default search action
25th ESANN 2017: Bruges, Belgium
- 25th European Symposium on Artificial Neural Networks, ESANN 2017, Bruges, Belgium, April 26-28, 2017. 2017
Deep and kernel methods: best of two worlds
- Lluís Belanche, Marta R. Costa-jussà:
Bridging deep and kernel methods. - Dhanesh Ramachandram, Michal Lisicki, Timothy J. Shields, Mohamed R. Amer, Graham W. Taylor:
Structure optimization for deep multimodal fusion networks using graph-induced kernels. - Siamak Mehrkanoon, Andreas Zell, Johan A. K. Suykens:
Scalable Hybrid Deep Neural Kernel Networks. - Ivano Lauriola, Michele Donini, Fabio Aiolli:
Learning dot-product polynomials for multiclass problems. - Michiel van der Ree, Jos B. T. M. Roerdink, Christophe Phillips, Gaëtan Garraux, Eric Salmon, Marco A. Wiering:
Support vector components analysis. - Ehsan Sadrfaridpour, Sandeep Jeereddy, Ken Kennedy, André Luckow, Talayeh Razzaghi, Ilya Safro:
Algebraic multigrid support vector machines. - Stephan Baier, Sigurd Spieckermann, Volker Tresp:
Attention-based Information Fusion using Multi-Encoder-Decoder Recurrent Neural Networks. - Danut Ovidiu Pop, Alexandrina Rogozan, Fawzi Nashashibi, Abdelaziz Bensrhair:
Fusion of Stereo Vision for Pedestrian Recognition using Convolutional Neural Networks. - Alan Mosca, George D. Magoulas:
Training convolutional networks with weight-wise adaptive learning rates. - Muthuvel Murugan Issakkimuthu, K. V. Subrahmanyam:
Invariant representations of images for better learning. - Samuel Giatti Silva Filho, Roberto Zanetti Freire, Leandro dos Santos Coelho:
Feature Extraction for On-Road Vehicle Detection Based on Support Vector Machine. - Wolfgang Groß, Sascha Lange, Joschka Bödecker, Manuel Blum:
Predicting Time Series with Space-Time Convolutional and Recurrent Neural Networks.
Randomized Machine Learning approaches: analysis and developments
- Claudio Gallicchio, José David Martín-Guerrero, Alessio Micheli, Emilio Soria-Olivas:
Randomized Machine Learning Approaches: Recent Developments and Challenges. - Peter Tiño:
Fisher memory of linear Wigner echo state networks. - Luca Oneto, Sandro Ridella, Davide Anguita:
Generalization Performances of Randomized Classifiers and Algorithms built on Data Dependent Distributions. - Davide Bacciu, Michele Colombo, Davide Morelli, David Plans:
ELM Preference Learning for Physiological Data. - Anton Akusok, Emil Eirola, Yoan Miché, Andrey Gritsenko, Amaury Lendasse:
Advanced query strategies for Active Learning with Extreme Learning Machines. - Piotr Iwo Wójcik, Marcin Kurdziel:
Random projection initialization for deep neural networks.
Classification
- Tuan Do, James Pustejovsky:
Fine-grained event learning of human-object interaction with LSTM-CRF. - Bac Nguyen, Carlos Morell, Bernard De Baets:
Distance metric learning: a two-phase approach. - Benjamin Paassen, Alexander Schulz, Janne Hahne, Barbara Hammer:
An EM transfer learning algorithm with applications in bionic hand prostheses. - Luca Oneto, Anna Siri, Gianvittorio Luria, Davide Anguita:
Dropout Prediction at University of Genoa: a Privacy Preserving Data Driven Approach. - Eleonora D'Andrea, Fabio Di Francesco, Valentina Dini, Beatrice Lazzerini, Marco Romanelli, Pietro Salvo:
Physical activity recognition from sub-bandage sensors using both feature selection and extraction. - Romero F. A. B. de Morais, Péricles B. C. de Miranda, Ricardo M. A. Silva:
A multi-criteria meta-learning method to select under-sampling algorithms for imbalanced datasets. - Yasir Hamid, Ludovic Journaux, John Aldo Lee, Lucile Sautot, Nabi Bushra, M. Sugumaran:
Large-scale nonlinear dimensionality reduction for network intrusion detection. - Cem Karaoguz, Alexander Gepperth:
Acceleration of Prototype Based Models with Cascade Computation. - Rafael Adnet Pinho, Walkir Brito, Cláudia Lage Rebello da Motta, Priscila Lima:
Automatic crime report classi cation through a weightless neural network. - Danilo Silva de Carvalho, Minh-Le Nguyen:
Efficient Neural-based patent document segmentation with Term Order Probabilities.
