default search action
Mahito Sugiyama
Person information
Refine list
refinements active!
zoomed in on ?? of ?? records
view refined list in
export refined list as
2020 – today
- 2024
- [j11]Masatsugu Yamada, Mahito Sugiyama:
How graph features from message passing affect graph classification and regression? Intell. Data Anal. 28(1): 57-75 (2024) - [c31]Ryuichi Kanoh, Mahito Sugiyama:
Neural Tangent Kernels for Axis-Aligned Tree Ensembles. ICML 2024 - [c30]Profir-Petru Pârtachi, Mahito Sugiyama:
Bringing Structure to Naturalness: On the Naturalness of ASTs. ICSE Companion 2024: 378-379 - [i24]Prasad Cheema, Mahito Sugiyama:
StiefelGen: A Simple, Model Agnostic Approach for Time Series Data Augmentation over Riemannian Manifolds. CoRR abs/2402.19287 (2024) - [i23]Ryuichi Kanoh, Mahito Sugiyama:
Linear Mode Connectivity in Differentiable Tree Ensembles. CoRR abs/2405.14596 (2024) - [i22]Pingbang Hu, Mahito Sugiyama:
Pseudo-Non-Linear Data Augmentation via Energy Minimization. CoRR abs/2410.00718 (2024) - [i21]James Enouen, Mahito Sugiyama:
A Complete Decomposition of KL Error using Refined Information and Mode Interaction Selection. CoRR abs/2410.11964 (2024) - 2023
- [j10]Kiyotaka Matsue, Mahito Sugiyama:
Unsupervised Tensor Based Feature Extraction From Multivariate Time Series. IEEE Access 11: 116277-116295 (2023) - [c29]Ryuichi Kanoh, Mahito Sugiyama:
Analyzing Tree Architectures in Ensembles via Neural Tangent Kernel. ICLR 2023 - [c28]Kazu Ghalamkari, Mahito Sugiyama, Yoshinobu Kawahara:
Many-body Approximation for Non-negative Tensors. NeurIPS 2023 - [i20]Masatsugu Yamada, Mahito Sugiyama:
Molecular Graph Generation by Decomposition and Reassembling. CoRR abs/2302.00587 (2023) - 2022
- [j9]Kiyotaka Matsue, Mahito Sugiyama:
Unsupervised feature extraction from multivariate time series for outlier detection. Intell. Data Anal. 26(6): 1451-1467 (2022) - [c27]Kazu Ghalamkari, Mahito Sugiyama:
Fast Rank-1 NMF for Missing Data with KL Divergence. AISTATS 2022: 2927-2940 - [c26]Ryuichi Kanoh, Mahito Sugiyama:
A Neural Tangent Kernel Perspective of Infinite Tree Ensembles. ICLR 2022 - [i19]Ryuichi Kanoh, Mahito Sugiyama:
A Neural Tangent Kernel Formula for Ensembles of Soft Trees with Arbitrary Architectures. CoRR abs/2205.12904 (2022) - [i18]Kazu Ghalamkari, Mahito Sugiyama:
Many-Body Approximation for Tensors. CoRR abs/2209.15338 (2022) - 2021
- [c25]Kiyotaka Matsue, Mahito Sugiyama:
Unsupervised Tensor based Feature Extraction and Outlier Detection for Multivariate Time Series. DSAA 2021: 1-12 - [c24]Kazu Ghalamkari, Mahito Sugiyama:
Fast Tucker Rank Reduction for Non-Negative Tensors Using Mean-Field Approximation. NeurIPS 2021: 443-454 - [c23]Yuhi Kawakami, Mahito Sugiyama:
Investigating Overparameterization for Non-Negative Matrix Factorization in Collaborative Filtering. RecSys 2021: 685-690 - [c22]Simon Luo, Lamiae Azizi, Mahito Sugiyama:
Hierarchical probabilistic model for blind source separation via Legendre transformation. UAI 2021: 312-321 - [i17]Kazu Ghalamkari, Mahito Sugiyama:
A Closed Form Solution to Best Rank-1 Tensor Approximation via KL divergence Minimization. CoRR abs/2103.02898 (2021) - [i16]Ryuichi Kanoh, Mahito Sugiyama:
Unintended Effects on Adaptive Learning Rate for Training Neural Network with Output Scale Change. CoRR abs/2103.03466 (2021) - [i15]Ryuichi Kanoh, Mahito Sugiyama:
A Neural Tangent Kernel Perspective of Infinite Tree Ensembles. CoRR abs/2109.04983 (2021) - [i14]Kazu Ghalamkari, Mahito Sugiyama:
Fast Rank-1 NMF for Missing Data with KL Divergence. CoRR abs/2110.12595 (2021) - 2020
- [c21]Shota Hayashi, Mahito Sugiyama, Shin Matsushima:
Coordinate Descent Method for Log-linear Model on Posets. DSAA 2020: 99-108 - [c20]Md Sohel Ahmed, Fuyuki Ishikawa, Mahito Sugiyama:
Testing machine learning code using polyhedral region. ESEC/SIGSOFT FSE 2020: 1533-1536 - [i13]Prasad Cheema, Mahito Sugiyama:
A Geometric Look at Double Descent Risk: Volumes, Singularities, and Distinguishabilities. CoRR abs/2006.04366 (2020) - [i12]Kazu Ghalamkari, Mahito Sugiyama:
Rank Reduction, Matrix Balancing, and Mean-Field Approximation on Statistical Manifold. CoRR abs/2006.05321 (2020) - [i11]Simon Luo, Feng Zhou, Lamiae Azizi, Mahito Sugiyama:
Additive Poisson Process: Learning Intensity of Higher-Order Interaction in Stochastic Processes. CoRR abs/2006.08982 (2020)
2010 – 2019
- 2019
- [j8]Elena Bellodi, Ken Satoh, Mahito Sugiyama:
Summarizing significant subgraphs by probabilistic logic programming. Intell. Data Anal. 23(6): 1299-1312 (2019) - [c19]Simon Luo, Mahito Sugiyama:
Bias-Variance Trade-Off in Hierarchical Probabilistic Models Using Higher-Order Feature Interactions. AAAI 2019: 4488-4495 - [c18]Mahito Sugiyama, Karsten M. Borgwardt:
Finding Statistically Significant Interactions between Continuous Features. IJCAI 2019: 3490-3498 - [i10]Simon Luo, Mahito Sugiyama:
Bias-Variance Trade-Off in Hierarchical Probabilistic Models Using Higher-Order Feature Interactions. CoRR abs/1906.12063 (2019) - [i9]Simon Luo, Lamiae Azizi, Mahito Sugiyama:
Hierarchical Probabilistic Model for Blind Source Separation via Legendre Transformation. CoRR abs/1909.11294 (2019) - 2018
- [j7]Mahito Sugiyama, M. Elisabetta Ghisu, Felipe Llinares-López, Karsten M. Borgwardt:
graphkernels: R and Python packages for graph comparison. Bioinform. 34(3): 530-532 (2018) - [c17]Mahito Sugiyama, Hiroyuki Nakahara, Koji Tsuda:
Legendre Decomposition for Tensors. NeurIPS 2018: 8825-8835 - [i8]Mahito Sugiyama, Hiroyuki Nakahara, Koji Tsuda:
Legendre Tensor Decomposition. CoRR abs/1802.04502 (2018) - [i7]Mahito Sugiyama, Koji Tsuda, Hiroyuki Nakahara:
Transductive Boltzmann Machines. CoRR abs/1805.07938 (2018) - [i6]Yuka Yoneda, Mahito Sugiyama, Takashi Washio:
Learning Graph Representation via Formal Concept Analysis. CoRR abs/1812.03395 (2018) - 2017
- [c16]Mahito Sugiyama, Hiroyuki Nakahara, Koji Tsuda:
Tensor Balancing on Statistical Manifold. ICML 2017: 3270-3279 - [i5]Mahito Sugiyama, Hiroyuki Nakahara, Koji Tsuda:
Tensor Balancing on Statistical Manifold. CoRR abs/1702.08142 (2017) - [i4]Mahito Sugiyama, Karsten M. Borgwardt:
Significant Pattern Mining on Continuous Variables. CoRR abs/1702.08694 (2017) - 2016
- [c15]Mahito Sugiyama, Hiroyuki Nakahara, Koji Tsuda:
Information decomposition on structured space. ISIT 2016: 575-579 - [i3]Mahito Sugiyama, Hiroyuki Nakahara, Koji Tsuda:
Information Decomposition on Structured Space. CoRR abs/1601.05533 (2016) - 2015
- [j6]Felipe Llinares-López, Dominik G. Grimm, Dean A. Bodenham, Udo Gieraths, Mahito Sugiyama, Beth Rowan, Karsten M. Borgwardt:
