scalable coding and prioritized adaptive transmission. ICIP (3) 2003: 285-288 - [c6]Yingwei Chen, Carles Ruiz Floriach, Jong Chul Ye, Kiran S. Challapali:
Channel adaptive prioritized transmission of layered video over wireless LAN. PIMRC 2003: 2948-2952 - 2002
- [j3]Jong Chul Ye, Yoram Bresler, Pierre Moulin:
A Self-Referencing Level-Set Method for Image Reconstruction from Sparse Fourier Samples. Int. J. Comput. Vis. 50(3): 253-270 (2002) - [c5]Jong Chul Ye, Yoram Bresler, Pierre Moulin:
Cramer-Rao bounds for parametric shape estimation. ICIP (2) 2002: 473-476 - 2001
- [j2]Jong Chul Ye, Charles A. Bouman, Kevin J. Webb, Rick P. Millane:
Nonlinear multigrid algorithms for Bayesian optical diffusion tomography. IEEE Trans. Image Process. 10(6): 909-922 (2001) - [c4]Jong Chul Ye, Yoram Bresler, Pierre Moulin:
A self-referencing level-set method for image reconstruction from sparse Fourier samples. ICIP (2) 2001: 33-36 - 2000
- [j1]Jong Chul Ye, Yoram Bresler, Pierre Moulin:
Asymptotic global confidence regions in parametric shape estimation problems. IEEE Trans. Inf. Theory 46(5): 1881-1895 (2000) - [c3]Jong Chul Ye, Yoram Bresler, Pierre Moulin:
Global confidence regions in parametric shape estimation. ICASSP 2000: 3180-3183
1990 – 1999
- 1999
- [c2]Jong Chul Ye, Charles A. Bouman, Rick P. Millane, Kevin J. Webb:
Nonlinear Multigrid Optimization for Bayesian Diffusion Tomography. ICIP (2) 1999: 653-657 - 1998
- [c1]Jong Chul Ye, Kevin J. Webb, Rick P. Millane, Thomas J. Downar:
Optimal Parameter Updating for Optical Diffusion Imaging. ICIP (3) 1998: 390-393
Coauthor Index
aka: Eunju Cha
aka: Kwanyoung Kim
manage site settings
To protect your privacy, all features that rely on external API calls from your browser are turned off by default. You need to opt-in for them to become active. All settings here will be stored as cookies with your web browser. For more information see our F.A.Q.
Unpaywalled article links
Add open access links from to the list of external document links (if available).
Privacy notice: By enabling the option above, your browser will contact the API of unpaywall.org to load hyperlinks to open access articles. Although we do not have any reason to believe that your call will be tracked, we do not have any control over how the remote server uses your data. So please proceed with care and consider checking the Unpaywall privacy policy.
Archived links via Wayback Machine
For web page which are no longer available, try to retrieve content from the of the Internet Archive (if available).
Privacy notice: By enabling the option above, your browser will contact the API of archive.org to check for archived content of web pages that are no longer available. Although we do not have any reason to believe that your call will be tracked, we do not have any control over how the remote server uses your data. So please proceed with care and consider checking the Internet Archive privacy policy.
Reference lists
Add a list of references from , , and to record detail pages.
load references from crossref.org and opencitations.net
Privacy notice: By enabling the option above, your browser will contact the APIs of crossref.org, opencitations.net, and semanticscholar.org to load article reference information. Although we do not have any reason to believe that your call will be tracked, we do not have any control over how the remote server uses your data. So please proceed with care and consider checking the Crossref privacy policy and the OpenCitations privacy policy, as well as the AI2 Privacy Policy covering Semantic Scholar.
Citation data
Add a list of citing articles from and to record detail pages.
load citations from opencitations.net
Privacy notice: By enabling the option above, your browser will contact the API of opencitations.net and semanticscholar.org to load citation information. Although we do not have any reason to believe that your call will be tracked, we do not have any control over how the remote server uses your data. So please proceed with care and consider checking the OpenCitations privacy policy as well as the AI2 Privacy Policy covering Semantic Scholar.
OpenAlex data
Load additional information about publications from .
Privacy notice: By enabling the option above, your browser will contact the API of openalex.org to load additional information. Although we do not have any reason to believe that your call will be tracked, we do not have any control over how the remote server uses your data. So please proceed with care and consider checking the information given by OpenAlex.
last updated on 2024-11-19 20:45 CET by the dblp team
all metadata released as open data under CC0 1.0 license
see also: Terms of Use | Privacy Policy | Imprint