Biomedical data analysis in translational research: integration of expert knowledge and interpretable models
- Gyan Bhanot, Michael Biehl, Thomas Villmann, Dietlind Zühlke:
Biomedical data analysis in translational research: integration of expert knowledge and interpretable models. - Christina Göpfert, Lukas Pfannschmidt, Barbara Hammer:
Feature Relevance Bounds for Linear Classification. - Olli-Pekka Rinta-Koski, Simo Särkkä, Jaakko Hollmén, Markus Leskinen, Sture Andersson:
Prediction of preterm infant mortality with Gaussian process classification. - Sreejita Ghosh, Elizabeth Sarah Baranowski, Rick van Veen, Gert-Jan de Vries, Michael Biehl, Wiebke Arlt, Peter Tiño, Kerstin Bunte:
Comparison of strategies to learn from imbalanced classes for computer aided diagnosis of inborn steroidogenic disorders.
Environmental signal processing: new trends and applications
- Matthieu Puigt, Gilles Delmaire, Gilles Roussel:
Environmental signal processing: new trends and applications. - John Murray-Bruce, Pier Luigi Dragotti:
Solving Inverse Source Problems for Sources with Arbitrary Shapes using Sensor Networks. - Manuel Lopez-Radcenco, Abdeldjalil Aïssa-El-Bey, Pierre Ailliot, Ronan Fablet:
Non-negative decomposition of geophysical dynamics. - Charlotte Revel, Yannick Deville, Véronique Achard, Xavier Briottet:
Impact of the initialisation of a blind unmixing method dealing with intra-class variability. - Michalis Giannopoulos, Sofia Savvaki, Grigorios Tsagkatakis, Panagiotis Tsakalides:
Application of Tensor and Matrix Completion on Environmental Sensing Data. - Rachid Ouaret, Anda Ionescu, Olivier Ramalho, Yves Candau:
Indoor air pollutant sources using Blind Source Separation Methods. - Andreu González-Calabuig, Georgina Faura, Manel del Valle:
High dimensionality voltammetric biosensor data processed with artificial neural networks.
Kernels, graphs and clustering
- Shuyu Dong, Dorina Thanou, Pierre-Antoine Absil, Pascal Frossard:
Learning sparse models of diffusive graph signals. - Dinh Tran-Van, Alessandro Sperduti, Fabrizio Costa:
The Conjunctive Disjunctive Node Kernel. - Maryam Abdollahyan, Fabrizio Smeraldi:
POKer: a Partial Order Kernel for Comparing Strings with Alternative Substrings. - Jérôme Mariette, Fabrice Rossi, Madalina Olteanu, Nathalie Villa-Vialaneix:
Accelerating stochastic kernel SOM. - Vahan Petrosyan, Alexandre Proutière:
Viral initialization for spectral clustering. - Michele Donini, Nicolò Navarin, Ivano Lauriola, Fabio Aiolli, Fabrizio Costa:
Fast hyperparameter selection for graph kernels via subsampling and multiple kernel learning. - Susanne Jauhiainen, Tommi Kärkkäinen:
A Simple Cluster Validation Index with Maximal Coverage. - Patrick O. Glauner, Manxing Du, Victor Paraschiv, Andrey Boytsov, Isabel Lopez Andrade, Jorge Augusto Meira, Petko Valtchev, Radu State:
The Top 10 Topics in Machine Learning Revisited: A Quantitative Meta-Study.
