default search action
Richard W. Vuduc
Person information
- affiliation: Georgia Institute of Technology, Atlanta GA, USA
Refine list
refinements active!
zoomed in on ?? of ?? records
view refined list in
export refined list as
2020 – today
- 2024
- [c100]Jana Hozzová, Jacob O. Tørring, Ben van Werkhoven, David Strelák, Richard W. Vuduc:
FAIR Sharing of Data in Autotuning Research (Vision Paper). ICPE (Companion) 2024: 21-27 - 2023
- [c99]Srinivas Eswar, Benjamin Cobb, Koby Hayashi, Ramakrishnan Kannan, Grey Ballard, Richard W. Vuduc, Haesun Park:
Distributed-Memory Parallel JointNMF. ICS 2023: 301-312 - [c98]Patrick Lavin, Jeffrey Young, Richard W. Vuduc:
Multifidelity Memory System Simulation in SST. MEMSYS 2023: 8:1-8:15 - [c97]Mikhail Isaev, Nic McDonald, Larry Dennison, Richard W. Vuduc:
Calculon: a methodology and tool for high-level co-design of systems and large language models. SC 2023: 71:1-71:14 - [d2]Srinivas Eswar, Benjamin Cobb, Koby Hayashi, Ramakrishnan Kannan, Grey Ballard, Rich Vuduc, Haesun Park:
AminerMag S Dataset. Zenodo, 2023 - [d1]Srinivas Eswar, Benjamin Cobb, Koby Hayashi, Ramakrishnan Kannan, Grey Ballard, Rich Vuduc, Haesun Park:
AminerMag X Dataset. Zenodo, 2023 - 2022
- [j25]Richard W. Vuduc:
Jack, The Autotuner. Comput. Sci. Eng. 24(4): 24-27 (2022) - [j24]Nicole Prindle, Ali Kazmi, Aman Jain, Albert Chen, Marissa Sorkin, Sudhanshu Agarwal, Richard W. Vuduc, Vijay Thakkar:
Critique of "MemXCT: Memory-Centric X-Ray CT Reconstruction With Massive Parallelization" by SCC Team From Georgia Tech. IEEE Trans. Parallel Distributed Syst. 33(9): 2035-2038 (2022) - [c96]Mikhail Isaev, Nic McDonald, Jeffrey Young, Richard W. Vuduc:
ParaGraph: An application-simulator interface and toolkit for hardware-software co-design. ICPP 2022: 63:1-63:13 - [c95]Sara Karamati, Clayton Hughes, K. Scott Hemmert, Ryan E. Grant, Whit Schonbein, Scott Levy, Thomas M. Conte, Jeffrey Young, Richard W. Vuduc:
"Smarter" NICs for faster molecular dynamics: a case study. IPDPS 2022: 583-594 - [c94]Chunxing Yin, Da Zheng, Israt Nisa, Christos Faloutsos, George Karypis, Richard W. Vuduc:
Nimble GNN Embedding with Tensor-Train Decomposition. KDD 2022: 2327-2335 - [c93]Ramakrishnan Kannan, Piyush Sao, Hao Lu, Jakub Kurzak, Gundolf Schenk, Yongmei Shi, Seung-Hwan Lim, Sharat Israni, Vijay Thakkar, Guojing Cong, Robert M. Patton, Sergio E. Baranzini, Richard W. Vuduc, Thomas E. Potok:
Exaflops Biomedical Knowledge Graph Analytics. SC 2022: 6:1-6:11 - [i16]Sara Karamati, Clayton Hughes, K. Scott Hemmert, Ryan E. Grant, Whit Schonbein, Scott Levy, Thomas M. Conte, Jeffrey Young, Richard W. Vuduc:
"Smarter" NICs for faster molecular dynamics: a case study. CoRR abs/2204.05959 (2022) - [i15]Chunxing Yin, Da Zheng, Israt Nisa, Christos Faloutsos, George Karypis, Richard W. Vuduc:
Nimble GNN Embedding with Tensor-Train Decomposition. CoRR abs/2206.10581 (2022) - 2021
- [j23]Yang You, Jingyue Huang, Cho-Jui Hsieh, Richard W. Vuduc, James Demmel:
Communication-avoiding kernel ridge regression on parallel and distributed systems. CCF Trans. High Perform. Comput. 3(3): 252-270 (2021) - [j22]Srinivas Eswar, Ramakrishnan Kannan, Richard W. Vuduc, Haesun Park:
ORCA: Outlier detection and Robust Clustering for Attributed graphs. J. Glob. Optim. 81(4): 967-989 (2021) - [c92]Rahul Duggal, Cao Xiao, Richard W. Vuduc, Duen Horng Chau, Jimeng Sun:
CUP: Cluster Pruning for Compressing Deep Neural Networks. IEEE BigData 2021: 5102-5106 - [c91]Patrick Lavin, Jeffrey Young, Richard W. Vuduc, Jonathan Beard:
Online model swapping for architectural simulation. CF 2021: 102-112 - [c90]Piyush Sao, Hao Lu, Ramakrishnan Kannan, Vijay Thakkar, Richard W. Vuduc, Thomas E. Potok:
Scalable All-pairs Shortest Paths for Huge Graphs on Multi-GPU Clusters. HPDC 2021: 121-131 - [c89]Mitesh Kothari, Richard W. Vuduc:
An interface for multidimensional arrays in Arkouda. HPEC 2021: 1-2 - [c88]Sudhanshu Agarwal, Richard W. Vuduc:
Is it Nemo or Dory? Fast and accurate object detection for IoT and edge devices. IOT 2021: 94-101 - 2020
- [j21]Eric R. Hein, Srinivas Eswar, Abdurrahman Yasar, Jiajia Li, Jeffrey S. Young, Thomas M. Conte, Ümit V. Çatalyürek, Richard W. Vuduc, E. Jason Riedy, Bora Uçar:
Programming Strategies for Irregular Algorithms on the Emu Chick. ACM Trans. Parallel Comput. 7(4): 25:1-25:25 (2020) - [j20]Zhihao Li, Haipeng Jia, Yunquan Zhang, Tun Chen, Liang Yuan, Richard W. Vuduc:
Automatic Generation of High-Performance FFT Kernels on Arm and X86 CPUs. IEEE Trans. Parallel Distributed Syst. 31(8): 1925-1941 (2020) - [c87]Xin Chen, Thomas M. Tucker, Thomas R. Kurfess, Richard W. Vuduc, Liting Hu:
Max orientation coverage: efficient path planning to avoid collisions in the CNC milling of 3D objects. IROS 2020: 6862-6869 - [c86]Patrick Lavin, Jeffrey Young, Richard W. Vuduc, E. Jason Riedy, Aaron Vose, Daniel Ernst:
Evaluating Gather and Scatter Performance on CPUs and GPUs. MEMSYS 2020: 209-222 - [c85]Tong Zhou, Jun Shirako, Anirudh Jain, Sriseshan Srikanth, Thomas M. Conte, Richard W. Vuduc, Vivek Sarkar:
Intrepydd: performance, productivity, and portability for data science application kernels. Onward! 2020: 65-83 - [c84]Piyush Sao, Ramakrishnan Kannan, Prasun Gera, Richard W. Vuduc:
A supernodal all-pairs shortest path algorithm. PPoPP 2020: 250-261 - [c83]Ramakrishnan Kannan, Piyush Sao, Hao Lu, Drahomira Herrmannova, Vijay Thakkar, Robert M. Patton, Richard W. Vuduc, Thomas E. Potok:
Scalable knowledge graph analytics at 136 petaflop/s. SC 2020: 6 - [c82]Srinivas Eswar, Koby Hayashi, Grey Ballard, Ramakrishnan Kannan, Richard W. Vuduc, Haesun Park:
Distributed-memory parallel symmetric nonnegative matrix factorization. SC 2020: 74 - [i14]Patrick Lavin, Jeffrey Young, Rich Vuduc, Jonathan Beard:
Online Model Swapping in Architectural Simulation. CoRR abs/2012.01571 (2020)
2010 – 2019
- 2019
- [j19]Ioakeim Perros, Evangelos E. Papalexakis, Richard W. Vuduc, Elizabeth Searles, Jimeng Sun:
Temporal phenotyping of medically complex children via PARAFAC2 tensor factorization. J. Biomed. Informatics 93 (2019) - [j18]Yuchen Ma, Jiajia Li, Xiaolong Wu, Chenggang Yan, Jimeng Sun, Richard W. Vuduc:
Optimizing sparse tensor times matrix on GPUs. J. Parallel Distributed Comput. 129: 99-109 (2019) - [j17]Piyush Sao, Xiaoye S. Li, Richard W. Vuduc:
A communication-avoiding 3D algorithm for sparse LU factorization on heterogeneous systems. J. Parallel Distributed Comput. 131: 218-234 (2019) - [j16]Jeffrey S. Young, Eric R. Hein, Srinivas Eswar, Patrick Lavin, Jiajia Li, E. Jason Riedy, Richard W. Vuduc, Tom Conte:
A microbenchmark characterization of the Emu chick. Parallel Comput. 87: 60-69 (2019) - [c81]Xin Chen, Dmytro Konobrytskyi, Thomas M. Tucker, Thomas R. Kurfess, Richard W. Vuduc:
Faster parallel collision detection at high resolution for CNC milling applications. ICPP 2019: 97:1-97:10 - [c80]Piyush Sao, Ramakrishnan Kannan, Xiaoye Sherry Li, Richard W. Vuduc:
A communication-avoiding 3D sparse triangular solver. ICS 2019: 127-137 - [c79]Jiajia Li, Bora Uçar, Ümit V. Çatalyürek, Jimeng Sun, Kevin J. Barker, Richard W. Vuduc:
Efficient and effective sparse tensor reordering. ICS 2019: 227-237 - [c78]Israt Nisa, Jiajia Li, Aravind Sukumaran-Rajam, Richard W. Vuduc, P. Sadayappan:
Load-Balanced Sparse MTTKRP on GPUs. IPDPS 2019: 123-133 - [c77]Xin Chen, Thomas M. Tucker, Thomas R. Kurfess, Richard W. Vuduc:
Adaptive Deep Path: Efficient Coverage of a Known Environment under Various Configurations. IROS 2019: 3549-3556 - [c76]Piyush Sao, Christian Engelmann, Srinivas Eswar, Oded Green, Richard W. Vuduc:
Self-stabilizing Connected Components. FTXS@SC 2019: 50-59 - [i13]Eric R. Hein, Srinivas Eswar, Abdurrahman Yasar, Jiajia Li, Jeffrey S. Young, Thomas M. Conte, Ümit V. Çatalyürek, Rich Vuduc, E. Jason Riedy, Bora Uçar:
Programming Strategies for Irregular Algorithms on the Emu Chick. CoRR abs/1901.02775 (2019) - [i12]Israt Nisa, Jiajia Li, Aravind Sukumaran-Rajam, Richard W. Vuduc, P. Sadayappan:
Load-Balanced Sparse MTTKRP on GPUs. CoRR abs/1904.03329 (2019) - [i11]Rahul Duggal, Cao Xiao, Richard W. Vuduc, Jimeng Sun:
CUP: Cluster Pruning for Compressing Deep Neural Networks. CoRR abs/1911.08630 (2019) - 2018
- [j15]Prasanna Balaprakash, Jack J. Dongarra, Todd Gamblin, Mary W. Hall, Jeffrey K. Hollingsworth, Boyana Norris, Richard W. Vuduc:
Autotuning in High-Performance Computing Applications. Proc. IEEE 106(11): 2068-2083 (2018) - [c75]Yang You, James Demmel, Cho-Jui Hsieh, Richard W. Vuduc:
Accurate, Fast and Scalable Kernel Ridge Regression on Parallel and Distributed Systems. ICS 2018: 307-317 - [c74]Eric R. Hein, Tom Conte, Jeffrey Young, Srinivas Eswar, Jiajia Li, Patrick Lavin, Richard W. Vuduc, E. Jason Riedy:
An Initial Characterization of the Emu Chick. IPDPS Workshops 2018: 579-588 - [c73]Piyush Sao, Xiaoye Sherry Li, Richard W. Vuduc:
A Communication-Avoiding 3D LU Factorization Algorithm for Sparse Matrices. IPDPS 2018: 908-919 - [c72]Sara Karamati, Jeffrey S. Young, Richard W. Vuduc:
An Energy-Efficient Single-Source Shortest Path Algorithm. IPDPS 2018: 1080-1089 - [c71]Ioakeim Perros, Evangelos E. Papalexakis, Haesun Park, Richard W. Vuduc, Xiaowei Yan, Christopher deFilippi, Walter F. Stewart, Jimeng Sun:
SUSTain: Scalable Unsupervised Scoring for Tensors and its Application to Phenotyping. KDD 2018: 2080-2089 - [c70]Jiajia Li, Jimeng Sun, Richard W. Vuduc:
HiCOO: hierarchical storage of sparse tensors. SC 2018: 19:1-19:15 - [i10]Ioakeim Perros, Evangelos E. Papalexakis, Haesun Park, Richard W. Vuduc, Xiaowei Yan, Christopher deFilippi, Walter F. Stewart, Jimeng Sun:
SUSTain: Scalable Unsupervised Scoring for Tensors and its Application to Phenotyping. CoRR abs/1803.05473 (2018) - [i9]Yang You, James Demmel, Cho-Jui Hsieh, Richard W. Vuduc:
Accurate, Fast and Scalable Kernel Ridge Regression on Parallel and Distributed Systems. CoRR abs/1805.00569 (2018) - [i8]Devangi N. Parikh, Margaret E. Myers, Richard W. Vuduc, Robert A. van de Geijn:
A Simple Methodology for Computing Families of Algorithms. CoRR abs/1808.07832 (2018) - [i7]Jeffrey Young, Eric R. Hein, Srinivas Eswar, Patrick Lavin, Jiajia Li, E. Jason Riedy, Richard W. Vuduc, Tom Conte:
A Microbenchmark Characterization of the Emu Chick. CoRR abs/1809.07696 (2018) - [i6]Patrick Lavin, E. Jason Riedy, Rich Vuduc, Jeffrey S. Young:
Spatter: A Benchmark Suite for Evaluating Sparse Access Patterns. CoRR abs/1811.03743 (2018) - 2017
- [j14]Zhihui Du, Rong Ge, Victor W. Lee, Richard W. Vuduc, David A. Bader, Ligang He:
Modeling the Power Variability of Core Speed Scaling on Homogeneous Multicore Systems. Sci. Program. 2017: 8686971:1-8686971:13 (2017) - [j13]Yang You, James Demmel, Kent Czechowski, Le Song, Rich Vuduc:
Design and Implementation of a Communication-Optimal Classifier for Distributed Kernel Support Vector Machines. IEEE Trans. Parallel Distributed Syst. 28(4): 974-988 (2017) - [c69]Shuaiwen Leon Song, Richard W. Vuduc:
HPPAC Workshop Introduction. IPDPS Workshops 2017: 952 - [c68]Jiajia Li, Jee Choi, Ioakeim Perros, Jimeng Sun, Richard W. Vuduc:
Model-Driven Sparse CP Decomposition for Higher-Order Tensors. IPDPS 2017: 1048-1057 - [c67]Ioakeim Perros, Evangelos E. Papalexakis, Fei Wang, Richard W. Vuduc, Elizabeth Searles, Michael Thompson, Jimeng Sun:
SPARTan: Scalable PARAFAC2 for Large & Sparse Data. KDD 2017: 375-384 - [c66]Yiyang Zhao, Linnan Wang, Wei Wu, George Bosilca, Richard W. Vuduc, Jinmian Ye, Wenqi Tang, Zenglin Xu:
Efficient Communications in Training Large Scale Neural Networks. ACM Multimedia (Thematic Workshops) 2017: 110-116 - [c65]Ioakeim Perros, Fei Wang, Ping Zhang, Peter B. Walker, Richard W. Vuduc, Jyotishman Pathak, Jimeng Sun:
Polyadic Regression and its Application to Chemogenomics. SDM 2017: 72-80 - [i5]Ioakeim Perros, Evangelos E. Papalexakis, Fei Wang, Richard W. Vuduc, Elizabeth Searles, Michael Thompson, Jimeng Sun:
SPARTan: Scalable PARAFAC2 for Large & Sparse Data. CoRR abs/1703.04219 (2017) - 2016
- [c64]Piyush Sao, Oded Green, Chirag Jain, Richard W. Vuduc:
A Self-Correcting Connected Components Algorithm. FTXS@HPDC 2016: 9-16 - [c63]JeeWhan Choi, Richard W. Vuduc:
Analyzing the Energy Efficiency of the Fast Multipole Method Using a DVFS-Aware Energy Model. IPDPS Workshops 2016: 79-88 - [c62]Mohammad M. Hossain, Thomas M. Tucker, Thomas R. Kurfess, Richard W. Vuduc:
Hybrid Dynamic Trees for Extreme-Resolution 3D Sparse Data Modeling. IPDPS 2016: 132-141 - [c61]Jiajia Li, Yuchen Ma, Chenggang Yan, Richard W. Vuduc:
Optimizing Sparse Tensor Times Matrix on Multi-core and Many-Core Architectures. IA3@SC 2016: 26-33 - [i4]Marat Dukhan, Richard W. Vuduc, E. Jason Riedy:
Wanted: Floating-Point Add Round-off Error instruction. CoRR abs/1603.00491 (2016) - [i3]Ioakeim Perros, Robert Chen, Richard W. Vuduc, Jimeng Sun:
Sparse Hierarchical Tucker Factorization and its Application to Healthcare. CoRR abs/1610.07722 (2016) - 2015
- [j12]Sangmin Park, Richard W. Vuduc, Mary Jean Harrold:
UNICORN: a unified approach for localizing non-deadlock concurrency bugs. Softw. Test. Verification Reliab. 25(3): 167-190 (2015) - [c60]Ioakeim Perros, Robert Chen, Richard W. Vuduc, Jimeng Sun:
Sparse Hierarchical Tucker Factorization and Its Application to Healthcare. ICDM 2015: 943-948 - [c59]Piyush Sao, Xing Liu, Richard W. Vuduc, Xiaoye S. Li:
A Sparse Direct Solver for Distributed Memory Xeon Phi-Accelerated Systems. IPDPS 2015: 71-81 - [c58]Yang You, James Demmel, Kenneth Czechowski, Le Song, Richard W. Vuduc:
CA-SVM: Communication-Avoiding Support Vector Machines on Distributed Systems. IPDPS 2015: 847-859 - [c57]Mohammad M. Hossain, Thomas M. Tucker, Thomas R. Kurfess, Richard W. Vuduc:
A GPU-parallel construction of volumetric tree. IA3@SC 2015: 10:1-10:4 - [c56]Jiajia Li, Casey Battaglino, Ioakeim Perros, Jimeng Sun, Richard W. Vuduc:
An input-adaptive and in-place approach to dense tensor-times-matrix multiply. SC 2015: 76:1-76:12 - [c55]Oded Green, Marat Dukhan, Richard W. Vuduc:
Branch-Avoiding Graph Algorithms. SPAA 2015: 212-223 - 2014
- [j11]Dongryeol Lee, Piyush Sao, Richard W. Vuduc, Alexander G. Gray:
A distributed kernel summation framework for general-dimension machine learning. Stat. Anal. Data Min. 7(1): 1-13 (2014) - [c54]JeeWhan Choi, Aparna Chandramowlishwaran, Kamesh Madduri, Richard W. Vuduc:
A CPU: GPU Hybrid Implementation and Model-Driven Scheduling of the Fast Multipole Method. GPGPU@ASPLOS 2014: 64 - [c53]Piyush Sao, Richard W. Vuduc, Xiaoye Sherry Li:
A Distributed CPU-GPU Sparse Direct Solver. Euro-Par 2014: 487-498 - [c52]Jee W. Choi, Marat Dukhan, Xing Liu, Richard W. Vuduc:
Algorithmic Time, Energy, and Power on Candidate HPC Compute Building Blocks. IPDPS 2014: 447-457 - [c51]Kenneth Czechowski, Victor W. Lee, Ed Grochowski, Ronny Ronen, Ronak Singhal, Richard W. Vuduc, Pradeep Dubey:
Improving the energy efficiency of Big Cores. ISCA 2014: 493-504 - [i2]Oded Green, Marat Dukhan, Richard W. Vuduc:
Branch-Avoiding Graph Algorithms. CoRR abs/1411.1460 (2014) - 2013
- [j10]JeeWhan Choi, Richard W. Vuduc:
How much (execution) time and energy does my algorithm cost? XRDS 19(3): 49-51 (2013) - [j9]Leonid Oliker, Richard W. Vuduc:
Introduction for Special Issue on Autotuning. Int. J. High Perform. Comput. Appl. 27(4): 377-378 (2013) - [c50]JeeWhan Choi, Daniel Bedard, Robert J. Fowler, Richard W. Vuduc:
A Roofline Model of Energy. IPDPS 2013: 661-672 - [c49]Kenneth Czechowski, Richard W. Vuduc:
A Theoretical Framework for Algorithm-Architecture Co-design. IPDPS 2013: 791-802 - [c48]Sangmin Park, Mary Jean Harrold, Richard W. Vuduc:
Griffin: grouping suspicious memory-access patterns to improve understanding of concurrency bugs. ISSTA 2013: 134-144 - [c47]Marat Dukhan, Richard W. Vuduc:
Methods for High-Throughput Computation of Elementary Functions. PPAM (1) 2013: 86-95 - [c46]Piyush Sao, Richard W. Vuduc:
Self-stabilizing iterative solvers. ScalA@SC 2013: 4:1-4:8 - [e1]Alex Nicolau, Xiaowei Shen, Saman P. Amarasinghe, Richard W. Vuduc:
ACM SIGPLAN Symposium on Principles and Practice of Parallel Programming, PPoPP '13, Shenzhen, China, February 23-27, 2013. ACM 2013, ISBN 978-1-4503-1922-5 [contents] - [i1]Shel Swenson, Yogesh Simmhan, Viktor K. Prasanna, Manish Parashar, E. Jason Riedy, David A. Bader, Richard W. Vuduc:
Sustainable Software Development for Next-Gen Sequencing (NGS) Bioinformatics on Emerging Platforms. CoRR abs/1309.1828 (2013) - 2012
- [b1]Hyesoon Kim, Richard W. Vuduc, Sara S. Baghsorkhi, JeeWhan Choi, Wen-mei W. Hwu:
Performance Analysis and Tuning for General Purpose Graphics Processing Units (GPGPU). Synthesis Lectures on Computer Architecture, Morgan & Claypool Publishers 2012, ISBN 978-3-031-00609-8 - [j8]Ilya Lashuk, Aparna Chandramowlishwaran, Harper Langston, Tuan-Anh Nguyen, Rahul S. Sampath, Aashay Shringarpure, Richard W. Vuduc, Lexing Ying, Denis Zorin, George Biros:
A massively parallel adaptive fast multipole method on heterogeneous architectures. Commun. ACM 55(5): 101-109 (2012) - [j7]Jaekyu Lee, Hyesoon Kim, Richard W. Vuduc:
When Prefetching Works, When It Doesn't, and Why. ACM Trans. Archit. Code Optim. 9(1): 2:1-2:29 (2012) - [c45]Cong Hou, George Vulov, Daniel J. Quinlan, David R. Jefferson, Richard Fujimoto, Richard W. Vuduc:
A New Method for Program Inversion. CC 2012: 81-100 - [c44]Kenneth Czechowski, Casey Battaglino, Chris McClanahan, Kartik Iyer, P.-K. Yeung, Richard W. Vuduc:
On the communication complexity of 3D FFTs and its implications for Exascale. ICS 2012: 205-214 - [c43]Sangmin Park, Richard W. Vuduc, Mary Jean Harrold:
A Unified Approach for Localizing Non-deadlock Concurrency Bugs. ICST 2012: 51-60 - [c42]Richard W. Vuduc, Kenneth Czechowski, Aparna Chandramowlishwaran, JeeWhan Choi:
Courses in High-performance Computing for Scientists and Engineers. IPDPS Workshops 2012: 1335-1340 - [c41]Aparna Chandramowlishwaran, Richard W. Vuduc:
Communication-Optimal Parallel N-body Solvers. IPDPS Workshops 2012: 2462-2465 - [c40]JeeWhan Choi, Richard W. Vuduc:
Modeling and Analysis for Performance and Power. IPDPS Workshops 2012: 2466-2469 - [c39]Sooraj Bhat, Ashish Agarwal, Richard W. Vuduc, Alexander G. Gray:
A type theory for probability density functions. POPL 2012: 545-556 - [c38]Jaewoong Sim, Aniruddha Dasgupta, Hyesoon Kim, Richard W. Vuduc:
A performance analysis framework for identifying potential benefits in GPGPU applications. PPoPP 2012: 11-22 - [c37]Cong Hou, Daniel J. Quinlan, David R. Jefferson, Richard Fujimoto, Richard W. Vuduc:
Synthesizing Loops for Program Inversion. RC 2012: 72-84 - [c36]William B. March, Kenneth Czechowski, Marat Dukhan, Thomas Benson, Dongryeol Lee, Andrew J. Connolly, Richard W. Vuduc, Edmond Chow, Alexander G. Gray:
Optimizing the computation of n-point correlations on large-scale astronomical data. SC 2012: 74 - [c35]Dongryeol Lee, Richard W. Vuduc, Alexander G. Gray:
A Distributed Kernel Summation Framework for General-Dimension Machine Learning. SDM 2012: 391-402 - [c34]Aparna Chandramowlishwaran, JeeWhan Choi, Kamesh Madduri, Richard W. Vuduc:
Brief announcement: towards a communication optimal fast multipole method and its implications at exascale. SPAA 2012: 182-184 - [c33]Richard W. Vuduc, Kenneth Czechowski:
Toward a Theory of Algorithm-Architecture Co-design. VECPAR 2012: 4-8 - 2011
- [j6]Richard W. Vuduc, Kent Czechowski:
What GPU Computing Means for High-End Systems. IEEE Micro 31(4): 74-78 (2011) - [c32]Kent Czechowski, Casey Battaglino, Chris McClanahan, Aparna Chandramowlishwaran, Richard W. Vuduc:
Balance Principles for Algorithm-Architecture Co-Design. HotPar 2011 - [c31]George Vulov, Cong Hou, Richard W. Vuduc, Richard Fujimoto, Daniel J. Quinlan, David R. Jefferson:
The Backstroke framework for source level reverse computation applied to parallel discrete event simulation. WSC 2011: 2965-2979 - [c30]Takahiro Katagiri, Richard W. Vuduc:
The Sixth International Workshop on Automatic Performance Tuning (iWAPT2011). ICCS 2011: 2124-2125 - [r1]Richard W. Vuduc:
Autotuning. Encyclopedia of Parallel Computing 2011: 102-105 - 2010
- [c29]Sangmin Park, Richard W. Vuduc, Mary Jean Harrold:
Falcon: fault localization in concurrent programs. ICSE (1) 2010: 245-254 - [c28]Aparna Chandramowlishwaran, Kathleen Knobe, Richard W. Vuduc:
Performance evaluation of concurrent collections on high-performance multicore computing systems. IPDPS 2010: 1-12 - [c27]Aparna Chandramowlishwaran, Samuel Williams, Leonid Oliker, Ilya Lashuk, George Biros, Richard W. Vuduc:
Optimizing and tuning the fast multipole method for state-of-the-art multicore architectures. IPDPS 2010: 1-12 - [c26]Richard W. Vuduc:
Unconventional wisdom in multicore computing. IPDPS 2010: 1 - [c25]Jaekyu Lee, Nagesh B. Lakshminarayana, Hyesoon Kim, Richard W. Vuduc:
Many-Thread Aware Prefetching Mechanisms for GPGPU Applications. MICRO 2010: 213-224 - [c24]JeeWhan Choi, Amik Singh, Richard W. Vuduc:
Model-driven autotuning of sparse matrix-vector multiply on GPUs. PPoPP 2010: 115-126 - [c23]Aparna Chandramowlishwaran, Kathleen Knobe, Richard W. Vuduc:
Applying the concurrent collections programming model to asynchronous parallel dense linear algebra. PPoPP 2010: 345-346 - [c22]Aparna Chandramowlishwaran, Kamesh Madduri, Richard W. Vuduc:
Diagnosis, Tuning, and Redesign for Multicore Performance: A Case Study of the Fast Multipole Method. SC 2010: 1-12 - [c21]Abtin Rahimian, Ilya Lashuk, Shravan K. Veerapaneni, Aparna Chandramowlishwaran, Dhairya Malhotra, Logan Moon, Rahul S. Sampath, Aashay Shringarpure, Jeffrey S. Vetter, Richard W. Vuduc, Denis Zorin, George Biros:
Petascale Direct Numerical Simulation of Blood Flow on 200K Cores and Heterogeneous Architectures. SC 2010: 1-11 - [c20]Sooraj Bhat, Ashish Agarwal, Alexander G. Gray, Richard W. Vuduc:
Toward interactive statistical modeling. ICCS 2010: 1835-1844
2000 – 2009
- 2009
- [j5]Samuel Williams, Leonid Oliker, Richard W. Vuduc, John Shalf, Katherine A. Yelick, James Demmel:
Optimization of sparse matrix-vector multiplication on emerging multicore platforms. Parallel Comput. 35(3): 178-194 (2009) - [c19]Nitin Arora, Aashay Shringarpure, Richard W. Vuduc:
Direct N-body Kernels for Multicore Platforms. ICPP 2009: 379-387 - [c18]Sundaresan Venkatasubramanian, Richard W. Vuduc:
Tuned and wildly asynchronous stencil kernels for hybrid CPU/GPU systems. ICS 2009: 244-255 - [c17]Seunghwa Kang, David A. Bader, Richard W. Vuduc:
Understanding the design trade-offs among current multicore systems for numerical computations. IPDPS 2009: 1-12 - [c16]Chunhua Liao, Daniel J. Quinlan, Richard W. Vuduc, Thomas Panas:
Effective Source-to-Source Outlining to Support Whole Program Empirical Optimization. LCPC 2009: 308-322 - [c15]Ilya Lashuk, Aparna Chandramowlishwaran, Harper Langston, Tuan-Anh Nguyen, Rahul S. Sampath, Aashay Shringarpure, Richard W. Vuduc, Lexing Ying, Denis Zorin, George Biros:
A massively parallel adaptive fast-multipole method on heterogeneous architectures. SC 2009 - 2007
- [j4]Rajesh Nishtala, Richard W. Vuduc, James Demmel, Katherine A. Yelick:
When cache blocking of sparse matrix vector multiply works and why. Appl. Algebra Eng. Commun. Comput. 18(3): 297-311 (2007) - [c14]Thomas Panas, Thomas Epperly, Daniel J. Quinlan, Andreas Sæbjørnsen, Richard W. Vuduc:
Communicating Software Architecture using a Unified Single-View Visualization. ICECCS 2007: 217-228 - [c13]Qing Yi, Keith Seymour, Haihang You, Richard W. Vuduc, Daniel J. Quinlan:
POET: Parameterized Optimizations for Empirical Tuning. IPDPS 2007: 1-8 - [c12]Daniel J. Quinlan, Richard W. Vuduc, Ghassan Misherghi:
Techniques for specifying bug patterns. PADTAD 2007: 27-35 - [c11]Samuel Williams, Leonid Oliker, Richard W. Vuduc, John Shalf, Katherine A. Yelick, James Demmel:
Optimization of sparse matrix-vector multiplication on emerging multicore platforms. SC 2007: 38 - 2006
- [c10]Daniel J. Quinlan, Markus Schordan, Richard W. Vuduc, Qing Yi:
Annotating user-defined abstractions for optimization. IPDPS 2006 - [c9]Richard W. Vuduc, Martin Schulz, Daniel J. Quinlan, Bronis R. de Supinski, Andreas Sæbjørnsen:
Improving distributed memory applications testing by message perturbation. PADTAD 2006: 27-36 - 2005
- [j3]Richard Carl Demmel, Jack J. Dongarra, Victor Eijkhout, Erika Fuentes, Antoine Petitet, Richard W. Vuduc, R. Clint Whaley, Katherine A. Yelick:
Self-Adapting Linear Algebra Algorithms and Software. Proc. IEEE 93(2): 293-312 (2005) - [c8]Richard W. Vuduc, Hyun Jin Moon:
Fast Sparse Matrix-Vector Multiplication by Exploiting Variable Block Structure. HPCC 2005: 807-816 - [c7]Daniel J. Quinlan, Shmuel Ur, Richard W. Vuduc:
An Extensible Open-Source Compiler Infrastructure for Testing. Haifa Verification Conference 2005: 116-133 - 2004
- [j2]Richard W. Vuduc, James Demmel, Jeff A. Bilmes:
Statistical Models for Empirical Search-Based Performance Tuning. Int. J. High Perform. Comput. Appl. 18(1): 65-94 (2004) - [j1]Eun-Jin Im, Katherine A. Yelick, Richard W. Vuduc:
Sparsity: Optimization Framework for Sparse Matrix Kernels. Int. J. High Perform. Comput. Appl. 18(1): 135-158 (2004) - [c6]Benjamin C. Lee, Richard W. Vuduc, James Demmel, Katherine A. Yelick:
Performance Models for Evaluation and Automatic Tuning of Symmetric Sparse Matrix-Vector Multiply. ICPP 2004: 169-176 - 2003
- [c5]Rich Vuduc, Attila Gyulassy, James Demmel, Katherine A. Yelick:
Memory Hierarchy Optimizations and Performance ounds for Sparse A. International Conference on Computational Science 2003: 705-714 - 2002
- [c4]Rich Vuduc, James Demmel, Katherine A. Yelick, Shoaib Kamil, Rajesh Nishtala, Benjamin C. Lee:
Performance optimizations and bounds for sparse matrix-vector multiply. SC 2002: 35:1-35:35 - 2001
