default search action
Sai Praneeth Karimireddy
Person information
Refine list
refinements active!
zoomed in on ?? of ?? records
view refined list in
export refined list as
2020 – today
- 2024
- [j3]Klavdiia Naumova, Arnout Devos, Sai Praneeth Karimireddy, Martin Jaggi, Mary-Anne Hartley:
MyThisYourThat for interpretable identification of systematic bias in federated learning for biomedical images. npj Digit. Medicine 7(1) (2024) - [j2]El Mahdi Chayti, Sai Praneeth Karimireddy:
Optimization with Access to Auxiliary Information. Trans. Mach. Learn. Res. 2024 (2024) - [c23]Nivasini Ananthakrishnan, Tiffany Ding, Mariel A. Werner, Sai Praneeth Karimireddy, Michael I. Jordan:
Privacy Can Arise Endogenously in an Economic System with Learning Agents. FORC 2024: 9:1-9:22 - [c22]Tianyu Guo, Sai Praneeth Karimireddy, Michael I. Jordan:
Collaborative Heterogeneous Causal Inference Beyond Meta-analysis. ICML 2024 - [i35]Charles Lu, Baihe Huang, Sai Praneeth Karimireddy, Praneeth Vepakomma, Michael I. Jordan, Ramesh Raskar:
Data Acquisition via Experimental Design for Decentralized Data Markets. CoRR abs/2403.13893 (2024) - [i34]Nivasini Ananthakrishnan, Tiffany Ding, Mariel A. Werner, Sai Praneeth Karimireddy, Michael I. Jordan:
Privacy Can Arise Endogenously in an Economic System with Learning Agents. CoRR abs/2404.10767 (2024) - [i33]Tianyu Guo, Sai Praneeth Karimireddy, Michael I. Jordan:
Collaborative Heterogeneous Causal Inference Beyond Meta-analysis. CoRR abs/2404.15746 (2024) - [i32]Mariel A. Werner, Sai Praneeth Karimireddy, Michael I. Jordan:
Defection-Free Collaboration between Competitors in a Learning System. CoRR abs/2406.15898 (2024) - 2023
- [j1]Mariel A. Werner, Lie He, Michael I. Jordan, Martin Jaggi, Sai Praneeth Karimireddy:
Provably Personalized and Robust Federated Learning. Trans. Mach. Learn. Res. 2023 (2023) - [c21]Sai Praneeth Karimireddy, Narasimha Raghavan Veeraragavan, Severin Elvatun, Jan F. Nygård:
Federated Learning Showdown: The Comparative Analysis of Federated Learning Frameworks. FMEC 2023: 224-231 - [c20]Matteo Pagliardini, Martin Jaggi, François Fleuret, Sai Praneeth Karimireddy:
Agree to Disagree: Diversity through Disagreement for Better Transferability. ICLR 2023 - [c19]Charles Lu, Yaodong Yu, Sai Praneeth Karimireddy, Michael I. Jordan, Ramesh Raskar:
Federated Conformal Predictors for Distributed Uncertainty Quantification. ICML 2023: 22942-22964 - [i31]Banghua Zhu, Sai Praneeth Karimireddy, Jiantao Jiao, Michael I. Jordan:
Online Learning in a Creator Economy. CoRR abs/2305.11381 (2023) - [i30]Charles Lu, Yaodong Yu, Sai Praneeth Karimireddy, Michael I. Jordan, Ramesh Raskar:
Federated Conformal Predictors for Distributed Uncertainty Quantification. CoRR abs/2305.17564 (2023) - [i29]Baihe Huang, Sai Praneeth Karimireddy, Michael I. Jordan:
Evaluating and Incentivizing Diverse Data Contributions in Collaborative Learning. CoRR abs/2306.05592 (2023) - [i28]Mariel A. Werner, Lie He, Sai Praneeth Karimireddy, Michael I. Jordan, Martin Jaggi:
Provably Personalized and Robust Federated Learning. CoRR abs/2306.08393 (2023) - [i27]Yaodong Yu, Sai Praneeth Karimireddy, Yi Ma, Michael I. Jordan:
Scaff-PD: Communication Efficient Fair and Robust Federated Learning. CoRR abs/2307.13381 (2023) - 2022
- [c18]Andrei Afonin, Sai Praneeth Karimireddy:
Towards Model Agnostic Federated Learning Using Knowledge Distillation. ICLR 2022 - [c17]Sai Praneeth Karimireddy, Lie He, Martin Jaggi:
Byzantine-Robust Learning on Heterogeneous Datasets via Bucketing. ICLR 2022 - [c16]Jean Ogier du Terrail, Samy-Safwan Ayed, Edwige Cyffers, Felix Grimberg, Chaoyang He, Regis Loeb, Paul Mangold, Tanguy Marchand, Othmane Marfoq, Erum Mushtaq, Boris Muzellec, Constantin Philippenko, Santiago Silva, Maria Telenczuk, Shadi Albarqouni, Salman Avestimehr, Aurélien Bellet, Aymeric Dieuleveut, Martin Jaggi, Sai Praneeth Karimireddy, Marco Lorenzi, Giovanni Neglia, Marc Tommasi, Mathieu Andreux:
FLamby: Datasets and Benchmarks for Cross-Silo Federated Learning in Realistic Healthcare Settings. NeurIPS 2022 - [c15]Yaodong Yu, Alexander Wei, Sai Praneeth Karimireddy, Yi Ma, Michael I. Jordan:
TCT: Convexifying Federated Learning using Bootstrapped Neural Tangent Kernels. NeurIPS 2022 - [i26]Lie He, Sai Praneeth Karimireddy, Martin Jaggi:
Byzantine-Robust Decentralized Learning via Self-Centered Clipping. CoRR abs/2202.01545 (2022) - [i25]Matteo Pagliardini, Martin Jaggi, François Fleuret, Sai Praneeth Karimireddy:
Agree to Disagree: Diversity through Disagreement for Better Transferability. CoRR abs/2202.04414 (2022) - [i24]El Mahdi Chayti, Sai Praneeth Karimireddy:
Optimization with access to auxiliary information. CoRR abs/2206.00395 (2022) - [i23]Sai Praneeth Karimireddy, Wenshuo Guo, Michael I. Jordan:
Mechanisms that Incentivize Data Sharing in Federated Learning. CoRR abs/2207.04557 (2022) - [i22]Yaodong Yu, Alexander Wei, Sai Praneeth Karimireddy, Yi Ma, Michael I. Jordan:
TCT: Convexifying Federated Learning using Bootstrapped Neural Tangent Kernels. CoRR abs/2207.06343 (2022) - [i21]Jean Ogier du Terrail, Samy-Safwan Ayed, Edwige Cyffers, Felix Grimberg, Chaoyang He, Regis Loeb, Paul Mangold, Tanguy Marchand, Othmane Marfoq, Erum Mushtaq, Boris Muzellec, Constantin Philippenko, Santiago Silva, Maria Telenczuk, Shadi Albarqouni, Salman Avestimehr, Aurélien Bellet, Aymeric Dieuleveut, Martin Jaggi, Sai Praneeth Karimireddy, Marco Lorenzi, Giovanni Neglia, Marc Tommasi, Mathieu Andreux:
FLamby: Datasets and Benchmarks for Cross-Silo Federated Learning in Realistic Healthcare Settings. CoRR abs/2210.04620 (2022) - 2021
- [b1]Sai Praneeth Karimireddy:
Optimization methods for collaborative learning. EPFL, Switzerland, 2021 - [c14]Sai Praneeth Karimireddy, Lie He, Martin Jaggi:
Learning from History for Byzantine Robust Optimization. ICML 2021: 5311-5319 - [c13]Tao Lin, Sai Praneeth Karimireddy, Sebastian U. Stich, Martin Jaggi:
Quasi-global Momentum: Accelerating Decentralized Deep Learning on Heterogeneous Data. ICML 2021: 6654-6665 - [c12]Thijs Vogels, Lie He, Anastasia Koloskova, Sai Praneeth Karimireddy, Tao Lin, Sebastian U. Stich, Martin Jaggi:
RelaySum for Decentralized Deep Learning on Heterogeneous Data. NeurIPS 2021: 28004-28015 - [c11]Sai Praneeth Karimireddy, Martin Jaggi, Satyen Kale, Mehryar Mohri, Sashank J. Reddi, Sebastian U. Stich, Ananda Theertha Suresh:
Breaking the centralized barrier for cross-device federated learning. NeurIPS 2021: 28663-28676 - [i20]Tao Lin, Sai Praneeth Karimireddy, Sebastian U. Stich, Martin Jaggi:
Quasi-Global Momentum: Accelerating Decentralized Deep Learning on Heterogeneous Data. CoRR abs/2102.04761 (2021) - [i19]Jianyu Wang, Zachary Charles, Zheng Xu, Gauri Joshi, H. Brendan McMahan, Blaise Agüera y Arcas, Maruan Al-Shedivat, Galen Andrew, Salman Avestimehr, Katharine Daly, Deepesh Data, Suhas N. Diggavi, Hubert Eichner, Advait Gadhikar, Zachary Garrett, Antonious M. Girgis, Filip Hanzely, Andrew Hard, Chaoyang He, Samuel Horváth, Zhouyuan Huo, Alex Ingerman, Martin Jaggi, Tara Javidi, Peter Kairouz, Satyen Kale, Sai Praneeth Karimireddy, Jakub Konecný, Sanmi Koyejo, Tian Li, Luyang Liu, Mehryar Mohri, Hang Qi, Sashank J. Reddi, Peter Richtárik, Karan Singhal, Virginia Smith, Mahdi Soltanolkotabi, Weikang Song, Ananda Theertha Suresh, Sebastian U. Stich, Ameet Talwalkar, Hongyi Wang, Blake E. Woodworth, Shanshan Wu, Felix X. Yu, Honglin Yuan, Manzil Zaheer, Mi Zhang, Tong Zhang, Chunxiang Zheng, Chen Zhu, Wennan Zhu:
A Field Guide to Federated Optimization. CoRR abs/2107.06917 (2021) - [i18]Thijs Vogels, Lie He, Anastasia Koloskova, Tao Lin, Sai Praneeth Karimireddy, Sebastian U. Stich, Martin Jaggi:
RelaySum for Decentralized Deep Learning on Heterogeneous Data. CoRR abs/2110.04175 (2021) - [i17]Felix Grimberg, Mary-Anne Hartley, Sai Praneeth Karimireddy, Martin Jaggi:
Optimal Model Averaging: Towards Personalized Collaborative Learning. CoRR abs/2110.12946 (2021) - [i16]Andrei Afonin, Sai Praneeth Karimireddy:
Towards Model Agnostic Federated Learning Using Knowledge Distillation. CoRR abs/2110.15210 (2021) - [i15]El Mahdi Chayti, Sai Praneeth Karimireddy, Sebastian U. Stich, Nicolas Flammarion, Martin Jaggi:
Linear Speedup in Personalized Collaborative Learning. CoRR abs/2111.05968 (2021) - 2020
- [c10]Haihao Lu, Sai Praneeth Karimireddy, Natalia Ponomareva, Vahab S. Mirrokni:
Accelerating Gradient Boosting Machines. AISTATS 2020: 516-526 - [c9]Sai Praneeth Karimireddy, Satyen Kale, Mehryar Mohri, Sashank J. Reddi, Sebastian U. Stich, Ananda Theertha Suresh:
SCAFFOLD: Stochastic Controlled Averaging for Federated Learning. ICML 2020: 5132-5143 - [c8]Felix Grimberg, Mary-Anne Hartley, Martin Jaggi, Sai Praneeth Karimireddy:
Weight Erosion: An Update Aggregation Scheme for Personalized Collaborative Machine Learning. DART/DCL@MICCAI 2020: 160-169 - [c7]Thijs Vogels, Sai Praneeth Karimireddy, Martin Jaggi:
Practical Low-Rank Communication Compression in Decentralized Deep Learning. NeurIPS 2020 - [c6]Jingzhao Zhang, Sai Praneeth Karimireddy, Andreas Veit, Seungyeon Kim, Sashank J. Reddi, Sanjiv Kumar, Suvrit Sra:
Why are Adaptive Methods Good for Attention Models? NeurIPS 2020 - [i14]Lie He, Sai Praneeth Karimireddy, Martin Jaggi:
Secure Byzantine-Robust Machine Learning. CoRR abs/2006.04747 (2020) - [i13]Lie He, Sai Praneeth Karimireddy, Martin Jaggi:
Byzantine-Robust Learning on Heterogeneous Datasets via Resampling. CoRR abs/2006.09365 (2020) - [i12]Thijs Vogels, Sai Praneeth Karimireddy, Martin Jaggi:
PowerGossip: Practical Low-Rank Communication Compression in Decentralized Deep Learning. CoRR abs/2008.01425 (2020) - [i11]Sai Praneeth Karimireddy, Martin Jaggi, Satyen Kale, Mehryar Mohri, Sashank J. Reddi, Sebastian U. Stich, Ananda Theertha Suresh:
Mime: Mimicking Centralized Stochastic Algorithms in Federated Learning. CoRR abs/2008.03606 (2020) - [i10]Sai Praneeth Karimireddy, Lie He, Martin Jaggi:
Learning from History for Byzantine Robust Optimization. CoRR abs/2012.10333 (2020)
2010 – 2019
- 2019
- [c5]Sai Praneeth Karimireddy, Anastasia Koloskova, Sebastian U. Stich, Martin Jaggi:
Efficient Greedy Coordinate Descent for Composite Problems. AISTATS 2019: 2887-2896 - [c4]Sai Praneeth Karimireddy, Quentin Rebjock, Sebastian U. Stich, Martin Jaggi:
Error Feedback Fixes SignSGD and other Gradient Compression Schemes. ICML 2019: 3252-3261 - [c3]Thijs Vogels, Sai Praneeth Karimireddy, Martin Jaggi:
PowerSGD: Practical Low-Rank Gradient Compression for Distributed Optimization. NeurIPS 2019: 14236-14245 - [i9]Sai Praneeth Karimireddy, Quentin Rebjock, Sebastian U. Stich, Martin Jaggi:
Error Feedback Fixes SignSGD and other Gradient Compression Schemes. CoRR abs/1901.09847 (2019) - [i8]Haihao Lu, Sai Praneeth Karimireddy, Natalia Ponomareva, Vahab S. Mirrokni:
Accelerating Gradient Boosting Machine. CoRR abs/1903.08708 (2019) - [i7]Thijs Vogels, Sai Praneeth Karimireddy, Martin Jaggi:
PowerSGD: Practical Low-Rank Gradient Compression for Distributed Optimization. CoRR abs/1905.13727 (2019) - [i6]Sebastian U. Stich, Sai Praneeth Karimireddy:
The Error-Feedback Framework: Better Rates for SGD with Delayed Gradients and Compressed Communication. CoRR abs/1909.05350 (2019) - [i5]Sai Praneeth Karimireddy, Satyen Kale, Mehryar Mohri, Sashank J. Reddi, Sebastian U. Stich, Ananda Theertha Suresh:
SCAFFOLD: Stochastic Controlled Averaging for On-Device Federated Learning. CoRR abs/1910.06378 (2019) - [i4]Jingzhao Zhang, Sai Praneeth Karimireddy, Andreas Veit, Seungyeon Kim, Sashank J. Reddi, Sanjiv Kumar, Suvrit Sra:
Why ADAM Beats SGD for Attention Models. CoRR abs/1912.03194 (2019) - 2018
- [c2]Sai Praneeth Reddy Karimireddy, Sebastian U. Stich, Martin Jaggi:
Adaptive balancing of gradient and update computation times using global geometry and approximate subproblems. AISTATS 2018: 1204-1213 - [c1]Francesco Locatello, Anant Raj, Sai Praneeth Karimireddy, Gunnar Rätsch, Bernhard Schölkopf, Sebastian U. Stich, Martin Jaggi:
On Matching Pursuit and Coordinate Descent. ICML 2018: 3204-3213 - [i3]Francesco Locatello, Anant Raj, Sai Praneeth Karimireddy, Gunnar Rätsch, Bernhard Schölkopf, Sebastian U. Stich, Martin Jaggi:
Revisiting First-Order Convex Optimization Over Linear Spaces. CoRR abs/1803.09539 (2018) - [i2]Sai Praneeth Karimireddy, Sebastian U. Stich, Martin Jaggi:
Global linear convergence of Newton's method without strong-convexity or Lipschitz gradients. CoRR abs/1806.00413 (2018) - [i1]Sai Praneeth Karimireddy, Anastasia Koloskova, Sebastian U. Stich, Martin Jaggi:
Efficient Greedy Coordinate Descent for Composite Problems. CoRR abs/1810.06999 (2018)
