default search action
Connor W. Coley
Person information
Refine list
refinements active!
zoomed in on ?? of ?? records
view refined list in
export refined list as
2020 – today
- 2024
- [j31]Samuel Goldman, Jiayi Xin, Joules Provenzano, Connor W. Coley:
MIST-CF: Chemical Formula Inference from Tandem Mass Spectra. J. Chem. Inf. Model. 64(7): 2421-2431 (2024) - [j30]Babak A. Mahjour, Connor W. Coley:
RDCanon: A Python Package for Canonicalizing the Order of Tokens in SMARTS Queries. J. Chem. Inf. Model. 64(8): 2948-2954 (2024) - [j29]Vincent Fan, Yujie Qian, Alex Wang, Amber Wang, Connor W. Coley, Regina Barzilay:
OpenChemIE: An Information Extraction Toolkit for Chemistry Literature. J. Chem. Inf. Model. 64(14): 5521-5534 (2024) - [j28]Jenna C. Fromer, Connor W. Coley:
An algorithmic framework for synthetic cost-aware decision making in molecular design. Nat. Comput. Sci. 4(6): 440-450 (2024) - [c17]Yanqiao Zhu, Jeehyun Hwang, Keir Adams, Zhen Liu, Bozhao Nan, Brock Stenfors, Yuanqi Du, Jatin Chauhan, Olaf Wiest, Olexandr Isayev, Connor W. Coley, Yizhou Sun, Wei Wang:
Learning Over Molecular Conformer Ensembles: Datasets and Benchmarks. ICLR 2024 - [c16]Shitong Luo, Wenhao Gao, Zuofan Wu, Jian Peng, Connor W. Coley, Jianzhu Ma:
Projecting Molecules into Synthesizable Chemical Spaces. ICML 2024 - [i47]Chenqing Hua, Connor W. Coley, Guy Wolf, Doina Precup, Shuangjia Zheng:
Effective Protein-Protein Interaction Exploration with PPIretrieval. CoRR abs/2402.03675 (2024) - [i46]Wenhao Gao, Priyanka Raghavan, Ron Shprints, Connor W. Coley:
Substrate Scope Contrastive Learning: Repurposing Human Bias to Learn Atomic Representations. CoRR abs/2402.16882 (2024) - [i45]Joonyoung F. Joung, Mun Hong Fong, Jihye Roh, Zhengkai Tu, John Bradshaw, Connor W. Coley:
Beyond Major Product Prediction: Reproducing Reaction Mechanisms with Machine Learning Models Trained on a Large-Scale Mechanistic Dataset. CoRR abs/2403.04580 (2024) - [i44]Vincent Fan, Yujie Qian, Alex Wang, Amber Wang, Connor W. Coley, Regina Barzilay:
OpenChemIE: An Information Extraction Toolkit For Chemistry Literature. CoRR abs/2404.01462 (2024) - [i43]Shitong Luo, Wenhao Gao, Zuofan Wu, Jian Peng, Connor W. Coley, Jianzhu Ma:
Projecting Molecules into Synthesizable Chemical Spaces. CoRR abs/2406.04628 (2024) - [i42]Kevin Yu, Jihye Roh, Ziang Li, Wenhao Gao, Runzhong Wang, Connor W. Coley:
Double-Ended Synthesis Planning with Goal-Constrained Bidirectional Search. CoRR abs/2407.06334 (2024) - [i41]Michael Sun, Alston Lo, Wenhao Gao, Minghao Guo, Veronika Thost, Jie Chen, Connor W. Coley, Wojciech Matusik:
Syntax-Guided Procedural Synthesis of Molecules. CoRR abs/2409.05873 (2024) - [i40]Wenhao Gao, Shitong Luo, Connor W. Coley:
Generative Artificial Intelligence for Navigating Synthesizable Chemical Space. CoRR abs/2410.03494 (2024) - [i39]Jenna C. Fromer, Runzhong Wang, Mrunali Manjrekar, Austin Tripp, José Miguel Hernández-Lobato, Connor W. Coley:
Batched Bayesian optimization with correlated candidate uncertainties. CoRR abs/2410.06333 (2024) - 2023
- [j27]Yujie Qian, Jiang Guo, Zhengkai Tu, Zhening Li, Connor W. Coley, Regina Barzilay:
MolScribe: Robust Molecular Structure Recognition with Image-to-Graph Generation. J. Chem. Inf. Model. 63(7): 1925-1934 (2023) - [j26]Yujie Qian, Jiang Guo, Zhengkai Tu, Connor W. Coley, Regina Barzilay:
