default search action
BioData Mining, Volume 6
Volume 6, 2013
- Hongying Dai, Richard J. Charnigo, Mara Becker, J. Steven Leeder, Alison A. Motsinger-Reif:
Risk score modeling of multiple gene to gene interactions using aggregated-multifactor dimensionality reduction. 1 - Wilco W. M. Fleuren, Erik J. M. Toonen, Stefan Verhoeven, Raoul Frijters, Tim Hulsen, Ton Rullmann, René C. van Schaik, Jacob de Vlieg, Wynand Alkema:
Identification of new biomarker candidates for glucocorticoid induced insulin resistance using literature mining. 2 - Anne Gatewood Hoen, Shea N. Gardner, Jason H. Moore:
Identification of SNPs associated with variola virus virulence. 3 - Ryan L. Collins, Ting Hu, Christian Wejse, Giorgio Sirugo, Scott M. Williams, Jason H. Moore:
Multifactor dimensionality reduction reveals a three-locus epistatic interaction associated with susceptibility to pulmonary tuberculosis. 4 - Sebastian Okser, Tapio Pahikkala, Tero Aittokallio:
Genetic variants and their interactions in disease risk prediction - machine learning and network perspectives. 5 - Chengwei Su, Angeline S. Andrew, Margaret R. Karagas, Mark E. Borsuk:
Using Bayesian networks to discover relations between genes, environment, and disease. 6 - Lars Rosenbaum, Andreas Jahn, Alexander Dörr, Andreas Zell:
Optimization and visualization of the edge weights in optimal assignment methods for virtual screening. 7 - Nicholas Mitsakakis, Zak Razak, Michael D. Escobar, J. Tim Westwood:
Prediction of Drosophila melanogaster gene function using Support Vector Machines. 8 - Jestinah M. Mahachie John, François Van Lishout, Elena S. Gusareva, Kristel Van Steen:
A robustness study of parametric and non-parametric tests in model-based multifactor dimensionality reduction for epistasis detection. 9 - James D. Malley, Abhijit Dasgupta, Jason H. Moore:
The limits of p-values for biological data mining. 10 - Y-h. Taguchi:
MicroRNA-mediated regulation of target genes in several brain regions is correlated to both microRNA-targeting-specific promoter methylation and differential microRNA expression. 11 - James D. Malley, Jason H. Moore:
The disconnect between classical biostatistics and the biological data mining community. 12 - Georgios A. Pavlopoulos, Anastasis Oulas, Ernesto Iacucci, Alejandro Sifrim, Yves Moreau, Reinhard Schneider, Jan Aerts, Ioannis Iliopoulos:
Unraveling genomic variation from next generation sequencing data. 13 - Jason H. Moore, Marylyn D. Ritchie:
The central role of biological data mining in connecting diverse disciplines. 14 - Salvatore Camiolo, Andrea Porceddu:
gff2Sequence, a new user friendly tool for the generation of genomic sequences. 15 - Munehiro Nakamura, Yusuke Kajiwara, Atsushi Otsuka, Haruhiko Kimura:
LVQ-SMOTE - Learning Vector Quantization based Synthetic Minority Over-sampling Technique for biomedical data. 16 - Deanna Petrochilos, Ali Shojaie, John H. Gennari, Neil F. Abernethy:
Using random walks to identify cancer-associated modules in expression data. 17 - Daniel Wolfe, Scott M. Dudek, Marylyn D. Ritchie, Sarah A. Pendergrass:
Visualizing genomic information across chromosomes with PhenoGram. 18 - Xiuzhen Huang, Barry Bruce, Alison Buchan, Clare Bates Congdon, Carole L. Cramer, Steven F. Jennings, Hongmei Jiang, Zenglu Li, Gail McClure, Rick McMullen, Jason H. Moore, Bindu Nanduri, Joan Peckham, Andy D. Perkins, Shawn W. Polson, Bhanu Rekepalli, Saeed Salem, Jennifer Specker, Donald C. Wunsch, Donghai Xiong, Shuzhong Zhang, Zhongming Zhao:
No-boundary thinking in bioinformatics research. 19 - Eshita Mutt, Sudha Rani, Ramanathan Sowdhamini:
Structural updates of alignment of protein domains and consequences on evolutionary models of domain superfamilies. 20 - Steffen Grunert, Dirk Labudde:
Graph representation of high-dimensional alpha-helical membrane protein data. 21 - Scott M. Williams, Jason H. Moore:
Big Data analysis on autopilot? 22 - Dokyoon Kim, Ruowang Li, Scott M. Dudek, Marylyn D. Ritchie:
ATHENA: Identifying interactions between different levels of genomic data associated with cancer clinical outcomes using grammatical evolution neural network. 23 - Thanawadee Preeprem, Greg Gibson:
An association-adjusted consensus deleterious scheme to classify homozygous Mis-sense mutations for personal genome interpretation. 24 - Sarah A. Pendergrass, Alex T. Frase, John R. Wallace, Daniel Wolfe, Neerja Katiyar, Carrie Moore, Marylyn D. Ritchie:
Genomic analyses with biofilter 2.0: knowledge driven filtering, annotation, and model development. 25
manage site settings
To protect your privacy, all features that rely on external API calls from your browser are turned off by default. You need to opt-in for them to become active. All settings here will be stored as cookies with your web browser. For more information see our F.A.Q.