Coauthor Index
manage site settings
To protect your privacy, all features that rely on external API calls from your browser are turned off by default. You need to opt-in for them to become active. All settings here will be stored as cookies with your web browser. For more information see our F.A.Q.
Unpaywalled article links
Add open access links from to the list of external document links (if available).
Privacy notice: By enabling the option above, your browser will contact the API of unpaywall.org to load hyperlinks to open access articles. Although we do not have any reason to believe that your call will be tracked, we do not have any control over how the remote server uses your data. So please proceed with care and consider checking the Unpaywall privacy policy.
Archived links via Wayback Machine
For web page which are no longer available, try to retrieve content from the of the Internet Archive (if available).
Privacy notice: By enabling the option above, your browser will contact the API of archive.org to check for archived content of web pages that are no longer available. Although we do not have any reason to believe that your call will be tracked, we do not have any control over how the remote server uses your data. So please proceed with care and consider checking the Internet Archive privacy policy.
Reference lists
Add a list of references from , , and to record detail pages.
load references from crossref.org and opencitations.net
Privacy notice: By enabling the option above, your browser will contact the APIs of crossref.org, opencitations.net, and semanticscholar.org to load article reference information. Although we do not have any reason to believe that your call will be tracked, we do not have any control over how the remote server uses your data. So please proceed with care and consider checking the Crossref privacy policy and the OpenCitations privacy policy, as well as the AI2 Privacy Policy covering Semantic Scholar.
Citation data
Add a list of citing articles from and to record detail pages.
load citations from opencitations.net
Privacy notice: By enabling the option above, your browser will contact the API of opencitations.net and semanticscholar.org to load citation information. Although we do not have any reason to believe that your call will be tracked, we do not have any control over how the remote server uses your data. So please proceed with care and consider checking the OpenCitations privacy policy as well as the AI2 Privacy Policy covering Semantic Scholar.
OpenAlex data
Load additional information about publications from .
Privacy notice: By enabling the option above, your browser will contact the API of openalex.org to load additional information. Although we do not have any reason to believe that your call will be tracked, we do not have any control over how the remote server uses your data. So please proceed with care and consider checking the information given by OpenAlex.
last updated on 2024-09-21 23:41 CEST by the dblp team
all metadata released as open data under CC0 1.0 license
see also: Terms of Use | Privacy Policy | Imprint