RxnScribe: A Sequence Generation Model for Reaction Diagram Parsing. J. Chem. Inf. Model. 63(13): 4030-4041 (2023) - [j25]Rocío Mercado, Steven M. Kearnes, Connor W. Coley:
Data Sharing in Chemistry: Lessons Learned and a Case for Mandating Structured Reaction Data. J. Chem. Inf. Model. 63(14): 4253-4265 (2023) - [j24]Samuel Goldman, Jeremy Wohlwend, Martin Strazar, Guy Haroush, Ramnik J. Xavier, Connor W. Coley:
Annotating metabolite mass spectra with domain-inspired chemical formula transformers. Nat. Mac. Intell. 5(9): 965-979 (2023) - [j23]Nathan C. Frey, Ryan Soklaski, Simon Axelrod, Siddharth Samsi, Rafael Gómez-Bombarelli, Connor W. Coley, Vijay Gadepally:
Neural scaling of deep chemical models. Nat. Mac. Intell. 5(11): 1297-1305 (2023) - [j22]Hanchen Wang, Tianfan Fu, Yuanqi Du, Wenhao Gao, Kexin Huang, Ziming Liu, Payal Chandak, Shengchao Liu, Peter Van Katwyk, Andreea Deac, Anima Anandkumar, Karianne Bergen, Carla P. Gomes, Shirley Ho, Pushmeet Kohli, Joan Lasenby, Jure Leskovec, Tie-Yan Liu, Arjun Manrai, Debora S. Marks, Bharath Ramsundar, Le Song, Jimeng Sun, Jian Tang, Petar Velickovic, Max Welling, Linfeng Zhang, Connor W. Coley, Yoshua Bengio, Marinka Zitnik:
Scientific discovery in the age of artificial intelligence. Nat. 620(7972): 47-60 (2023) - [j21]Nicholas David, Wenhao Sun, Connor W. Coley:
The promise and pitfalls of AI for molecular and materials synthesis. Nat. Comput. Sci. 3(5): 362-364 (2023) - [j20]Jenna C. Fromer, Connor W. Coley:
Computer-aided multi-objective optimization in small molecule discovery. Patterns 4(2): 100678 (2023) - [c15]Yujie Qian, Zhening Li, Zhengkai Tu, Connor W. Coley, Regina Barzilay:
Predictive Chemistry Augmented with Text Retrieval. EMNLP 2023: 12731-12745 - [c14]Keir Adams, Connor W. Coley:
Equivariant Shape-Conditioned Generation of 3D Molecules for Ligand-Based Drug Design. ICLR 2023 - [c13]Samuel Goldman, John Bradshaw, Jiayi Xin, Connor W. Coley:
Prefix-Tree Decoding for Predicting Mass Spectra from Molecules. NeurIPS 2023 - [i38]Samuel Goldman, John Bradshaw, Jiayi Xin, Connor W. Coley:
Prefix-tree Decoding for Predicting Mass Spectra from Molecules. CoRR abs/2303.06470 (2023) - [i37]Yujie Qian, Jiang Guo, Zhengkai Tu, Connor W. Coley, Regina Barzilay:
RxnScribe: A Sequence Generation Model for Reaction Diagram Parsing. CoRR abs/2305.11845 (2023) - [i36]Xuan Zhang, Limei Wang, Jacob Helwig, Youzhi Luo, Cong Fu, Yaochen Xie, Meng Liu, Yuchao Lin, Zhao Xu, Keqiang Yan, Keir Adams, Maurice Weiler, Xiner Li, Tianfan Fu, Yucheng Wang, Haiyang Yu, Yuqing Xie, Xiang Fu, Alex Strasser, Shenglong Xu, Yi Liu, Yuanqi Du, Alexandra Saxton, Hongyi Ling, Hannah Lawrence, Hannes Stärk, Shurui Gui, Carl Edwards, Nicholas Gao, Adriana Ladera, Tailin Wu, Elyssa F. Hofgard, Aria Mansouri Tehrani, Rui Wang, Ameya Daigavane, Montgomery Bohde, Jerry Kurtin, Qian Huang, Tuong Phung, Minkai Xu, Chaitanya K. Joshi, Simon V. Mathis, Kamyar Azizzadenesheli, Ada Fang, Alán Aspuru-Guzik, Erik J. Bekkers, Michael M. Bronstein, Marinka Zitnik, Anima Anandkumar, Stefano Ermon, Pietro Liò, Rose Yu, Stephan Günnemann, Jure Leskovec, Heng Ji, Jimeng Sun, Regina Barzilay, Tommi S. Jaakkola, Connor W. Coley, Xiaoning Qian, Xiaofeng Qian, Tess E. Smidt, Shuiwang Ji:
Artificial Intelligence for Science in Quantum, Atomistic, and Continuum Systems. CoRR abs/2307.08423 (2023) - [i35]Yanqiao Zhu, Jeehyun Hwang, Keir Adams, Zhen Liu, Bozhao Nan, Brock Stenfors, Yuanqi Du, Jatin Chauhan, Olaf Wiest, Olexandr Isayev, Connor W. Coley, Yizhou Sun, Wei Wang:
Learning Over Molecular Conformer Ensembles: Datasets and Benchmarks. CoRR abs/2310.00115 (2023) - [i34]Jenna C. Fromer, David E. Graff, Connor W. Coley:
Pareto Optimization to Accelerate Multi-Objective Virtual Screening. CoRR abs/2310.10598 (2023) - [i33]Yujie Qian, Zhening Li, Zhengkai Tu, Connor W. Coley, Regina Barzilay:
Predictive Chemistry Augmented with Text Retrieval. CoRR abs/2312.04881 (2023) - 2022
- [j19]Min Htoo Lin, Zhengkai Tu, Connor W. Coley:
Improving the performance of models for one-step retrosynthesis through re-ranking. J. Cheminformatics 14(1): 15 (2022) - [j18]Jiang Guo, A. Santiago Ibanez-Lopez, Hanyu Gao, Victor Quach, Connor W. Coley, Klavs F. Jensen, Regina Barzilay:
Automated Chemical Reaction Extraction from Scientific Literature. J. Chem. Inf. Model. 62(9): 2035-2045 (2022) - [j17]Katherine S. Lim, Andrew G. Reidenbach, Bruce K. Hua, Jeremy W. Mason, Christopher J. Gerry, Paul A. Clemons, Connor W. Coley:
Machine Learning on DNA-Encoded Library Count Data Using an Uncertainty-Aware Probabilistic Loss Function. J. Chem. Inf. Model. 62(10): 2316-2331 (2022) - [j16]Zhengkai Tu, Connor W. Coley:
Permutation Invariant Graph-to-Sequence Model for Template-Free Retrosynthesis and Reaction Prediction. J. Chem. Inf. Model. 62(15): 3503-3513 (2022) - [j15]David E. Graff, Matteo Aldeghi, Joseph A. Morrone, Kirk E. Jordan, Edward O. Pyzer-Knapp, Connor W. Coley:
Self-Focusing Virtual Screening with Active Design Space Pruning. J. Chem. Inf. Model. 62(16): 3854-3862 (2022) - [j14]Matteo Aldeghi, David E. Graff, Nathan C. Frey, Joseph A. Morrone, Edward O. Pyzer-Knapp, Kirk E. Jordan, Connor W. Coley:
Roughness of Molecular Property Landscapes and Its Impact on Modellability. J. Chem. Inf. Model. 62(19): 4660-4671 (2022) - [j13]David E. Graff, Connor W. Coley:
pyscreener: A Python Wrapper for Computational Docking Software. J. Open Source Softw. 7(71): 3950 (2022) - [j12]Samuel Goldman, Ria Das, Kevin K. Yang, Connor W. Coley:
Machine learning modeling of family wide enzyme-substrate specificity screens. PLoS Comput. Biol. 18(2) (2022) - [c12]Keir Adams, Lagnajit Pattanaik, Connor W. Coley:
Learning 3D Representations of Molecular Chirality with Invariance to Bond Rotations. ICLR 2022 - [c11]Tianfan Fu, Wenhao Gao, Cao Xiao, Jacob Yasonik, Connor W. Coley, Jimeng Sun:
Differentiable Scaffolding Tree for Molecule Optimization. ICLR 2022 - [c10]Wenhao Gao, Rocío Mercado, Connor W. Coley:
Amortized Tree Generation for Bottom-up Synthesis Planning and Synthesizable Molecular Design. ICLR 2022 - [c9]Wenhao Gao, Tianfan Fu, Jimeng Sun, Connor W. Coley:
Sample Efficiency Matters: A Benchmark for Practical Molecular Optimization. NeurIPS 2022 - [c8]Tianfan Fu, Wenhao Gao, Connor W. Coley, Jimeng Sun:
Reinforced Genetic Algorithm for Structure-based Drug Design. NeurIPS 2022 - [i32]David E. Graff, Matteo Aldeghi, Joseph A. Morrone, Kirk E. Jordan, Edward O. Pyzer-Knapp, Connor W. Coley:
Self-focusing virtual screening with active design space pruning. CoRR abs/2205.01753 (2022) - [i31]Matteo Aldeghi, Connor W. Coley:
A graph representation of molecular ensembles for polymer property prediction. CoRR abs/2205.08619 (2022) - [i30]Yujie Qian, Zhengkai Tu, Jiang Guo, Connor W. Coley, Regina Barzilay:
Robust Molecular Image Recognition: A Graph Generation Approach. CoRR abs/2205.14311 (2022) - [i29]Wenhao Gao, Tianfan Fu, Jimeng Sun, Connor W. Coley:
Sample Efficiency Matters: A Benchmark for Practical Molecular Optimization. CoRR abs/2206.12411 (2022) - [i28]Keir Adams, Connor W. Coley:
Equivariant Shape-Conditioned Generation of 3D Molecules for Ligand-Based Drug Design. CoRR abs/2210.04893 (2022) - [i27]Jenna C. Fromer, Connor W. Coley:
Computer-Aided Multi-Objective Optimization in Small Molecule Discovery. CoRR abs/2210.07209 (2022) - [i26]Divya Nori, Connor W. Coley, Rocío Mercado:
De novo PROTAC design using graph-based deep generative models. CoRR abs/2211.02660 (2022) - [i25]Tianfan Fu, Wenhao Gao, Connor W. Coley, Jimeng Sun:
Reinforced Genetic Algorithm for Structure-based Drug Design. CoRR abs/2211.16508 (2022) - 2021
- [j11]Hanyu Gao, Jean Pauphilet, Thomas J. Struble, Connor W. Coley, Klavs F. Jensen:
Direct Optimization across Computer-Generated Reaction Networks Balances Materials Use and Feasibility of Synthesis Plans for Molecule Libraries. J. Chem. Inf. Model. 61(1): 493-504 (2021) - [j10]Jiang Guo, A. Santiago Ibanez-Lopez, Hanyu Gao, Victor Quach, Connor W. Coley, Klavs F. Jensen, Regina Barzilay:
Correction to Automated Chemical Reaction Extraction from Scientific Literature. J. Chem. Inf. Model. 61(8): 4124 (2021) - [j9]Esther Heid, Samuel Goldman, Karthik Sankaranarayanan, Connor W. Coley, Christoph Flamm, William H. Green Jr.:
EHreact: Extended Hasse Diagrams for the Extraction and Scoring of Enzymatic Reaction Templates. J. Chem. Inf. Model. 61(10): 4949-4961 (2021) - [c7]Hangrui Bi, Hengyi Wang, Chence Shi, Connor W. Coley, Jian Tang, Hongyu Guo:
Non-Autoregressive Electron Redistribution Modeling for Reaction Prediction. ICML 2021: 904-913 - [c6]Vignesh Ram Somnath, Charlotte Bunne, Connor W. Coley, Andreas Krause, Regina Barzilay:
Learning Graph Models for Retrosynthesis Prediction. NeurIPS 2021: 9405-9415 - [c5]Octavian Ganea, Lagnajit Pattanaik, Connor W. Coley, Regina Barzilay, Klavs F. Jensen, William H. Green Jr., Tommi S. Jaakkola:
GeoMol: Torsional Geometric Generation of Molecular 3D Conformer Ensembles. NeurIPS 2021: 13757-13769 - [c4]Kexin Huang, Tianfan Fu, Wenhao Gao, Yue Zhao, Yusuf Roohani, Jure Leskovec, Connor W. Coley, Cao Xiao, Jimeng Sun, Marinka Zitnik:
Therapeutics Data Commons: Machine Learning Datasets and Tasks for Drug Discovery and Development. NeurIPS Datasets and Benchmarks 2021 - [i24]Kexin Huang, Tianfan Fu, Wenhao Gao, Yue Zhao, Yusuf Roohani, Jure Leskovec, Connor W. Coley, Cao Xiao, Jimeng Sun, Marinka Zitnik:
Therapeutics Data Commons: Machine Learning Datasets and Tasks for Therapeutics. CoRR abs/2102.09548 (2021) - [i23]Shuangjia Zheng, Tao Zeng, Chengtao Li, Binghong Chen, Connor W. Coley, Yuedong Yang, Ruibo Wu:
BioNavi-NP: Biosynthesis Navigator for Natural Products. CoRR abs/2105.13121 (2021) - [i22]Hangrui Bi, Hengyi Wang, Chence Shi, Connor W. Coley, Jian Tang, Hongyu Guo:
Non-Autoregressive Electron Redistribution Modeling for Reaction Prediction. CoRR abs/2106.07801 (2021) - [i21]Octavian-Eugen Ganea, Lagnajit Pattanaik, Connor W. Coley, Regina Barzilay, Klavs F. Jensen, William H. Green Jr., Tommi S. Jaakkola:
GeoMol: Torsional Geometric Generation of Molecular 3D Conformer Ensembles. CoRR abs/2106.07802 (2021) - [i20]Katherine S. Lim, Andrew G. Reidenbach, Bruce K. Hua, Jeremy W. Mason, Christopher J. Gerry, Paul A. Clemons, Connor W. Coley:
Machine learning on DNA-encoded library count data using an uncertainty-aware probabilistic loss function. CoRR abs/2108.12471 (2021) - [i19]Samuel Goldman, Ria Das, Kevin K. Yang, Connor W. Coley:
Machine learning modeling of family wide enzyme-substrate specificity screens. CoRR abs/2109.03900 (2021) - [i18]Tianfan Fu, Wenhao Gao, Cao Xiao, Jacob Yasonik, Connor W. Coley, Jimeng Sun:
Differentiable Scaffolding Tree for Molecular Optimization. CoRR abs/2109.10469 (2021) - [i17]Keir Adams, Lagnajit Pattanaik, Connor W. Coley:
Learning 3D Representations of Molecular Chirality with Invariance to Bond Rotations. CoRR abs/2110.04383 (2021) - [i16]Wenhao Gao, Rocío Mercado, Connor W. Coley:
Amortized Tree Generation for Bottom-up Synthesis Planning and Synthesizable Molecular Design. CoRR abs/2110.06389 (2021) - [i15]Zhengkai Tu, Connor W. Coley:
Permutation invariant graph-to-sequence model for template-free retrosynthesis and reaction prediction. CoRR abs/2110.09681 (2021) - [i14]Nathan C. Frey, Siddharth Samsi, Joseph McDonald, Lin Li, Connor W. Coley, Vijay Gadepally:
Scalable Geometric Deep Learning on Molecular Graphs. CoRR abs/2112.03364 (2021) - [i13]Nathan C. Frey, Siddharth Samsi, Bharath Ramsundar, Connor W. Coley, Vijay Gadepally:
Bringing Atomistic Deep Learning to Prime Time. CoRR abs/2112.04977 (2021) - 2020
- [j8]Michael E. Fortunato, Connor W. Coley, Brian C. Barnes, Klavs F. Jensen:
Data Augmentation and Pretraining for Template-Based Retrosynthetic Prediction in Computer-Aided Synthesis Planning. J. Chem. Inf. Model. 60(7): 3398-3407 (2020) - [j7]Lior Hirschfeld, Kyle Swanson, Kevin Yang, Regina Barzilay, Connor W. Coley:
Uncertainty Quantification Using Neural Networks for Molecular Property Prediction. J. Chem. Inf. Model. 60(8): 3770-3780 (2020) - [j6]Wenhao Gao, Connor W. Coley:
The Synthesizability of Molecules Proposed by Generative Models. J. Chem. Inf. Model. 60(12): 5714-5723 (2020) - [c3]Sai Krishna Gottipati, Boris Sattarov, Sufeng Niu, Yashaswi Pathak, Haoran Wei, Shengchao Liu, Simon Blackburn, Karam M. J. Thomas, Connor W. Coley, Jian Tang, Sarath Chandar, Yoshua Bengio:
Learning to Navigate The Synthetically Accessible Chemical Space Using Reinforcement Learning. ICML 2020: 3668-3679 - [i12]Hanjun Dai, Chengtao Li, Connor W. Coley, Bo Dai, Le Song:
Retrosynthesis Prediction with Conditional Graph Logic Network. CoRR abs/2001.01408 (2020) - [i11]Wenhao Gao, Connor W. Coley:
The Synthesizability of Molecules Proposed by Generative Models. CoRR abs/2002.07007 (2020) - [i10]Connor W. Coley, Natalie S. Eyke, Klavs F. Jensen:
Autonomous discovery in the chemical sciences part I: Progress. CoRR abs/2003.13754 (2020) - [i9]Connor W. Coley, Natalie S. Eyke, Klavs F. Jensen:
Autonomous discovery in the chemical sciences part II: Outlook. CoRR abs/2003.13755 (2020) - [i8]Sai Krishna Gottipati, Boris Sattarov, Sufeng Niu, Yashaswi Pathak, Haoran Wei, Shengchao Liu, Karam M. J. Thomas, Simon Blackburn, Connor W. Coley, Jian Tang, Sarath Chandar, Yoshua Bengio:
Learning To Navigate The Synthetically Accessible Chemical Space Using Reinforcement Learning. CoRR abs/2004.12485 (2020) - [i7]Lior Hirschfeld, Kyle Swanson, Kevin Yang, Regina Barzilay, Connor W. Coley:
Uncertainty Quantification Using Neural Networks for Molecular Property Prediction. CoRR abs/2005.10036 (2020) - [i6]Vignesh Ram Somnath, Charlotte Bunne, Connor W. Coley, Andreas Krause, Regina Barzilay:
Learning Graph Models for Template-Free Retrosynthesis. CoRR abs/2006.07038 (2020) - [i5]Lagnajit Pattanaik, Octavian-Eugen Ganea, Ian Coley, Klavs F. Jensen, William H. Green Jr., Connor W. Coley:
Message Passing Networks for Molecules with Tetrahedral Chirality. CoRR abs/2012.00094 (2020) - [i4]David E. Graff, Eugene I. Shakhnovich, Connor W. Coley:
Accelerating high-throughput virtual screening through molecular pool-based active learning. CoRR abs/2012.07127 (2020)
2010 – 2019
- 2019
- [j5]Connor W. Coley, William H. Green Jr., Klavs F. Jensen:
RDChiral: An RDKit Wrapper for Handling Stereochemistry in Retrosynthetic Template Extraction and Application. J. Chem. Inf. Model. 59(6): 2529-2537 (2019) - [j4]Kevin Yang, Kyle Swanson, Wengong Jin, Connor W. Coley, Philipp Eiden, Hua Gao, Angel Guzman-Perez, Timothy Hopper, Brian Kelley, Miriam Mathea, Andrew Palmer, Volker Settels, Tommi S. Jaakkola, Klavs F. Jensen, Regina Barzilay:
Analyzing Learned Molecular Representations for Property Prediction. J. Chem. Inf. Model. 59(8): 3370-3388 (2019) - [j3]Kevin Yang, Kyle Swanson, Wengong Jin, Connor W. Coley, Philipp Eiden, Hua Gao, Angel Guzman-Perez, Timothy Hopper, Brian Kelley, Miriam Mathea, Andrew Palmer, Volker Settels, Tommi S. Jaakkola, Klavs F. Jensen, Regina Barzilay:
Correction to Analyzing Learned Molecular Representations for Property Prediction. J. Chem. Inf. Model. 59(12): 5304-5305 (2019) - [c2]Hanjun Dai, Chengtao Li, Connor W. Coley, Bo Dai, Le Song:
Retrosynthesis Prediction with Conditional Graph Logic Network. NeurIPS 2019: 8870-8880 - [i3]John S. Schreck, Connor W. Coley, Kyle J. M. Bishop:
Learning retrosynthetic planning through self-play. CoRR abs/1901.06569 (2019) - [i2]Kevin Yang, Kyle Swanson, Wengong Jin, Connor W. Coley, Philipp Eiden, Hua Gao, Angel Guzman-Perez, Timothy Hopper, Brian Kelley, Miriam Mathea, Andrew Palmer, Volker Settels, Tommi S. Jaakkola, Klavs F. Jensen, Regina Barzilay:
Are Learned Molecular Representations Ready For Prime Time? CoRR abs/1904.01561 (2019) - 2018
- [j2]Connor W. Coley, Luke Rogers, William H. Green Jr., Klavs F. Jensen:
SCScore: Synthetic Complexity Learned from a Reaction Corpus. J. Chem. Inf. Model. 58(2): 252-261 (2018) - 2017
- [j1]Connor W. Coley, Regina Barzilay, William H. Green Jr., Tommi S. Jaakkola, Klavs F. Jensen:
Convolutional Embedding of Attributed Molecular Graphs for Physical Property Prediction. J. Chem. Inf. Model. 57(8): 1757-1772 (2017) - [c1]Wengong Jin, Connor W. Coley, Regina Barzilay, Tommi S. Jaakkola:
Predicting Organic Reaction Outcomes with Weisfeiler-Lehman Network. NIPS 2017: 2607-2616 - [i1]Wengong Jin, Connor W. Coley, Regina Barzilay, Tommi S. Jaakkola:
Predicting Organic Reaction Outcomes with Weisfeiler-Lehman Network. CoRR abs/1709.04555 (2017)
Coauthor Index
manage site settings
To protect your privacy, all features that rely on external API calls from your browser are turned off by default. You need to opt-in for them to become active. All settings here will be stored as cookies with your web browser. For more information see our F.A.Q.
Unpaywalled article links
Add open access links from to the list of external document links (if available).
Privacy notice: By enabling the option above, your browser will contact the API of unpaywall.org to load hyperlinks to open access articles. Although we do not have any reason to believe that your call will be tracked, we do not have any control over how the remote server uses your data. So please proceed with care and consider checking the Unpaywall privacy policy.
Archived links via Wayback Machine
For web page which are no longer available, try to retrieve content from the of the Internet Archive (if available).
Privacy notice: By enabling the option above, your browser will contact the API of archive.org to check for archived content of web pages that are no longer available. Although we do not have any reason to believe that your call will be tracked, we do not have any control over how the remote server uses your data. So please proceed with care and consider checking the Internet Archive privacy policy.
Reference lists
Add a list of references from , , and to record detail pages.
load references from crossref.org and opencitations.net
Privacy notice: By enabling the option above, your browser will contact the APIs of crossref.org, opencitations.net, and semanticscholar.org to load article reference information. Although we do not have any reason to believe that your call will be tracked, we do not have any control over how the remote server uses your data. So please proceed with care and consider checking the Crossref privacy policy and the OpenCitations privacy policy, as well as the AI2 Privacy Policy covering Semantic Scholar.
Citation data
Add a list of citing articles from and to record detail pages.
load citations from opencitations.net
Privacy notice: By enabling the option above, your browser will contact the API of opencitations.net and semanticscholar.org to load citation information. Although we do not have any reason to believe that your call will be tracked, we do not have any control over how the remote server uses your data. So please proceed with care and consider checking the OpenCitations privacy policy as well as the AI2 Privacy Policy covering Semantic Scholar.
OpenAlex data
Load additional information about publications from .
Privacy notice: By enabling the option above, your browser will contact the API of openalex.org to load additional information. Although we do not have any reason to believe that your call will be tracked, we do not have any control over how the remote server uses your data. So please proceed with care and consider checking the information given by OpenAlex.
last updated on 2024-11-20 20:55 CET by the dblp team
all metadata released as open data under CC0 1.0 license
see also: Terms of Use | Privacy Policy | Imprint