Genome-wide detection of intervals of genetic heterogeneity associated with complex traits. Bioinform. 31(12): 240-249 (2015) - [c14]Felipe Llinares-López, Mahito Sugiyama, Laetitia Papaxanthos, Karsten M. Borgwardt:
Fast and Memory-Efficient Significant Pattern Mining via Permutation Testing. KDD 2015: 725-734 - [c13]Mahito Sugiyama, Karsten M. Borgwardt:
Halting in Random Walk Kernels. NIPS 2015: 1639-1647 - [c12]Mahito Sugiyama, Felipe Llinares-López, Niklas Kasenburg, Karsten M. Borgwardt:
Significant Subgraph Mining with Multiple Testing Correction. SDM 2015: 37-45 - 2014
- [c11]Mahito Sugiyama, Keisuke Otaki:
Detecting Anomalous Subgraphs on Attributed Graphs via Parametric Flow. JSAI-isAI Workshops 2014: 340-355 - [c10]Mahito Sugiyama, Chloé-Agathe Azencott, Dominik G. Grimm, Yoshinobu Kawahara, Karsten M. Borgwardt:
Multi-Task Feature Selection on Multiple Networks via Maximum Flows. SDM 2014: 199-207 - [i2]Mahito Sugiyama, Felipe Llinares-López, Niklas Kasenburg, Karsten M. Borgwardt:
Significant Subgraph Mining with Multiple Testing Correction. CoRR abs/1407.0316 (2014) - [i1]Felipe Llinares, Mahito Sugiyama, Karsten M. Borgwardt:
Identifying Higher-order Combinations of Binary Features. CoRR abs/1407.1176 (2014) - 2013
- [j5]Chloé-Agathe Azencott, Dominik G. Grimm, Mahito Sugiyama, Yoshinobu Kawahara, Karsten M. Borgwardt:
Efficient network-guided multi-locus association mapping with graph cuts. Bioinform. 29(13): 171-179 (2013) - [j4]Mahito Sugiyama, Akihiro Yamamoto:
Semi-supervised learning on closed set lattices. Intell. Data Anal. 17(3): 399-421 (2013) - [j3]Mahito Sugiyama, Eiju Hirowatari, Hideki Tsuiki, Akihiro Yamamoto:
Learning figures with the Hausdorff metric by fractals - towards computable binary classification. Mach. Learn. 90(1): 91-126 (2013) - [c9]Mahito Sugiyama, Karsten M. Borgwardt:
Measuring Statistical Dependence via the Mutual Information Dimension. IJCAI 2013: 1692-1698 - [c8]Mahito Sugiyama:
Outliers on Concept Lattices. JSAI-isAI Workshops 2013: 352-368 - [c7]Mahito Sugiyama, Karsten M. Borgwardt:
Rapid Distance-Based Outlier Detection via Sampling. NIPS 2013: 467-475 - 2012
- [j2]Keisuke Otaki, Mahito Sugiyama, Akihiro Yamamoto:
Privacy Preserving Using Dummy Data for Set Operations in Itemset Mining Implemented with ZDDs. IEICE Trans. Inf. Syst. 95-D(12): 3017-3025 (2012) - [j1]Mahito Sugiyama, Kentaro Imajo, Keisuke Otaki, Akihiro Yamamoto:
Semi-Supervised Ligand Finding Using Formal Concept Analysis. Inf. Media Technol. 7(3): 928-937 (2012) - 2011
- [c6]Mahito Sugiyama, Akihiro Yamamoto:
Semi-supervised Learning for Mixed-Type Data via Formal Concept Analysis. ICCS 2011: 284-297 - [c5]Mahito Sugiyama, Akihiro Yamamoto:
A Fast and Flexible Clustering Algorithm Using Binary Discretization. ICDM 2011: 1212-1217 - [c4]Mahito Sugiyama, Kentaro Imajo, Keisuke Otaki, Akihiro Yamamoto:
Discovering Ligands for TRP Ion Channels Using Formal Concept Analysis. ILP (Late Breaking Papers) 2011: 53-60 - [c3]Mahito Sugiyama, Akihiro Yamamoto:
The Minimum Code Length for Clustering Using the Gray Code. ECML/PKDD (3) 2011: 365-380 - 2010
- [c2]Mahito Sugiyama, Eiju Hirowatari, Hideki Tsuiki, Akihiro Yamamoto:
Learning Figures with the Hausdorff Metric by Fractals. ALT 2010: 315-329 - [c1]Mahito Sugiyama, Akihiro Yamamoto:
The Coding Divergence for Measuring the Complexity of Separating Two Sets. ACML 2010: 127-143
Coauthor Index
manage site settings
To protect your privacy, all features that rely on external API calls from your browser are turned off by default. You need to opt-in for them to become active. All settings here will be stored as cookies with your web browser. For more information see our F.A.Q.
Unpaywalled article links
Add open access links from to the list of external document links (if available).
Privacy notice: By enabling the option above, your browser will contact the API of unpaywall.org to load hyperlinks to open access articles. Although we do not have any reason to believe that your call will be tracked, we do not have any control over how the remote server uses your data. So please proceed with care and consider checking the Unpaywall privacy policy.
Archived links via Wayback Machine
For web page which are no longer available, try to retrieve content from the of the Internet Archive (if available).
Privacy notice: By enabling the option above, your browser will contact the API of archive.org to check for archived content of web pages that are no longer available. Although we do not have any reason to believe that your call will be tracked, we do not have any control over how the remote server uses your data. So please proceed with care and consider checking the Internet Archive privacy policy.
Reference lists
Add a list of references from , , and to record detail pages.
load references from crossref.org and opencitations.net
Privacy notice: By enabling the option above, your browser will contact the APIs of crossref.org, opencitations.net, and semanticscholar.org to load article reference information. Although we do not have any reason to believe that your call will be tracked, we do not have any control over how the remote server uses your data. So please proceed with care and consider checking the Crossref privacy policy and the OpenCitations privacy policy, as well as the AI2 Privacy Policy covering Semantic Scholar.
Citation data
Add a list of citing articles from and to record detail pages.
load citations from opencitations.net
Privacy notice: By enabling the option above, your browser will contact the API of opencitations.net and semanticscholar.org to load citation information. Although we do not have any reason to believe that your call will be tracked, we do not have any control over how the remote server uses your data. So please proceed with care and consider checking the OpenCitations privacy policy as well as the AI2 Privacy Policy covering Semantic Scholar.
OpenAlex data
Load additional information about publications from .
Privacy notice: By enabling the option above, your browser will contact the API of openalex.org to load additional information. Although we do not have any reason to believe that your call will be tracked, we do not have any control over how the remote server uses your data. So please proceed with care and consider checking the information given by OpenAlex.
last updated on 2024-11-25 22:44 CET by the dblp team
all metadata released as open data under CC0 1.0 license
see also: Terms of Use | Privacy Policy | Imprint