


default search action
Martin Takác 0001
Person information
- affiliation: Mohamed bin Zayed University of Artificial Intelligence, Abu Dhabi, UAE
- affiliation (former): Lehigh University, Bethlehem, PA, USA
Other persons with the same name
- Martin Takác 0002
— Comenius University, Bratislava, Slovak Republic (and 1 more)
Refine list

refinements active!
zoomed in on ?? of ?? records
view refined list in
export refined list as
2020 – today
- 2025
- [i100]Ruichen Luo, Sebastian U. Stich, Samuel Horváth, Martin Takác:
Revisiting LocalSGD and SCAFFOLD: Improved Rates and Missing Analysis. CoRR abs/2501.04443 (2025) - [i99]Munachiso Nwadike, Zangir Iklassov, Toluwani Aremu, Tatsuya Hiraoka, Velibor Bojkovic, Benjamin Heinzerling, Hilal Alqaubeh, Martin Takác, Kentaro Inui:
RECALL: Library-Like Behavior In Language Models is Enhanced by Self-Referencing Causal Cycles. CoRR abs/2501.13491 (2025) - [i98]Mohannad Takrouri, Nicolas M. Cuadrado, Martin Takác:
Knowledge Distillation from Large Language Models for Household Energy Modeling. CoRR abs/2502.03034 (2025) - [i97]Ivo Gollini Navarrete, Nicolas Mauricio Cuadrado, Jose Renato Restom, Martin Takác, Samuel Horváth:
Fishing For Cheap And Efficient Pruners At Initialization. CoRR abs/2502.11450 (2025) - 2024
- [j35]Vitali Pirau, Aleksandr Beznosikov, Martin Takác, Vladislav Matyukhin, Alexander V. Gasnikov:
Preconditioning meets biased compression for efficient distributed optimization. Comput. Manag. Sci. 21(1): 14 (2024) - [j34]Abdurakhmon Sadiev, Aleksandr Beznosikov
, Abdulla Jasem Almansoori, Dmitry Kamzolov, Rachael Tappenden, Martin Takác:
Stochastic Gradient Methods with Preconditioned Updates. J. Optim. Theory Appl. 201(2): 471-489 (2024) - [j33]Aleksandr Beznosikov
, Martin Takác
:
Random-reshuffled SARAH does not need full gradient computations. Optim. Lett. 18(3): 727-749 (2024) - [j32]Artem Agafonov, Dmitry Kamzolov
, Pavel E. Dvurechensky
, Alexander V. Gasnikov, Martin Takác
:
Inexact tensor methods and their application to stochastic convex optimization. Optim. Methods Softw. 39(1): 42-83 (2024) - [j31]Abdulla Jasem Almansoori, Samuel Horváth, Martin Takác:
PaDPaF: Partial Disentanglement with Partially-Federated GANs. Trans. Mach. Learn. Res. 2024 (2024) - [c42]Kun Song, Ruben Solozabal, Hao Li, Martin Takác, Lu Ren, Fakhri Karray:
Robustly Train Normalizing Flows via KL Divergence Regularization. AAAI 2024: 15047-15055 - [c41]Vincent Plassier, Nikita Kotelevskii, Aleksandr Rubashevskii, Fedor Noskov, Maksim Velikanov, Alexander Fishkov, Samuel Horváth, Martin Takác, Eric Moulines, Maxim Panov:
Efficient Conformal Prediction under Data Heterogeneity. AISTATS 2024: 4879-4887 - [c40]Artem Agafonov, Dmitry Kamzolov, Alexander V. Gasnikov, Ali Kavis, Kimon Antonakopoulos, Volkan Cevher, Martin Takác:
Advancing the Lower Bounds: an Accelerated, Stochastic, Second-order Method with Optimal Adaptation to Inexactness. ICLR 2024 - [c39]Nikita Kotelevskii, Samuel Horváth, Karthik Nandakumar, Martin Takác, Maxim Panov:
Dirichlet-based Uncertainty Quantification for Personalized Federated Learning with Improved Posterior Networks. IJCAI 2024: 7127-7135 - [c38]Artem Agafonov, Petr Ostroukhov, Roman Mozhaev, Konstantin Yakovlev, Eduard Gorbunov, Martin Takác, Alexander V. Gasnikov, Dmitry Kamzolov:
Exploring Jacobian Inexactness in Second-Order Methods for Variational Inequalities: Lower Bounds, Optimal Algorithms and Quasi-Newton Approximations. NeurIPS 2024 - [c37]Sayantan Choudhury, Nazarii Tupitsa, Nicolas Loizou, Samuel Horváth, Martin Takác, Eduard Gorbunov:
Remove that Square Root: A New Efficient Scale-Invariant Version of AdaGrad. NeurIPS 2024 - [c36]Zangir Iklassov, Yali Du, Farkhad Akimov, Martin Takác:
Self-Guiding Exploration for Combinatorial Problems. NeurIPS 2024 - [i96]Nazarii Tupitsa, Samuel Horváth, Martin Takác, Eduard Gorbunov:
Federated Learning Can Find Friends That Are Beneficial. CoRR abs/2402.05050 (2024) - [i95]Petr Ostroukhov, Aigerim Zhumabayeva, Chulu Xiang, Alexander V. Gasnikov, Martin Takác, Dmitry Kamzolov:
AdaBatchGrad: Combining Adaptive Batch Size and Adaptive Step Size. CoRR abs/2402.05264 (2024) - [i94]Zangir Iklassov, Ikboljon Sobirov, Ruben Solozabal, Martin Takác:
Reinforcement Learning for Solving Stochastic Vehicle Routing Problem with Time Windows. CoRR abs/2402.09765 (2024) - [i93]Sayantan Choudhury, Nazarii Tupitsa, Nicolas Loizou, Samuel Horváth, Martin Takác, Eduard Gorbunov:
Remove that Square Root: A New Efficient Scale-Invariant Version of AdaGrad. CoRR abs/2403.02648 (2024) - [i92]Yunxiang Li, Nicolas Mauricio Cuadrado, Samuel Horváth, Martin Takác:
Generalized Policy Learning for Smart Grids: FL TRPO Approach. CoRR abs/2403.18439 (2024) - [i91]Nicolas Mauricio Cuadrado, Roberto Alejandro Gutiérrez Guillén, Martin Takác:
FRESCO: Federated Reinforcement Energy System for Cooperative Optimization. CoRR abs/2403.18444 (2024) - [i90]Yunxiang Li, Rui Yuan, Chen Fan, Mark Schmidt, Samuel Horváth, Robert M. Gower, Martin Takác:
Enhancing Policy Gradient with the Polyak Step-Size Adaption. CoRR abs/2404.07525 (2024) - [i89]Zangir Iklassov, Yali Du, Farkhad Akimov, Martin Takác:
Self-Guiding Exploration for Combinatorial Problems. CoRR abs/2405.17950 (2024) - [i88]Saveliy Chezhegov, Sergey Skorik, Nikolas Khachaturov, Danil Shalagin, Aram Avetisyan, Aleksandr Beznosikov, Martin Takác, Yaroslav Kholodov, Alexander V. Gasnikov:
Local Methods with Adaptivity via Scaling. CoRR abs/2406.00846 (2024) - [i87]Saveliy Chezhegov, Yaroslav Klyukin, Andrei Semenov
, Aleksandr Beznosikov, Alexander V. Gasnikov, Samuel Horváth, Martin Takác, Eduard Gorbunov:
Gradient Clipping Improves AdaGrad when the Noise Is Heavy-Tailed. CoRR abs/2406.04443 (2024) - [i86]Samar Fares, Klea Ziu, Toluwani Aremu, Nikita Durasov, Martin Takác, Pascal Fua, Karthik Nandakumar, Ivan Laptev:
MirrorCheck: Efficient Adversarial Defense for Vision-Language Models. CoRR abs/2406.09250 (2024) - [i85]Eduard Gorbunov, Nazarii Tupitsa, Sayantan Choudhury, Alen Aliev, Peter Richtárik, Samuel Horváth, Martin Takác:
Methods for Convex (L0,L1)-Smooth Optimization: Clipping, Acceleration, and Adaptivity. CoRR abs/2409.14989 (2024) - [i84]Nurbek Tastan, Samuel Horváth, Martin Takác, Karthik Nandakumar:
FedPeWS: Personalized Warmup via Subnetworks for Enhanced Heterogeneous Federated Learning. CoRR abs/2410.03042 (2024) - [i83]Abdulla Jasem Almansoori, Samuel Horváth, Martin Takác:
Collaborative and Efficient Personalization with Mixtures of Adaptors. CoRR abs/2410.03497 (2024) - [i82]Kun Song, Ruben Solozabal, Li hao, Lu Ren, Moloud Abdar, Qing Li, Fakhri Karray, Martin Takác:
Enhance Hyperbolic Representation Learning via Second-order Pooling. CoRR abs/2410.22026 (2024) - [i81]Klea Ziu, Slavomír Hanzely, Loka Li, Kun Zhang, Martin Takác, Dmitry Kamzolov:
ψDAG: Projected Stochastic Approximation Iteration for DAG Structure Learning. CoRR abs/2410.23862 (2024) - [i80]Philip Zmushko, Aleksandr Beznosikov, Martin Takác, Samuel Horváth:
FRUGAL: Memory-Efficient Optimization by Reducing State Overhead for Scalable Training. CoRR abs/2411.07837 (2024) - [i79]Yury Demidovich, Petr Ostroukhov, Grigory Malinovsky, Samuel Horváth, Martin Takác, Peter Richtárik, Eduard Gorbunov:
Methods with Local Steps and Random Reshuffling for Generally Smooth Non-Convex Federated Optimization. CoRR abs/2412.02781 (2024) - [i78]Nicolas Mauricio Cuadrado, Samuel Horváth, Martin Takác:
Generalizing in Net-Zero Microgrids: A Study with Federated PPO and TRPO. CoRR abs/2412.20946 (2024) - 2023
- [j30]Zangir Iklassov
, Ikboljon Sobirov
, Ruben Solozabal, Martin Takác
:
Reinforcement Learning Approach to Stochastic Vehicle Routing Problem With Correlated Demands. IEEE Access 11: 87958-87969 (2023) - [j29]Zheng Shi, Abdurakhmon Sadiev, Nicolas Loizou, Peter Richtárik, Martin Takác:
AI-SARAH: Adaptive and Implicit Stochastic Recursive Gradient Methods. Trans. Mach. Learn. Res. 2023 (2023) - [c35]Zangir Iklassov, Ikboljon Sobirov, Ruben Solozabal, Martin Takác:
Reinforcement Learning for Solving Stochastic Vehicle Routing Problem. ACML 2023: 502-517 - [c34]Egor Gladin, Maksim Lavrik-Karmazin, Karina Zainullina, Varvara Rudenko, Alexander V. Gasnikov, Martin Takác:
Algorithm for Constrained Markov Decision Process with Linear Convergence. AISTATS 2023: 11506-11533 - [c33]Shuang Li, William J. Swartworth, Martin Takác, Deanna Needell, Robert M. Gower:
SP2 : A Second Order Stochastic Polyak Method. ICLR 2023 - [c32]Nicolas M. Cuadrado, Roberto Alejandro Gutiérrez Guillén, Martin Takác:
FRESCO: Federated Reinforcement Energy System for Cooperative Optimization. Tiny Papers @ ICLR 2023 - [c31]Zangir Iklassov, Dmitrii Medvedev, Ruben Solozabal Ochoa de Retana, Martin Takác:
On the Study of Curriculum Learning for Inferring Dispatching Policies on the Job Shop Scheduling. IJCAI 2023: 5350-5358 - [c30]Aleksandr Beznosikov, Martin Takác, Alexander V. Gasnikov:
Similarity, Compression and Local Steps: Three Pillars of Efficient Communications for Distributed Variational Inequalities. NeurIPS 2023 - [c29]Nazarii Tupitsa, Abdulla Jasem Almansoori, Yanlin Wu, Martin Takác, Karthik Nandakumar, Samuel Horváth, Eduard Gorbunov:
Byzantine-Tolerant Methods for Distributed Variational Inequalities. NeurIPS 2023 - [c28]Talal Algumaei, Ruben Solozabal, Réda Alami, Hakim Hacid, Mérouane Debbah, Martin Takác:
Regularization of the Policy Updates for Stabilizing Mean Field Games. PAKDD (2) 2023: 361-372 - [i77]Asma Ahmed Hashmi, Artem Agafonov, Aigerim Zhumabayeva, Mohammad Yaqub, Martin Takác:
In Quest of Ground Truth: Learning Confident Models and Estimating Uncertainty in the Presence of Annotator Noise. CoRR abs/2301.00524 (2023) - [i76]Nicolas M. Cuadrado, Roberto A. Gutiérrez, Yongli Zhu, Martin Takác:
MAHTM: A Multi-Agent Framework for Hierarchical Transactive Microgrids. CoRR abs/2303.08447 (2023) - [i75]Talal Algumaei, Ruben Solozabal, Réda Alami, Hakim Hacid, Mérouane Debbah, Martin Takác:
Regularization of the policy updates for stabilizing Mean Field Games. CoRR abs/2304.01547 (2023) - [i74]Farshed Abdukhakimov, Chulu Xiang, Dmitry Kamzolov, Martin Takác:
Stochastic Gradient Descent with Preconditioned Polyak Step-size. CoRR abs/2310.02093 (2023) - [i73]Nazarii Tupitsa, Abdulla Jasem Almansoori, Yanlin Wu, Martin Takác, Karthik Nandakumar, Samuel Horváth, Eduard Gorbunov:
Byzantine-Tolerant Methods for Distributed Variational Inequalities. CoRR abs/2311.04611 (2023) - [i72]Zangir Iklassov, Ikboljon Sobirov, Ruben Solozabal, Martin Takác:
Reinforcement Learning for Solving Stochastic Vehicle Routing Problem. CoRR abs/2311.07708 (2023) - [i71]Nikita Kotelevskii, Samuel Horváth, Karthik Nandakumar, Martin Takác, Maxim Panov:
Dirichlet-based Uncertainty Quantification for Personalized Federated Learning with Improved Posterior Networks. CoRR abs/2312.11230 (2023) - [i70]Vincent Plassier, Nikita Kotelevskii, Aleksandr Rubashevskii, Fedor Noskov
, Maksim Velikanov, Alexander Fishkov, Samuel Horváth, Martin Takác, Eric Moulines, Maxim Panov:
Efficient Conformal Prediction under Data Heterogeneity. CoRR abs/2312.15799 (2023) - [i69]Farshed Abdukhakimov, Chulu Xiang, Dmitry Kamzolov, Robert M. Gower, Martin Takác:
SANIA: Polyak-type Optimization Framework Leads to Scale Invariant Stochastic Algorithms. CoRR abs/2312.17369 (2023) - 2022
- [j28]Abdurakhmon Sadiev, Ekaterina Borodich, Aleksandr Beznosikov, Darina Dvinskikh
, Saveliy Chezhegov, Rachael Tappenden, Martin Takác
, Alexander V. Gasnikov:
Decentralized personalized federated learning: Lower bounds and optimal algorithm for all personalization modes. EURO J. Comput. Optim. 10: 100041 (2022) - [j27]Yicheng Chen
, Rick S. Blum
, Martin Takác
, Brian M. Sadler
:
Distributed Learning With Sparsified Gradient Differences. IEEE J. Sel. Top. Signal Process. 16(3): 585-600 (2022) - [j26]Afshin Oroojlooyjadid
, MohammadReza Nazari
, Lawrence V. Snyder
, Martin Takác
:
A Deep Q-Network for the Beer Game: Deep Reinforcement Learning for Inventory Optimization. Manuf. Serv. Oper. Manag. 24(1): 285-304 (2022) - [j25]Albert S. Berahas
, Majid Jahani
, Peter Richtárik
, Martin Takác
:
Quasi-Newton methods for machine learning: forget the past, just sample. Optim. Methods Softw. 37(5): 1668-1704 (2022) - [c27]Zhengqing Gao, Huimin Wu, Martin Takác, Bin Gu:
Towards Practical Large Scale Non-Linear Semi-Supervised Learning with Balancing Constraints. CIKM 2022: 3072-3081 - [c26]Majid Jahani, Sergey Rusakov, Zheng Shi, Peter Richtárik, Michael W. Mahoney, Martin Takác:
Doubly Adaptive Scaled Algorithm for Machine Learning Using Second-Order Information. ICLR 2022 - [c25]Alexander V. Gasnikov, Anton Novitskii, Vasilii Novitskii, Farshed Abdukhakimov, Dmitry Kamzolov, Aleksandr Beznosikov, Martin Takác, Pavel E. Dvurechensky, Bin Gu:
The power of first-order smooth optimization for black-box non-smooth problems. ICML 2022: 7241-7265 - [c24]Naif Alkhunaizi
, Dmitry Kamzolov
, Martin Takác
, Karthik Nandakumar
:
Suppressing Poisoning Attacks on Federated Learning for Medical Imaging. MICCAI (8) 2022: 673-683 - [c23]Slavomír Hanzely, Dmitry Kamzolov, Dmitry Pasechnyuk, Alexander V. Gasnikov, Peter Richtárik, Martin Takác:
A Damped Newton Method Achieves Global $\mathcal O \left(\frac{1}{k^2}\right)$ and Local Quadratic Convergence Rate. NeurIPS 2022 - [i68]Yicheng Chen, Rick S. Blum, Martin Takác, Brian M. Sadler:
Distributed Learning With Sparsified Gradient Differences. CoRR abs/2202.02491 (2022) - [i67]Guangyi Liu, Arash Amini, Martin Takác, Nader Motee:
Robustness Analysis of Classification Using Recurrent Neural Networks with Perturbed Sequential Input. CoRR abs/2203.05403 (2022) - [i66]Abdurakhmon Sadiev, Aleksandr Beznosikov
, Abdulla Jasem Almansoori, Dmitry Kamzolov
, Rachael Tappenden, Martin Takác:
Stochastic Gradient Methods with Preconditioned Updates. CoRR abs/2206.00285 (2022) - [i65]Egor Gladin, Maksim Lavrik-Karmazin, Karina Zainullina, Varvara Rudenko, Alexander V. Gasnikov, Martin Takác:
Algorithm for Constrained Markov Decision Process with Linear Convergence. CoRR abs/2206.01666 (2022) - [i64]Yuzhen Han, Ruben Solozabal, Jing Dong, Xingyu Zhou, Martin Takác, Bin Gu:
Learning to Control under Time-Varying Environment. CoRR abs/2206.02507 (2022) - [i63]Zangir Iklassov, Dmitrii Medvedev, Ruben Solozabal, Martin Takác:
Learning to generalize Dispatching rules on the Job Shop Scheduling. CoRR abs/2206.04423 (2022) - [i62]Aleksandr Beznosikov
, Aibek Alanov, Dmitry Kovalev, Martin Takác, Alexander V. Gasnikov:
On Scaled Methods for Saddle Point Problems. CoRR abs/2206.08303 (2022) - [i61]Shuang Li, William J. Swartworth, Martin Takác, Deanna Needell, Robert M. Gower:
SP2: A Second Order Stochastic Polyak Method. CoRR abs/2207.08171 (2022) - [i60]Naif Alkhunaizi, Dmitry Kamzolov
, Martin Takác, Karthik Nandakumar:
Suppressing Poisoning Attacks on Federated Learning for Medical Imaging. CoRR abs/2207.10804 (2022) - [i59]Artem Agafonov, Brahim Erraji, Martin Takác:
FLECS-CGD: A Federated Learning Second-Order Framework via Compression and Sketching with Compressed Gradient Differences. CoRR abs/2210.09626 (2022) - [i58]Rachael Tappenden, Martin Takác:
Gradient Descent and the Power Method: Exploiting their connection to find the leftmost eigen-pair and escape saddle points. CoRR abs/2211.00866 (2022) - [i57]Jie Liu, Antonio Bellon, Andrea Simonetto, Martin Takác, Jakub Marecek
:
Optimal Power Flow Pursuit in the Alternating Current Model. CoRR abs/2211.02939 (2022) - [i56]Abdulla Jasem Almansoori, Samuel Horváth
, Martin Takác:
Partial Disentanglement with Partially-Federated GANs (PaDPaF). CoRR abs/2212.03836 (2022) - 2021
- [j24]Krishnan Kumaran, Dimitri J. Papageorgiou, Martin Takác
, Laurens Lueg, Nicolas V. Sahinidis:
Active metric learning for supervised classification. Comput. Chem. Eng. 144: 107132 (2021) - [j23]Majid Jahani, Naga Venkata C. Gudapati, Chenxin Ma, Rachael Tappenden
, Martin Takác
:
Fast and safe: accelerated gradient methods with optimality certificates and underestimate sequences. Comput. Optim. Appl. 79(2): 369-404 (2021) - [j22]Chenxin Ma
, Martin Jaggi
, Frank E. Curtis
, Nathan Srebro
, Martin Takác
:
An accelerated communication-efficient primal-dual optimization framework for structured machine learning. Optim. Methods Softw. 36(1): 20-44 (2021) - [j21]Lam M. Nguyen
, Katya Scheinberg
, Martin Takác
:
Inexact SARAH algorithm for stochastic optimization. Optim. Methods Softw. 36(1): 237-258 (2021) - [c22]Majid Jahani, MohammadReza Nazari, Rachael Tappenden, Albert S. Berahas, Martin Takác:
SONIA: A Symmetric Blockwise Truncated Optimization Algorithm. AISTATS 2021: 487-495 - [c21]Hui Ye, Xiulong Yang, Martin Takác, Rajshekhar Sunderraman, Shihao Ji:
Improving Text-to-Image Synthesis Using Contrastive Learning. BMVC 2021: 154 - [c20]Guangyi Liu, Arash Amini, Martin Takác, Nader Motee:
Classification-Aware Path Planning of Network of Robots. DARS 2021: 294-305 - [i55]Zheng Shi, Nicolas Loizou, Peter Richtárik
, Martin Takác:
AI-SARAH: Adaptive and Implicit Stochastic Recursive Gradient Methods. CoRR abs/2102.09700 (2021) - [i54]Hui Ye, Xiulong Yang, Martin Takác, Rajshekhar Sunderraman, Shihao Ji:
Improving Text-to-Image Synthesis Using Contrastive Learning. CoRR abs/2107.02423 (2021) - [i53]Majid Jahani, Sergey Rusakov, Zheng Shi, Peter Richtárik
, Michael W. Mahoney, Martin Takác:
Doubly Adaptive Scaled Algorithm for Machine Learning Using Second-Order Information. CoRR abs/2109.05198 (2021) - [i52]Aleksandr Beznosikov, Martin Takác:
Random-reshuffled SARAH does not need a full gradient computations. CoRR abs/2111.13322 (2021) - 2020
- [j20]Nur Sila Gulgec, Martin Takác
, Shamim N. Pakzad
:
Structural sensing with deep learning: Strain estimation from acceleration data for fatigue assessment. Comput. Aided Civ. Infrastructure Eng. 35(12): 1349-1364 (2020) - [j19]Afshin Oroojlooyjadid, Lawrence V. Snyder, Martin Takác
:
Applying deep learning to the newsvendor problem. IISE Trans. 52(4): 444-463 (2020) - [j18]Aryan Mokhtari, Alec Koppel, Martin Takác, Alejandro Ribeiro:
A Class of Parallel Doubly Stochastic Algorithms for Large-Scale Learning. J. Mach. Learn. Res. 21: 120:1-120:51 (2020) - [j17]Albert S. Berahas
, Martin Takác
:
A robust multi-batch L-BFGS method for machine learning. Optim. Methods Softw. 35(1): 191-219 (2020) - [j16]Peter Richtárik
, Martin Takác
:
Stochastic Reformulations of Linear Systems: Algorithms and Convergence Theory. SIAM J. Matrix Anal. Appl. 41(2): 487-524 (2020) - [c19]Majid Jahani, Xi He, Chenxin Ma, Aryan Mokhtari, Dheevatsa Mudigere, Alejandro Ribeiro, Martin Takác:
Efficient Distributed Hessian Free Algorithm for Large-scale Empirical Risk Minimization via Accumulating Sample Strategy. AISTATS 2020: 2634-2644 - [c18]Zheng Shi, Nur Sila Gulgec, Albert S. Berahas, Shamim N. Pakzad
, Martin Takác
:
Finite Difference Neural Networks: Fast Prediction of Partial Differential Equations. ICMLA 2020: 130-135 - [c17]Majid Jahani, MohammadReza Nazari, Sergey Rusakov, Albert S. Berahas, Martin Takác
:
Scaling Up Quasi-newton Algorithms: Communication Efficient Distributed SR1. LOD (1) 2020: 41-54 - [i51]Zheng Shi, Nur Sila Gulgec, Albert S. Berahas, Shamim N. Pakzad, Martin Takác:
Finite Difference Neural Networks: Fast Prediction of Partial Differential Equations. CoRR abs/2006.01892 (2020) - [i50]Ruben Solozabal, Josu Ceberio, Martin Takác:
Constrained Combinatorial Optimization with Reinforcement Learning. CoRR abs/2006.11984 (2020) - [i49]Soheil Sadeghi Eshkevari, Martin Takác, Shamim N. Pakzad, Majid Jahani:
DynNet: Physics-based neural architecture design for linear and nonlinear structural response modeling and prediction. CoRR abs/2007.01814 (2020) - [i48]Guangyi Liu, Arash Amini, Martin Takác, Héctor Muñoz-Avila, Nader Motee:
Reinforcement Learning based Multi-Robot Classification via Scalable Communication Structure. CoRR abs/2012.10480 (2020)
2010 – 2019
- 2019
- [j15]Nur Sila Gulgec, Martin Takác
, Shamim N. Pakzad
:
Convolutional Neural Network Approach for Robust Structural Damage Detection and Localization. J. Comput. Civ. Eng. 33(3) (2019) - [j14]Lam M. Nguyen, Phuong Ha Nguyen, Peter Richtárik, Katya Scheinberg
, Martin Takác, Marten van Dijk:
New Convergence Aspects of Stochastic Gradient Algorithms. J. Mach. Learn. Res. 20: 176:1-176:49 (2019) - [c16]Mikhail Krechetov, Jakub Marecek
, Yury Maximov
, Martin Takác
:
Entropy-Penalized Semidefinite Programming. IJCAI 2019: 1123-1129 - [c15]Hossein K. Mousavi, MohammadReza Nazari, Martin Takác
, Nader Motee:
Multi-Agent Image Classification via Reinforcement Learning. IROS 2019: 5020-5027 - [i47]Konstantin Mishchenko
, Eduard Gorbunov
, Martin Takác, Peter Richtárik
:
Distributed Learning with Compressed Gradient Differences. CoRR abs/1901.09269 (2019) - [i46]Albert S. Berahas, Majid Jahani, Martin Takác:
Quasi-Newton Methods for Deep Learning: Forget the Past, Just Sample. CoRR abs/1901.09997 (2019) - [i45]Hossein K. Mousavi, MohammadReza Nazari, Martin Takác, Nader Motee:
Multi-Agent Image Classification via Reinforcement Learning. CoRR abs/1905.04835 (2019) - [i44]MohammadReza Nazari, Majid Jahani, Lawrence V. Snyder, Martin Takác:
Don't Forget Your Teacher: A Corrective Reinforcement Learning Framework. CoRR abs/1905.13562 (2019) - [i43]Hossein K. Mousavi, Guangyi Liu, Weihang Yuan, Martin Takác, Héctor Muñoz-Avila, Nader Motee:
A Layered Architecture for Active Perception: Image Classification using Deep Reinforcement Learning. CoRR abs/1909.09705 (2019) - [i42]Nur Sila Gulgec, Zheng Shi, Neil Deshmukh, Shamim N. Pakzad, Martin Takác:
FD-Net with Auxiliary Time Steps: Fast Prediction of PDEs using Hessian-Free Trust-Region Methods. CoRR abs/1910.12680 (2019) - [i41]Sélim Chraibi, Ahmed Khaled, Dmitry Kovalev, Peter Richtárik, Adil Salim, Martin Takác:
Distributed Fixed Point Methods with Compressed Iterates. CoRR abs/1912.09925 (2019) - 2018
- [j13]Xi He, Rachael Tappenden, Martin Takác
:
Dual Free Adaptive Minibatch SDCA for Empirical Risk Minimization. Frontiers Appl. Math. Stat. 4: 33 (2018) - [j12]Rachael Tappenden, Martin Takác
, Peter Richtárik:
On the complexity of parallel coordinate descent. Optim. Methods Softw. 33(2): 372-395 (2018) - [c14]Lam M. Nguyen, Phuong Ha Nguyen, Marten van Dijk, Peter Richtárik, Katya Scheinberg
, Martin Takác:
SGD and Hogwild! Convergence Without the Bounded Gradients Assumption. ICML 2018: 3747-3755 - [c13]MohammadReza Nazari, Afshin Oroojlooy, Lawrence V. Snyder, Martin Takác:
Reinforcement Learning for Solving the Vehicle Routing Problem. NeurIPS 2018: 9861-9871 - [c12]Jakub Marecek
, Peter Richtárik
, Martin Takác
:
Matrix Completion Under Interval Uncertainty: Highlights. ECML/PKDD (3) 2018: 621-625 - [i40]Lam M. Nguyen
, Phuong Ha Nguyen, Marten van Dijk, Peter Richtárik
, Katya Scheinberg, Martin Takác:
SGD and Hogwild! Convergence Without the Bounded Gradients Assumption. CoRR abs/1802.03801 (2018) - [i39]MohammadReza Nazari, Afshin Oroojlooy, Lawrence V. Snyder, Martin Takác:
Deep Reinforcement Learning for Solving the Vehicle Routing Problem. CoRR abs/1802.04240 (2018) - [i38]Krishnan Kumaran, Dimitri J. Papageorgiou, Yutong Chang, Minhan Li, Martin Takác:
Active Metric Learning for Supervised Classification. CoRR abs/1803.10647 (2018) - [i37]Jie Liu, Yu Rong, Martin Takác, Junzhou Huang:
On the Acceleration of L-BFGS with Second-Order Information and Stochastic Batches. CoRR abs/1807.05328 (2018) - [i36]Majid Jahani, Xi He, Chenxin Ma, Aryan Mokhtari, Dheevatsa Mudigere, Alejandro Ribeiro, Martin Takác:
Efficient Distributed Hessian Free Algorithm for Large-scale Empirical Risk Minimization via Accumulating Sample Strategy. CoRR abs/1810.11507 (2018) - [i35]Lam M. Nguyen
, Katya Scheinberg, Martin Takác:
Inexact SARAH Algorithm for Stochastic Optimization. CoRR abs/1811.10105 (2018) - [i34]Lam M. Nguyen
, Phuong Ha Nguyen, Peter Richtárik
, Katya Scheinberg, Martin Takác, Marten van Dijk:
New Convergence Aspects of Stochastic Gradient Algorithms. CoRR abs/1811.12403 (2018) - 2017
- [j11]Jakub Marecek
, Peter Richtárik, Martin Takác
:
Matrix completion under interval uncertainty. Eur. J. Oper. Res. 256(1): 35-43 (2017) - [j10]Virginia Smith, Simone Forte, Chenxin Ma, Martin Takác, Michael I. Jordan, Martin Jaggi:
CoCoA: A General Framework for Communication-Efficient Distributed Optimization. J. Mach. Learn. Res. 18: 230:1-230:49 (2017) - [j9]Chenxin Ma, Jakub Konecný, Martin Jaggi
, Virginia Smith, Michael I. Jordan
, Peter Richtárik, Martin Takác
:
Distributed optimization with arbitrary local solvers. Optim. Methods Softw. 32(4): 813-848 (2017) - [j8]Jakub Marecek
, Martin Takác
:
A low-rank coordinate-descent algorithm for semidefinite programming relaxations of optimal power flow. Optim. Methods Softw. 32(4): 849-871 (2017) - [j7]Jie Liu, Alan C. Liddell Jr., Jakub Marecek
, Martin Takác
:
Hybrid Methods in Solving Alternating-Current Optimal Power Flows. IEEE Trans. Smart Grid 8(6): 2988-2998 (2017) - [c11]Xi He, Dheevatsa Mudigere, Mikhail Smelyanskiy, Martin Takác:
Distributed Hessian-Free Optimization for Deep Neural Network. AAAI Workshops 2017 - [c10]Chenxin Ma, Martin Takác:
Distributed Inexact Damped Newton Method: Data Partitioning and Work-Balancing. AAAI Workshops 2017 - [c9]Lam M. Nguyen, Jie Liu, Katya Scheinberg
, Martin Takác:
SARAH: A Novel Method for Machine Learning Problems Using Stochastic Recursive Gradient. ICML 2017: 2613-2621 - [i33]Lam M. Nguyen
, Jie Liu, Katya Scheinberg, Martin Takác:
SARAH: A Novel Method for Machine Learning Problems Using Stochastic Recursive Gradient. CoRR abs/1703.00102 (2017) - [i32]Lam M. Nguyen
, Jie Liu, Katya Scheinberg, Martin Takác:
Stochastic Recursive Gradient Algorithm for Nonconvex Optimization. CoRR abs/1705.07261 (2017) - [i31]Peter Richtárik
, Martin Takác:
Stochastic Reformulations of Linear Systems: Algorithms and Convergence Theory. CoRR abs/1706.01108 (2017) - [i30]Albert S. Berahas, Martin Takác:
A Robust Multi-Batch L-BFGS Method for Machine Learning. CoRR abs/1707.08552 (2017) - [i29]Afshin Oroojlooyjadid, MohammadReza Nazari, Lawrence V. Snyder, Martin Takác:
A Deep Q-Network for the Beer Game with Partial Information. CoRR abs/1708.05924 (2017) - [i28]Afshin Oroojlooyjadid, Lawrence V. Snyder, Martin Takác:
Stock-out Prediction in Multi-echelon Networks. CoRR abs/1709.06922 (2017) - [i27]Chenxin Ma, Naga Venkata C. Gudapati, Majid Jahani, Rachael Tappenden, Martin Takác:
Underestimate Sequences via Quadratic Averaging. CoRR abs/1710.03695 (2017) - [i26]Chenxin Ma, Martin Jaggi, Frank E. Curtis, Nathan Srebro, Martin Takác:
An Accelerated Communication-Efficient Primal-Dual Optimization Framework for Structured Machine Learning. CoRR abs/1711.05305 (2017) - 2016
- [j6]Peter Richtárik, Martin Takác:
Distributed Coordinate Descent Method for Learning with Big Data. J. Mach. Learn. Res. 17: 75:1-75:25 (2016) - [j5]Chenxin Ma, Rachael Tappenden, Martin Takác:
Linear Convergence of Randomized Feasible Descent Methods Under the Weak Strong Convexity Assumption. J. Mach. Learn. Res. 17: 230:1-230:24 (2016) - [j4]Jakub Konecný, Jie Liu, Peter Richtárik, Martin Takác
:
Mini-Batch Semi-Stochastic Gradient Descent in the Proximal Setting. IEEE J. Sel. Top. Signal Process. 10(2): 242-255 (2016) - [j3]Peter Richtárik, Martin Takác
:
Parallel coordinate descent methods for big data optimization. Math. Program. 156(1-2): 433-484 (2016) - [j2]Peter Richtárik, Martin Takác
:
On optimal probabilities in stochastic coordinate descent methods. Optim. Lett. 10(6): 1233-1243 (2016) - [c8]Celestine Dünner, Simone Forte, Martin Takác, Martin Jaggi:
Primal-Dual Rates and Certificates. ICML 2016: 783-792 - [c7]Zheng Qu, Peter Richtárik, Martin Takác, Olivier Fercoq:
SDNA: Stochastic Dual Newton Ascent for Empirical Risk Minimization. ICML 2016: 1823-1832 - [c6]Albert S. Berahas, Jorge Nocedal, Martin Takác:
A Multi-Batch L-BFGS Method for Machine Learning. NIPS 2016: 1055-1063 - [i25]Celestine Dünner, Simone Forte, Martin Takác, Martin Jaggi:
Primal-Dual Rates and Certificates. CoRR abs/1602.05205 (2016) - [i24]Chenxin Ma, Martin Takác:
Distributed Inexact Damped Newton Method: Data Partitioning and Load-Balancing. CoRR abs/1603.05191 (2016) - [i23]Albert S. Berahas, Jorge Nocedal, Martin Takác:
A Multi-Batch L-BFGS Method for Machine Learning. CoRR abs/1605.06049 (2016) - [i22]Xi He, Dheevatsa Mudigere, Mikhail Smelyanskiy, Martin Takác:
Large Scale Distributed Hessian-Free Optimization for Deep Neural Network. CoRR abs/1606.00511 (2016) - [i21]Afshin Oroojlooyjadid, Lawrence V. Snyder, Martin Takác:
Applying Deep Learning to the Newsvendor Problem. CoRR abs/1607.02177 (2016) - [i20]Virginia Smith, Simone Forte, Chenxin Ma, Martin Takác, Michael I. Jordan, Martin Jaggi:
CoCoA: A General Framework for Communication-Efficient Distributed Optimization. CoRR abs/1611.02189 (2016) - [i19]Jie Liu, Martin Takác:
Projected Semi-Stochastic Gradient Descent Method with Mini-Batch Scheme under Weak Strong Convexity Assumption. CoRR abs/1612.05356 (2016) - 2015
- [c5]Chenxin Ma, Virginia Smith, Martin Jaggi, Michael I. Jordan, Peter Richtárik, Martin Takác:
Adding vs. Averaging in Distributed Primal-Dual Optimization. ICML 2015: 1973-1982 - [i18]Zheng Qu, Peter Richtárik, Martin Takác, Olivier Fercoq:
SDNA: Stochastic Dual Newton Ascent for Empirical Risk Minimization. CoRR abs/1502.02268 (2015) - [i17]Chenxin Ma, Virginia Smith, Martin Jaggi, Michael I. Jordan, Peter Richtárik, Martin Takác:
Adding vs. Averaging in Distributed Primal-Dual Optimization. CoRR abs/1502.03508 (2015) - [i16]Jakub Konecný, Jie Liu, Peter Richtárik, Martin Takác:
Mini-Batch Semi-Stochastic Gradient Descent in the Proximal Setting. CoRR abs/1504.04407 (2015) - [i15]Chenxin Ma, Rachael Tappenden, Martin Takác:
Linear Convergence of the Randomized Feasible Descent Method Under the Weak Strong Convexity Assumption. CoRR abs/1506.02530 (2015) - [i14]Martin Takác, Peter Richtárik, Nathan Srebro:
Distributed Mini-Batch SDCA. CoRR abs/1507.08322 (2015) - [i13]Xi He, Martin Takác:
Dual Free SDCA for Empirical Risk Minimization with Adaptive Probabilities. CoRR abs/1510.06684 (2015) - [i12]Chenxin Ma, Martin Takác:
Partitioning Data on Features or Samples in Communication-Efficient Distributed Optimization? CoRR abs/1510.06688 (2015) - [i11]Chenxin Ma, Jakub Konecný, Martin Jaggi, Virginia Smith, Michael I. Jordan, Peter Richtárik, Martin Takác:
Distributed Optimization with Arbitrary Local Solvers. CoRR abs/1512.04039 (2015) - 2014
- [j1]Peter Richtárik, Martin Takác
:
Iteration complexity of randomized block-coordinate descent methods for minimizing a composite function. Math. Program. 144(1-2): 1-38 (2014) - [c4]Olivier Fercoq, Zheng Qu
, Peter Richtárik, Martin Takác
:
Fast distributed coordinate descent for non-strongly convex losses. MLSP 2014: 1-6 - [c3]Martin Jaggi, Virginia Smith, Martin Takác, Jonathan Terhorst, Sanjay Krishnan, Thomas Hofmann, Michael I. Jordan:
Communication-Efficient Distributed Dual Coordinate Ascent. NIPS 2014: 3068-3076 - [i10]Olivier Fercoq, Zheng Qu, Peter Richtárik, Martin Takác:
Fast Distributed Coordinate Descent for Non-Strongly Convex Losses. CoRR abs/1405.5300 (2014) - [i9]Martin Takác, Jakub Marecek, Peter Richtárik:
Inequality-Constrained Matrix Completion: Adding the Obvious Helps! CoRR abs/1408.2467 (2014) - [i8]Martin Jaggi, Virginia Smith, Martin Takác, Jonathan Terhorst, Sanjay Krishnan, Thomas Hofmann, Michael I. Jordan:
Communication-Efficient Distributed Dual Coordinate Ascent. CoRR abs/1409.1458 (2014) - [i7]Jakub Konecný, Jie Liu, Peter Richtárik, Martin Takác:
mS2GD: Mini-Batch Semi-Stochastic Gradient Descent in the Proximal Setting. CoRR abs/1410.4744 (2014) - 2013
- [c2]Martin Takác, Avleen Singh Bijral, Peter Richtárik, Nati Srebro:
Mini-Batch Primal and Dual Methods for SVMs. ICML (3) 2013: 1022-1030 - [i6]Martin Takác, Avleen Singh Bijral, Peter Richtárik, Nathan Srebro:
Mini-Batch Primal and Dual Methods for SVMs. CoRR abs/1303.2314 (2013) - [i5]Peter Richtárik, Martin Takác:
Distributed Coordinate Descent Method for Learning with Big Data. CoRR abs/1310.2059 (2013) - [i4]Peter Richtárik, Martin Takác:
On Optimal Probabilities in Stochastic Coordinate Descent Methods. CoRR abs/1310.3438 (2013) - [i3]Martin Takác, Selin Damla Ahipasaoglu, Ngai-Man Cheung, Peter Richtárik
:
TOP-SPIN: TOPic discovery via Sparse Principal component INterference. CoRR abs/1311.1406 (2013) - 2012
- [i2]Peter Richtárik, Martin Takác:
Parallel Coordinate Descent Methods for Big Data Optimization. CoRR abs/1212.0873 (2012) - [i1]Peter Richtárik
, Martin Takác, Selin Damla Ahipasaoglu:
Alternating Maximization: Unifying Framework for 8 Sparse PCA Formulations and Efficient Parallel Codes. CoRR abs/1212.4137 (2012) - 2011
- [c1]Peter Richtárik, Martin Takác:
Efficient Serial and Parallel Coordinate Descent Methods for Huge-Scale Truss Topology Design. OR 2011: 27-32
Coauthor Index

manage site settings
To protect your privacy, all features that rely on external API calls from your browser are turned off by default. You need to opt-in for them to become active. All settings here will be stored as cookies with your web browser. For more information see our F.A.Q.
Unpaywalled article links
Add open access links from to the list of external document links (if available).
Privacy notice: By enabling the option above, your browser will contact the API of unpaywall.org to load hyperlinks to open access articles. Although we do not have any reason to believe that your call will be tracked, we do not have any control over how the remote server uses your data. So please proceed with care and consider checking the Unpaywall privacy policy.
Archived links via Wayback Machine
For web page which are no longer available, try to retrieve content from the of the Internet Archive (if available).
Privacy notice: By enabling the option above, your browser will contact the API of archive.org to check for archived content of web pages that are no longer available. Although we do not have any reason to believe that your call will be tracked, we do not have any control over how the remote server uses your data. So please proceed with care and consider checking the Internet Archive privacy policy.
Reference lists
Add a list of references from ,
, and
to record detail pages.
load references from crossref.org and opencitations.net
Privacy notice: By enabling the option above, your browser will contact the APIs of crossref.org, opencitations.net, and semanticscholar.org to load article reference information. Although we do not have any reason to believe that your call will be tracked, we do not have any control over how the remote server uses your data. So please proceed with care and consider checking the Crossref privacy policy and the OpenCitations privacy policy, as well as the AI2 Privacy Policy covering Semantic Scholar.
Citation data
Add a list of citing articles from and
to record detail pages.
load citations from opencitations.net
Privacy notice: By enabling the option above, your browser will contact the API of opencitations.net and semanticscholar.org to load citation information. Although we do not have any reason to believe that your call will be tracked, we do not have any control over how the remote server uses your data. So please proceed with care and consider checking the OpenCitations privacy policy as well as the AI2 Privacy Policy covering Semantic Scholar.
OpenAlex data
Load additional information about publications from .
Privacy notice: By enabling the option above, your browser will contact the API of openalex.org to load additional information. Although we do not have any reason to believe that your call will be tracked, we do not have any control over how the remote server uses your data. So please proceed with care and consider checking the information given by OpenAlex.
last updated on 2025-03-18 20:39 CET by the dblp team
all metadata released as open data under CC0 1.0 license
see also: Terms of Use | Privacy Policy | Imprint