Regression, robots and biological systems
- Pierre-Yves Gousenbourger, Estelle M. Massart, Antoni Musolas, Pierre-Antoine Absil, Julien M. Hendrickx, Laurent Jacques, Youssef M. Marzouk:
Piecewise-Bézier C1 smoothing on manifolds with application to wind field estimation. - Van-Tinh Tran, Alex Aussem:
Reducing variance due to importance weighting in covariate shift bias correction. - Bulcsú Sándor, Claudius Gros:
Complex activity patterns generated by short-term synaptic plasticity. - Tjeerd Olde Scheper:
Criticality in Biocomputation. - Bernardo Stearns, Fábio Medeiros Rangel, Flavio Rangel, Fabrício Firmino de Faria, Jonice Oliveira:
Scholar Performance Prediction using Boosted Regression Trees Techniques. - Milad Malekzadeh Shafaroudi, Jeffrey F. Queißer, Jochen J. Steil:
Imitation learning for a continuum trunk robot. - Luiz F. R. Oliveira, Felipe M. G. França:
ELM vs. WiSARD: a performance comparison. - Patrick Blöbaum, Shohei Shimizu, Takashi Washio:
A novel principle for causal inference in data with small error variance. - Edna Milgo, Nixon K. Ronoh, Peter Waiganjo Wagacha, Bernard Manderick:
Comparison of adaptive MCMC methods. - Sam Palmer, Denise Gorse:
Pseudo-analytical solutions for stochastic options pricing using Monte Carlo simulation and Breeding PSO-trained neural networks. - Anders Søgaard:
Spikes as regularizers. - Zahra Karevan, Yunlong Feng, Johan A. K. Suykens:
Moving Least Squares Support Vector Machines for weather temperature prediction. - João P. P. Gomes, Diego P. P. Mesquita, Ananda Freire, Amauri H. Souza Júnior, Tommi Kärkkäinen:
A Robust Minimal Learning Machine based on the M-Estimator.
Processing, Mining and Visualizing Massive Urban Data
- Pierre Borgnat, Etienne Côme, Latifa Oukhellou:
Processing, mining and visualizing massive urban data. - Emeric Tonnelier, Nicolas Baskiotis, Vincent Guigue, Patrick Gallinari:
Anomaly detection and characterization in smart card logs using NMF and Tweets. - Rémy Cazabet, Pierre Borgnat, Pablo Jensen:
Using degree constrained gravity null-models to understand the structure of journeys' networks in bicycle sharing systems. - Diego Carvalho, Felipe M. G. França, Raul Barbosa, Douglas de O. Cardoso:
A neuro-symbolic approach to GPS trajectory classification. - Léna Carel, Pierre Alquier:
Non-negative matrix factorization as a pre-processing tool for travelers temporal profiles clustering. - Nicolas Cheifetz, Allou Samé, Zineb Sabir, Anne-Claire Sandraz, Cédric Féliers:
Extracting urban water usage habits from smart meter data: a functional clustering approach. - Anaïs Rémy, Etienne Côme:
Multiscale Spatio-Temporal Data Aggregation and Mapping for Urban Data Exploration. - Pierre-Antoine Laharotte, Romain Billot, Nour-Eddin El Faouzi:
Detection of non-recurrent road traffic events based on clustering indicators.
Signal and image processing, collaborative filtering
- Josef Feigl, Martin Bogdan:
Collaborative filtering with neural networks. - Weam M. Binjumah, Alexey Redyuk, Rod Adams, Neil Davey, Yi Sun:
Investigating optical transmission error correction using wavelet transforms. - Massimo De Gregorio, Maurizio Giordano:
WiSARDrp for Change Detection in Video Sequences. - Eyal Ben Zion, Boaz Lerner:
Learning human behaviors and lifestyle by capturing temporal relations in mobility patterns. - Patrick Thiam, Viktor Kessler, Friedhelm Schwenker:
Hierarchical Combination of Video Features for Personalised Pain Level Recognition. - Jing Ke, Yi Guo, Arcot Sowmya, Tomasz Bednarz:
A performance acceleration algorithm of spectral unmixing via subset selection. - Hong-Bo Xie, Hui Liu:
Myoelectrical signal classification based on S transform and two-directional 2DPCA. - Klaas Dijkstra, Jaap van de Loosdrecht, Lambert Schomaker, Marco A. Wiering:
Hyper-spectral frequency selection for the classification of vegetation diseases. - Isaac Fernández-Varela, Diego Álvarez-Estévez, Elena Hernández-Pereira, Vicente Moret-Bonillo:
Outlining a simple and robust method for the automatic detection of EEG arousals. - Gizelle Kupac Vianna, Gustavo Sucupira Oliveira, Gabriel Vargas Cunha:
A decision support system based on cellular automata to help the control of late blight in tomato cultures. - Adrian Ion-Margineanu, Sofie Van Cauter, Diana Maria Sima, Frederik Maes, Stefan Sunaert, Uwe Himmelreich, Sabine Van Huffel:
Comparison of manual and semi-manual delineations for classifying glioblastoma multiforme patients based on histogram and texture MRI features. - Diego García-Pérez, Ignacio Díaz Blanco, Daniel Pérez, Abel Alberto Cuadrado Vega, Manuel Domínguez-González:
Latent variable analysis in hospital electric power demand using non-negative matrix factorization. - Ronny Hug, Wolfgang Hübner, Michael Arens:
Supporting generative models of spatial behavior by user interaction.
