default search action
Journal of Numerical Mathematics, Volume 26
Volume 26, Number 1, March 2018
- Peter Benner, Hermann Mena:
Numerical solution of the infinite-dimensional LQR problem and the associated Riccati differential equations. 1-20 - Francesco Bonaldi, Giuseppe Geymonat, Françoise Krasucki, Marina Vidrascu:
Mathematical and numerical modeling of plate dynamics with rotational inertia. 21-33 - Dietmar Kröner, Mirko Rokyta:
Error estimates for higher-order finite volume schemes for convection-diffusion problems. 35-62
Volume 26, Number 2, June 2018
- Martha L. Avendaño-Garrido, J. Rigoberto Gabriel-Arguelles, Ligia Quintana-Torres, Juan González-Hernández:
An approximation scheme for the Kantorovich-Rubinstein problem on compact spaces. 63-75 - Thomas Boiveau, Erik Burman, Susanne Claus, Mats G. Larson:
Fictitious domain method with boundary value correction using penalty-free Nitsche method. 77-95 - Kolade M. Owolabi, Edson Pindza:
Mathematical and computational studies of fractional reaction-diffusion system modelling predator-prey interactions. 97-110
Volume 26, Number 3, September 2018
- Radim Hosek, Bangwei She:
Stability and consistency of a finite difference scheme for compressible viscous isentropic flow in multi-dimension. 111-140 - Qiang Liu, Jia Wu, Xiantao Xiao, Liwei Zhang:
A note on distributionally robust optimization under moment uncertainty. 141-150 - Charles Puelz, Beatrice Riviere:
A priori error estimates of Adams-Bashforth discontinuous Galerkin Methods for scalar nonlinear conservation laws. 151-172
Volume 26, Number 4, December 2018
- Giovanni Alzetta, Daniel Arndt, Wolfgang Bangerth, Vishal Boddu, Benjamin Brands, Denis Davydov, Rene Gassmöller, Timo Heister, Luca Heltai, Katharina Kormann, Martin Kronbichler, Matthias Maier, Jean-Paul Pelteret, Bruno Turcksin, David R. Wells:
The deal.II library, Version 9.0. 173-183 - Owe Axelsson, Maya G. Neytcheva, Anders Ström:
An efficient preconditioning method for state box-constrained optimal control problems. 185-207 - Natasha Sharma, Guido Kanschat:
A contraction property of an adaptive divergence-conforming discontinuous Galerkin method for the Stokes problem. 209-232
manage site settings
To protect your privacy, all features that rely on external API calls from your browser are turned off by default. You need to opt-in for them to become active. All settings here will be stored as cookies with your web browser. For more information see our F.A.Q.