- [c3]Rich Vuduc, James Demmel, Jeff A. Bilmes:
Statistical Models for Automatic Performance Tuning. International Conference on Computational Science (1) 2001: 117-126 - 2000
- [c2]Rich Vuduc, James Demmel:
Code Generators for Automatic Tuning of Numerical Kernels: Experiences with FFTW. SAIG 2000: 190-211 - [c1]Danyel Fisher, Kris Hildrum, Jason I. Hong, Mark W. Newman, Megan Thomas, Rich Vuduc:
SWAMI: a framework for collaborative filtering algorithm development and evaluation. SIGIR 2000: 366-368
Coauthor Index
manage site settings
To protect your privacy, all features that rely on external API calls from your browser are turned off by default. You need to opt-in for them to become active. All settings here will be stored as cookies with your web browser. For more information see our F.A.Q.
Unpaywalled article links
Add open access links from to the list of external document links (if available).
Privacy notice: By enabling the option above, your browser will contact the API of unpaywall.org to load hyperlinks to open access articles. Although we do not have any reason to believe that your call will be tracked, we do not have any control over how the remote server uses your data. So please proceed with care and consider checking the Unpaywall privacy policy.
Archived links via Wayback Machine
For web page which are no longer available, try to retrieve content from the of the Internet Archive (if available).
Privacy notice: By enabling the option above, your browser will contact the API of archive.org to check for archived content of web pages that are no longer available. Although we do not have any reason to believe that your call will be tracked, we do not have any control over how the remote server uses your data. So please proceed with care and consider checking the Internet Archive privacy policy.
Reference lists
Add a list of references from , , and to record detail pages.
load references from crossref.org and opencitations.net
Privacy notice: By enabling the option above, your browser will contact the APIs of crossref.org, opencitations.net, and semanticscholar.org to load article reference information. Although we do not have any reason to believe that your call will be tracked, we do not have any control over how the remote server uses your data. So please proceed with care and consider checking the Crossref privacy policy and the OpenCitations privacy policy, as well as the AI2 Privacy Policy covering Semantic Scholar.
Citation data
Add a list of citing articles from and to record detail pages.
load citations from opencitations.net
Privacy notice: By enabling the option above, your browser will contact the API of opencitations.net and semanticscholar.org to load citation information. Although we do not have any reason to believe that your call will be tracked, we do not have any control over how the remote server uses your data. So please proceed with care and consider checking the OpenCitations privacy policy as well as the AI2 Privacy Policy covering Semantic Scholar.
OpenAlex data
Load additional information about publications from .
Privacy notice: By enabling the option above, your browser will contact the API of openalex.org to load additional information. Although we do not have any reason to believe that your call will be tracked, we do not have any control over how the remote server uses your data. So please proceed with care and consider checking the information given by OpenAlex.
last updated on 2024-11-08 20:27 CET by the dblp team
all metadata released as open data under CC0 1.0 license
see also: Terms of Use | Privacy Policy | Imprint