Algorithmic Challenges in Big Data Analytics
- Verónica Bolón-Canedo, Beatriz Remeseiro, Konstantinos Sechidis, David Martínez-Rego, Amparo Alonso-Betanzos:
Algorithmic challenges in big data analytics. - Xiang Jiang, Erico N. de Souza, Xuan Liu, Behrouz Haji Soleimani, Xiaoguang Wang, Daniel L. Silver, Stan Matwin:
Partition-wise Recurrent Neural Networks for Point-based AIS Trajectory Classification. - Carlos Eiras-Franco, Leslie Kanthan, Amparo Alonso-Betanzos, David Martínez-Rego:
Scalable approximate k-NN Graph construction based on Locality Sensitive Hashing. - Henry W. J. Reeve, Gavin Brown:
Degrees of Freedom in Regression Ensembles. - Diego Fernández-Francos, Oscar Fontenla-Romero, Amparo Alonso-Betanzos, Gavin Brown:
Mutual information for improving the efficiency of the SCH algorithm. - Laura Morán-Fernández, Verónica Bolón-Canedo, Amparo Alonso-Betanzos:
A distributed approach for classification using distance metrics.
Deep learning
- Claudio Gallicchio, Alessio Micheli, Luca Silvestri:
Local Lyapunov Exponents of Deep RNN. - Jörg Wagner, Volker Fischer, Michael Herman, Sven Behnke:
Learning Semantic Prediction using Pretrained Deep Feedforward Networks. - Bruno Ordozgoiti, Alberto Mozo, Sandra Gómez Canaval, Udi Margolin, Elisha J. Rosensweig, Itai Segall:
Deep convolutional neural networks for detecting noisy neighbours in cloud infrastructure. - Matias Valdenegro-Toro:
Real-time convolutional networks for sonar image classification in low-power embedded systems. - Valentina Arrigoni, Beatrice Rossi, Pasqualina Fragneto, Giuseppe Desoli:
Approximate operations in Convolutional Neural Networks with RNS data representation. - Yanyan Geng, Ru-Ze Liang, Weizhi Li, Jingbin Wang, Gaoyuan Liang, Chenhao Xu, Jingyan Wang:
Learning convolutional neural network to maximize Pos@Top performance measure. - Melanie Ducoffe, Frédéric Precioso:
Active learning strategy for CNN combining batchwise Dropout and Query-By-Committee. - Petros Giannakopoulos, Yannis Cotronis:
A Deep Q-Learning Agent for L-Game with Variable Batch Training. - Pankaj Malhotra, Vishnu TV, Lovekesh Vig, Puneet Agarwal, Gautam Shroff:
TimeNet: Pre-trained deep recurrent neural network for time series classification. - Antonio D'Isanto, Kai Lars Polsterer:
Uncertain photometric redshifts via combining deep convolutional and mixture density networks. - Stavros Timotheatos, Grigorios Tsagkatakis, Panagiotis Tsakalides, Panos E. Trahanias:
Feature Extraction and Learning for RSSI based Indoor Device Localization.
manage site settings
To protect your privacy, all features that rely on external API calls from your browser are turned off by default. You need to opt-in for them to become active. All settings here will be stored as cookies with your web browser. For more information see our F.A.Q.