default search action
R. Uday Kiran
Person information
Refine list
refinements active!
zoomed in on ?? of ?? records
view refined list in
export refined list as
2020 – today
- 2024
- [j27]Pamalla Veena, Rage Uday Kiran, Penugonda Ravikumar, Likhitha Palla, Yutaka Watanobe, Sadanori Ito, Koji Zettsu, Masashi Toyoda, Bathala Venus Vikranth Raj:
3P-ECLAT: mining partial periodic patterns in columnar temporal databases. Appl. Intell. 54(11-12): 657-679 (2024) - [j26]Rage Uday Kiran, Pamalla Veena, Masashi Toyoda, Masaru Kitsuregawa:
PAMI: An Open-Source Python Library for Pattern Mining. J. Mach. Learn. Res. 25: 209:1-209:6 (2024) - [j25]Ji Zhang, Qiliang Liang, Mohamed Jaward Bah, Hongzhou Li, Liang Chang, Rage Uday Kiran:
Discriminative boundary generation for effective outlier detection. Knowl. Inf. Syst. 66(5): 2987-3004 (2024) - [c100]Zenghui Xu, Mingzhang Li, Ting Yu, Linlin Hou, Peng Zhang, Rage Uday Kiran, Zhao Li, Ji Zhang:
A Novel Multi-scale Spatiotemporal Graph Neural Network for Epidemic Prediction. DEXA (2) 2024: 272-287 - [c99]R. Uday Kiran, Abinash Maharana, Makiko Ohtake, Yoshiko Ogawa:
Towards Addressing an Open Problem in Coupled Matrix Tensor Factorization for Satellite Imagery Data Using Human-in-Loop. IEA/AIE 2024: 265-276 - [c98]Kazuki Tejima, Deepika Saxena, Rage Uday Kiran:
A Novel Multi-task Single-Step Traffic Congestion Forecasting Framework for Large-Scale Road Networks. IEA/AIE 2024: 277-288 - [c97]Minh-Son Dao, Michael Alexander Riegler, Duc-Tien Dang-Nguyen, Hanh-Nhi Tran, Rage Uday Kiran, Takahiro Komamizu:
ICDAR 24: Intelligent Cross-Data Analysis and Retrieval. ICMR 2024: 1332-1333 - [e6]Minh-Son Dao, Michael Alexander Riegler, Duc-Tien Dang-Nguyen, Hanh-Nhi Tran, Rage Uday Kiran, Takahiro Komamizu:
The Fifth Workshop on Intelligent Cross-Data Analysis and Retrieval, ICDAR 2024, Phuket, Thailand, June 10-14, 2024. ACM 2024 [contents] - 2023
- [j24]Hong N. Dao, Penugonda Ravikumar, Palla Likhitha, Rage Uday Kiran, Yutaka Watanobe, Incheon Paik:
Finding Stable Periodic-Frequent Itemsets in Big Columnar Databases. IEEE Access 11: 12504-12524 (2023) - [j23]Juan Xiao, Ashwani Kumar Aggarwal, Rage Uday Kiran, Vaibhav Katiyar, Ram Avtar:
Deep Learning-Based Spatiotemporal Fusion of Unmanned Aerial Vehicle and Satellite Reflectance Images for Crop Monitoring. IEEE Access 11: 85600-85614 (2023) - [j22]Pamalla Veena, Sreepada Tarun, Rage Uday Kiran, Minh-Son Dao, Koji Zettsu, Yutaka Watanobe, Ji Zhang:
Mining Periodic-Frequent Patterns in Irregular Dense Temporal Databases Using Set Complements. IEEE Access 11: 118676-118688 (2023) - [j21]Palla Likhitha, Penugonda Ravikumar, Deepika Saxena, Rage Uday Kiran, Yutaka Watanobe:
k-PFPMiner: Top-k Periodic Frequent Patterns in Big Temporal Databases. IEEE Access 11: 119033-119044 (2023) - [j20]Phuc-Thinh Nguyen, Minh-Son Dao, Michael A. Riegler, Rage Uday Kiran, Thai-Thinh Dang, Duy-Dong Le, Kieu-Chinh Nguyen-Ly, Thanh-Qui Pham, Van-Luong Nguyen:
Training Performance Indications for Amateur Athletes Based on Nutrition and Activity Lifelogs. Algorithms 16(1): 30 (2023) - [j19]Rage Uday Kiran, Pamalla Veena, Penugonda Ravikumar, Bathala Venus Vikranth Raj, Minh-Son Dao, Koji Zettsu, Sai Chithra Bommisetti:
HDSHUI-miner: a novel algorithm for discovering spatial high-utility itemsets in high-dimensional spatiotemporal databases. Appl. Intell. 53(8): 8536-8561 (2023) - [j18]Pamalla Veena, Rage Uday Kiran, Penugonda Ravikumar, Likhitha Palla, Yuto Hayamizu, Kazuo Goda, Masashi Toyoda, Koji Zettsu, Sourabh Shrivastava:
A fundamental approach to discover closed periodic-frequent patterns in very large temporal databases. Appl. Intell. 53(22): 27344-27373 (2023) - [j17]José María Luna, Rage Uday Kiran, Philippe Fournier-Viger, Sebastián Ventura:
Efficient mining of top-k high utility itemsets through genetic algorithms. Inf. Sci. 624: 529-553 (2023) - [c96]Palla Likhitha, Rage Uday Kiran:
Discovering Top-K Partial Periodic Patterns in Big Temporal Databases. DEXA (1) 2023: 352-357 - [c95]Pamalla Veena, Palla Likhitha, R. Uday Kiran, José María Luna, Philippe Fournier-Viger, Koji Zettsu:
Discovering Fuzzy Partial Periodic Patterns in Quantitative Irregular Multiple Time Series. FUZZ 2023: 1-7 - [c94]Genki Kimura, Yuto Hayamizu, Rage Uday Kiran, Masaru Kitsuregawa, Kazuo Goda:
Efficient Parallel Mining of High-utility Itemsets on Multicore Processors. ICDE 2023: 638-652 - [c93]Genki Kimura, Yuto Hayamizu, Rage Uday Kiran, Masaru Kitsuregawa, Kazuo Goda:
Efficient Parallel Mining of High-utility Itemsets on Multicore Processors. ICDE 2023: 3563-3577 - [c92]Vipul Chhabra, Rage Uday Kiran, Abinash Maharana, Juan Xiao, Krishna Reddy Polepalli, Ram Avtar, Yoshiko Ogawa, Makiko Ohtake:
A Novel Parallel Spatiotemporal Image Fusion Method for Predicting High-Resolution Satellite Images. IEA/AIE (1) 2023: 133-144 - [c91]Palla Likhitha, Pamalla Veena, Rage Uday Kiran, Koji Zettsu:
Discovering Geo-referenced Frequent Patterns in Uncertain Geo-referenced Transactional Databases. PAKDD (3) 2023: 29-41 - [c90]Rage Uday Kiran, Abinash Maharana, Krishna Reddy Polepalli:
A Novel Explainable Link Forecasting Framework for Temporal Knowledge Graphs Using Time-Relaxed Cyclic and Acyclic Rules. PAKDD (1) 2023: 264-275 - [c89]Shota Suzuki, Rage Uday Kiran:
Towards Efficient Discovery of Spatially Interesting Patterns in Geo-referenced Sequential Databases. SSDBM 2023: 9:1-9:11 - 2022
- [j16]Md. Mostafizer Rahman, Yutaka Watanobe, Taku Matsumoto, Rage Uday Kiran, Keita Nakamura:
Educational Data Mining to Support Programming Learning Using Problem-Solving Data. IEEE Access 10: 26186-26202 (2022) - [j15]Philippe Fournier-Viger, Ying Wang, Peng Yang, Jerry Chun-Wei Lin, Unil Yun, Rage Uday Kiran:
TSPIN: mining top-k stable periodic patterns. Appl. Intell. 52(6): 6917-6938 (2022) - [j14]Yutaka Watanobe, Md. Mostafizer Rahman, Taku Matsumoto, Rage Uday Kiran, Penugonda Ravikumar:
Online Judge System: Requirements, Architecture, and Experiences. Int. J. Softw. Eng. Knowl. Eng. 32(6): 917-946 (2022) - [c88]Penugonda Ravikumar, Bathala Venus Vikranth Raj, Palla Likhitha, Rage Uday Kiran, Yutaka Watanobe, Sadanori Ito, Koji Zettsu, Masashi Toyoda:
Towards Efficient Discovery of Partial Periodic Patterns in Columnar Temporal Databases. ACIIDS (2) 2022: 141-154 - [c87]Palla Likhitha, Penugonda Ravikumar, Rage Uday Kiran, Yutaka Watanobe:
Discovering Top-k Periodic-Frequent Patterns in Very Large Temporal Databases. BDA 2022: 200-210 - [c86]Sreepada Tarun, Rage Uday Kiran, Yutaka Watanobe, Kazuo Goda:
A Novel GPU-Accelerated Algorithm to Discover Periodic-Frequent Patterns in Temporal Databases. IEEE Big Data 2022: 121-126 - [c85]R. Uday Kiran, Vipul Chhabra, Saideep Chennupati, P. Krishna Reddy, Minh-Son Dao, Koji Zettsu:
A Novel Null-Invariant Temporal Measure to Discover Partial Periodic Patterns in Non-uniform Temporal Databases. DASFAA (1) 2022: 569-577 - [c84]Qiliang Liang, Ji Zhang, Mohamed Jaward Bah, Hongzhou Li, Liang Chang, Rage Uday Kiran:
Effective and Robust Boundary-Based Outlier Detection Using Generative Adversarial Networks. DEXA (2) 2022: 174-187 - [c83]Pamalla Veena, Sreepada Tarun, R. Uday Kiran, Minh-Son Dao, Koji Zettsu, Yutaka Watanobe, Ji Zhang:
Towards Efficient Discovery of Periodic-Frequent Patterns in Dense Temporal Databases Using Complements. DEXA (2) 2022: 204-215 - [c82]Penugonda Ravikumar, R. Uday Kiran, Palla Likhitha, T. Chandrasekhar, Yutaka Watanobe, Koji Zettsu:
Discovering Geo-referenced Periodic-Frequent Patterns in Geo-referenced Time Series Databases. DSAA 2022: 1-10 - [c81]Pamalla Veena, Penugonda Ravikumar, Kundai Kwangwari, R. Uday Kiran, Kazuo Goda, Yutaka Watanobe, Koji Zettsu:
Discovering Fuzzy Geo-referenced Periodic-Frequent Patterns in Geo-referenced Time Series Databases. FUZZ-IEEE 2022: 1-8 - [c80]Palla Likhitha, Rage Uday Kiran:
Towards developing energy efficient algorithms to discover partial periodic patterns in big temporal databases. SIGSPATIAL/GIS 2022: 110:1-110:2 - [c79]Palla Likhitha, Rage Veena, Rage Uday Kiran, Koji Zettsu, Masashi Toyoda, Philippe Fournier-Viger:
UPFP-growth++: An Efficient Algorithm to Find Periodic-Frequent Patterns in Uncertain Temporal Databases. ICONIP (5) 2022: 182-194 - [c78]Vipul Chhabra, R. Uday Kiran, Juan Xiao, P. Krishna Reddy, Ram Avtar:
A Spatiotemporal Image Fusion Method for Predicting High-Resolution Satellite Images. IEA/AIE 2022: 470-481 - [c77]Hong N. Dao, Penugonda Ravikumar, Palla Likhitha, Bathala Venus Vikranth Raj, R. Uday Kiran, Yutaka Watanobe, Incheon Paik:
Towards Efficient Discovery of Stable Periodic Patterns in Big Columnar Temporal Databases. IEA/AIE 2022: 831-843 - [c76]Truong Cong Thang, Yutaka Watanobe, Rage Uday Kiran, Incheon Paik:
Towards QoE Management for Post-Pandemic Online Learning : Invited Paper. KSE 2022: 1-6 - [e5]Partha Pratim Roy, Arvind Agarwal, Tianrui Li, P. Krishna Reddy, R. Uday Kiran:
Big Data Analytics - 10th International Conference, BDA 2022, Hyderabad, India, December 19-22, 2022, Proceedings. Lecture Notes in Computer Science 13773, Springer 2022, ISBN 978-3-031-24093-5 [contents] - [e4]Arnab Bhattacharya, Janice Lee, Mong Li, Divyakant Agrawal, P. Krishna Reddy, Mukesh K. Mohania, Anirban Mondal, Vikram Goyal, Rage Uday Kiran:
Database Systems for Advanced Applications - 27th International Conference, DASFAA 2022, Virtual Event, April 11-14, 2022, Proceedings, Part I. Lecture Notes in Computer Science 13245, Springer 2022, ISBN 978-3-031-00122-2 [contents] - [e3]Arnab Bhattacharya, Janice Lee, Mong Li, Divyakant Agrawal, P. Krishna Reddy, Mukesh K. Mohania, Anirban Mondal, Vikram Goyal, Rage Uday Kiran:
Database Systems for Advanced Applications - 27th International Conference, DASFAA 2022, Virtual Event, April 11-14, 2022, Proceedings, Part II. Lecture Notes in Computer Science 13246, Springer 2022, ISBN 978-3-031-00125-3 [contents] - [e2]Arnab Bhattacharya, Janice Lee, Mong Li, Divyakant Agrawal, P. Krishna Reddy, Mukesh K. Mohania, Anirban Mondal, Vikram Goyal, Rage Uday Kiran:
Database Systems for Advanced Applications - 27th International Conference, DASFAA 2022, Virtual Event, April 11-14, 2022, Proceedings, Part III. Lecture Notes in Computer Science 13247, Springer 2022, ISBN 978-3-031-00128-4 [contents] - [e1]Rage Uday Kiran, Vikram Goyal, P. Krishna Reddy:
Database Systems for Advanced Applications. DASFAA 2022 International Workshops - BDMS, BDQM, GDMA, IWBT, MAQTDS, and PMBD, Virtual Event, April 11-14, 2022, Proceedings. Lecture Notes in Computer Science 13248, Springer 2022, ISBN 978-3-031-11216-4 [contents] - 2021
- [j13]Md. Mostafizer Rahman, Yutaka Watanobe, Rage Uday Kiran, Truong Cong Thang, Incheon Paik:
Impact of Practical Skills on Academic Performance: A Data-Driven Analysis. IEEE Access 9: 139975-139993 (2021) - [j12]Philippe Fournier-Viger, Peng Yang, Rage Uday Kiran, Sebastián Ventura, José María Luna:
Mining local periodic patterns in a discrete sequence. Inf. Sci. 544: 519-548 (2021) - [c75]R. Uday Kiran, Pradeep Pallikila, José María Luna, Philippe Fournier-Viger, Masashi Toyoda, P. Krishna Reddy:
Discovering Relative High Utility Itemsets in Very Large Transactional Databases Using Null-Invariant Measure. IEEE BigData 2021: 252-262 - [c74]Palla Likhitha, Pamalla Veena, R. Uday Kiran, Yutaka Watanobe, Koji Zettsu:
Discovering Maximal Partial Periodic Patterns in Very Large Temporal Databases. IEEE BigData 2021: 1460-1469 - [c73]Tuan-Vinh La, Minh-Son Dao, Kazuki Tejima, Rage Uday Kiran, Koji Zettsu:
Improving the Awareness of Sustainable Smart Cities by Analyzing Lifelog Images and IoT Air Pollution Data. IEEE BigData 2021: 3589-3594 - [c72]Pradeep Pallikila, Pamalla Veena, R. Uday Kiran, Ram Avatar, Sadanori Ito, Koji Zettsu, P. Krishna Reddy:
Discovering Top-k Spatial High Utility Itemsets in Very Large Quantitative Spatiotemporal databases. IEEE BigData 2021: 4925-4935 - [c71]So Nakamura, R. Uday Kiran, Palla Likhitha, Penugonda Ravikumar, Yutaka Watanobe, Minh-Son Dao, Koji Zettsu, Masashi Toyoda:
Efficient Discovery of Partial Periodic-Frequent Patterns in Temporal Databases. DEXA (1) 2021: 221-227 - [c70]Penugonda Ravikumar, R. Uday Kiran, Narendra Babu Unnam, Yutaka Watanobe, Kazuo Goda, V. Susheela Devi, P. Krishna Reddy:
A Novel Parameter-Free Energy Efficient Fuzzy Nearest Neighbor Classifier for Time Series Data. FUZZ-IEEE 2021: 1-6 - [c69]Pamalla Veena, Sai Chithra Bommisetty, R. Uday Kiran, Sonali Agarwal, Koji Zettsu:
Discovering Fuzzy Frequent Spatial Patterns in Large Quantitative Spatiotemporal databases. FUZZ-IEEE 2021: 1-8 - [c68]R. Uday Kiran, Palla Likhitha, Minh-Son Dao, Koji Zettsu, Ji Zhang:
Discovering Periodic-Frequent Patterns in Uncertain Temporal Databases. ICONIP (5) 2021: 710-718 - [c67]Md. Mostafizer Rahman, Yutaka Watanobe, Rage Uday Kiran, Keita Nakamura:
A Novel Rule-Based Online Judge Recommender System to Promote Computer Programming Education. IEA/AIE (2) 2021: 15-27 - [c66]Penugonda Ravikumar, Likhitha Palla, Rage Uday Kiran, Yutaka Watanobe, Koji Zettsu:
Towards Efficient Discovery of Periodic-Frequent Patterns in Columnar Temporal Databases. IEA/AIE (1) 2021: 28-40 - [c65]Sai Chithra Bommisetty, Penugonda Ravikumar, Rage Uday Kiran, Minh-Son Dao, Koji Zettsu:
Discovering Spatial High Utility Itemsets in High-Dimensional Spatiotemporal Databases. IEA/AIE (1) 2021: 53-65 - [c64]Yutaka Watanobe, Md. Mostafizer Rahman, Rage Uday Kiran, Penugonda Ravikumar:
Online Automatic Assessment System for Program Code: Architecture and Experiences. IEA/AIE (2) 2021: 272-283 - [c63]Minh-Son Dao, Koji Zettsu, Rage Uday Kiran:
IMAGE-2-AQI: Aware of the Surrounding Air Qualification by a Few Images. IEA/AIE (2) 2021: 335-346 - [c62]Mohit Dandekar, Narinder Singh Punn, Sanjay Kumar Sonbhadra, Sonali Agarwal, Rage Uday Kiran:
Fruit classification using deep feature maps in the presence of deceptive similar classes. IJCNN 2021: 1-6 - [c61]Pamalla Veena, So Nakamura, Palla Likhitha, R. Uday Kiran, Yutaka Watanobe, Koji Zettsu:
A Unified Framework to Discover Partial Periodic-Frequent Patterns in Row and Columnar Temporal Databases. ICDM (Workshops) 2021: 607-614 - [c60]R. Uday Kiran:
Discovering Knowledge Hidden in Raster Images using RasterMiner. ICDAR@ICMR 2021: 1 - [c59]Zhen Wang, Ji Zhang, Yizheng Chen, Chenhao Lu, Jerry Chun-Wei Lin, Jing Xiao, Rage Uday Kiran:
Learning Probabilistic Latent Structure for Outlier Detection from Multi-view Data. PAKDD (1) 2021: 53-65 - [c58]Md. Mostafizer Rahman, Yutaka Watanobe, Rage Uday Kiran, Raihan Kabir:
A Stacked Bidirectional LSTM Model for Classifying Source Codes Built in MPLs. PKDD/ECML Workshops (2) 2021: 75-89 - [c57]Md. Mostafizer Rahman, Yutaka Watanobe, Rage Uday Kiran, Truong Cong Thang, Incheon Paik:
Challenges and Exit Strategies for Adapting Interactive Online Education Amid the Pandemic and its Aftermath. TALE 2021: 595-602 - 2020
- [j11]R. Uday Kiran, P. P. C. Reddy, Koji Zettsu, Masashi Toyoda, Masaru Kitsuregawa, P. Krishna Reddy:
Efficient Discovery of Weighted Frequent Neighborhood Itemsets in Very Large Spatiotemporal Databases. IEEE Access 8: 27584-27596 (2020) - [j10]Philippe Fournier-Viger, Peng Yang, Zhitian Li, Jerry Chun-Wei Lin, Rage Uday Kiran:
Discovering rare correlated periodic patterns in multiple sequences. Data Knowl. Eng. 126: 101733 (2020) - [j9]Philippe Fournier-Viger, Jiaxuan Li, Jerry Chun-Wei Lin, Tin Truong-Chi, R. Uday Kiran:
Mining cost-effective patterns in event logs. Knowl. Based Syst. 191: 105241 (2020) - [c56]Minh-Son Dao, Ngoc-Thanh Nguyen, R. Uday Kiran, Koji Zettsu:
Fusion-3DCNN-max3P: A dynamic system for discovering patterns of predicted congestion. IEEE BigData 2020: 910-915 - [c55]Palla Likhitha, Penugonda Ravikumar, R. Uday Kiran, Yuto Hayamizu, Kazuo Goda, Masashi Toyoda, Koji Zettsu, Sourabh Shrivastava:
Discovering Closed Periodic-Frequent Patterns in Very Large Temporal Databases. IEEE BigData 2020: 4700-4709 - [c54]R. Uday Kiran, Sadanori Ito, Minh-Son Dao, Koji Zettsu, Cheng-Wei Wu, Yutaka Watanobe, Incheon Paik, Truong Cong Thang:
Distributed Mining of Spatial High Utility Itemsets in Very Large Spatiotemporal Databases using Spark In-Memory Computing Architecture. IEEE BigData 2020: 4724-4733 - [c53]R. Uday Kiran, Yutaka Watanobe, Bhaskar Chaudhury, Koji Zettsu, Masashi Toyoda, Masaru Kitsuregawa:
Discovering Maximal Periodic-Frequent Patterns in Very Large Temporal Databases. DSAA 2020: 11-20 - [c52]R. Uday Kiran, C. Saideep, Penugonda Ravikumar, Koji Zettsu, Masashi Toyoda, Masaru Kitsuregawa, P. Krishna Reddy:
Discovering Fuzzy Periodic-Frequent Patterns in Quantitative Temporal Databases. FUZZ-IEEE 2020: 1-8 - [c51]R. Uday Kiran, Sourabh Shrivastava, Philippe Fournier-Viger, Koji Zettsu, Masashi Toyoda, Masaru Kitsuregawa:
Discovering Frequent Spatial Patterns in Very Large Spatiotemporal Databases. SIGSPATIAL/GIS 2020: 445-448 - [c50]Minh-Son Dao, Ngoc-Thanh Nguyen, R. Uday Kiran, Koji Zettsu:
Insights From Urban Sensing Data: From Chaos to Predicted Congestion Patterns. ICDM (Workshops) 2020: 661-668 - [c49]C. Saideep, R. Uday Kiran, Koji Zettsu, Cheng-Wei Wu, P. Krishna Reddy, Masashi Toyoda, Masaru Kitsuregawa:
Parallel Mining of Partial Periodic Itemsets in Big Data. IEA/AIE 2020: 807-819
2010 – 2019
- 2019
- [j8]Philippe Fournier-Viger, Zhitian Li, Jerry Chun-Wei Lin, Rage Uday Kiran, Hamido Fujita:
Efficient algorithms to identify periodic patterns in multiple sequences. Inf. Sci. 489: 205-226 (2019) - [c48]Philippe Fournier-Viger, Chao Cheng, Jerry Chun-Wei Lin, Unil Yun, R. Uday Kiran:
TKG: Efficient Mining of Top-K Frequent Subgraphs. BDA 2019: 209-226 - [c47]P. P. C. Reddy, R. Uday Kiran, Koji Zettsu, Masashi Toyoda, P. Krishna Reddy, Masaru Kitsuregawa:
Discovering Spatial High Utility Frequent Itemsets in Spatiotemporal Databases. BDA 2019: 287-306 - [c46]R. Uday Kiran, C. Saideep, Koji Zettsu, Masashi Toyoda, Masaru Kitsuregawa, P. Krishna Reddy:
Discovering Partial Periodic Spatial Patterns in Spatiotemporal Databases. IEEE BigData 2019: 233-238 - [c45]T. Yashwanth Reddy, R. Uday Kiran, Masashi Toyoda, P. Krishna Reddy, Masaru Kitsuregawa:
Discovering Partial Periodic High Utility Itemsets in Temporal Databases. DEXA (2) 2019: 351-361 - [c44]Rage Uday Kiran, P. P. C. Reddy, Koji Zettsu, Masashi Toyoda, Masaru Kitsuregawa, P. Krishna Reddy:
Discovering Spatial Weighted Frequent Itemsets in Spatiotemporal Databases. ICDM Workshops 2019: 987-996 - [c43]C. Saideep, Rage Uday Kiran, Koji Zettsu, Philippe Fournier-Viger, Masaru Kitsuregawa, P. Krishna Reddy:
Discovering Periodic Patterns in Irregular Time Series. ICDM Workshops 2019: 1020-1028 - [c42]Philippe Fournier-Viger, Peng Yang, Jerry Chun-Wei Lin, Rage Uday Kiran:
Discovering Stable Periodic-Frequent Patterns in Transactional Data. IEA/AIE 2019: 230-244 - [c41]R. Uday Kiran, T. Yashwanth Reddy, Philippe Fournier-Viger, Masashi Toyoda, P. Krishna Reddy, Masaru Kitsuregawa:
Efficiently Finding High Utility-Frequent Itemsets Using Cutoff and Suffix Utility. PAKDD (2) 2019: 191-203 - [c40]R. Uday Kiran, Koji Zettsu, Masashi Toyoda, Philippe Fournier-Viger, P. Krishna Reddy, Masaru Kitsuregawa:
Discovering Spatial High Utility Itemsets in Spatiotemporal Databases. SSDBM 2019: 49-60 - 2018
- [j7]J. N. Venkatesh, R. Uday Kiran, P. Krishna Reddy, Masaru Kitsuregawa:
Discovering Periodic-Correlated Patterns in Temporal Databases. Trans. Large Scale Data Knowl. Centered Syst. 38: 146-172 (2018) - [c39]R. Uday Kiran, Amulya Kotni, P. Krishna Reddy, Masashi Toyoda, Subhash Bhalla, Masaru Kitsuregawa:
Efficient Discovery of Weighted Frequent Itemsets in Very Large Transactional Databases: A Re-visit. IEEE BigData 2018: 723-732 - [c38]Philippe Fournier-Viger, Zhitian Li, Jerry Chun-Wei Lin, Rage Uday Kiran, Hamido Fujita:
Discovering Periodic Patterns Common to Multiple Sequences. DaWaK 2018: 231-246 - [c37]Amulya Kotni, R. Uday Kiran, Masashi Toyoda, P. Krishna Reddy, Masaru Kitsuregawa:
Novel Data Segmentation Techniques for Efficient Discovery of Correlated Patterns Using Parallel Algorithms. DaWaK 2018: 355-370 - [c36]Qian Li, Ziwei Li, Jin-Mao Wei, Zhenglu Yang, Yanhui Gu, R. Uday Kiran:
A Story Coherence based Neural Network Model for Predicting Story Ending. WWW (Companion Volume) 2018: 119-120 - 2017
- [j6]R. Uday Kiran, J. N. Venkatesh, Masashi Toyoda, Masaru Kitsuregawa, P. Krishna Reddy:
Discovering partial periodic-frequent patterns in a transactional database. J. Syst. Softw. 125: 170-182 (2017) - [c35]Alampally Anirudh, R. Uday Kiran, P. Krishna Reddy, Masashi Toyoda, Masaru Kitsuregawa:
An Efficient Map-Reduce Framework to Mine Periodic Frequent Patterns. DaWaK 2017: 120-129 - [c34]R. Uday Kiran, J. N. Venkatesh, Philippe Fournier-Viger, Masashi Toyoda, P. Krishna Reddy, Masaru Kitsuregawa:
Discovering Periodic Patterns in Non-uniform Temporal Databases. PAKDD (2) 2017: 604-617 - [c33]R. Uday Kiran, Haichuan Shang, Masashi Toyoda, Masaru Kitsuregawa:
Discovering Partial Periodic Itemsets in Temporal Databases. SSDBM 2017: 30:1-30:6 - 2016
- [j5]R. Uday Kiran, Masaru Kitsuregawa, P. Krishna Reddy:
Efficient discovery of periodic-frequent patterns in very large databases. J. Syst. Softw. 112: 110-121 (2016) - [c32]J. N. Venkatesh, R. Uday Kiran, P. Krishna Reddy, Masaru Kitsuregawa:
Discovering Periodic-Frequent Patterns in Transactional Databases Using All-Confidence and Periodic-All-Confidence. DEXA (1) 2016: 55-70 - [c31]Alampally Anirudh, R. Uday Kiran, P. Krishna Reddy, Masaru Kitsuregawa:
Memory efficient mining of periodic-frequent patterns in transactional databases. SSCI 2016: 1-8 - 2015
- [j4]Rage Uday Kiran, Masaru Kitsuregawa:
Efficient discovery of correlated patterns using multiple minimum all-confidence thresholds. J. Intell. Inf. Syst. 45(3): 357-377 (2015) - [j3]P. Gowtham Srinivas, P. Krishna Reddy, A. V. Trinath, Bhargav Sripada, R. Uday Kiran:
Mining coverage patterns from transactional databases. J. Intell. Inf. Syst. 45(3): 423-439 (2015) - [c30]R. Uday Kiran, Masaru Kitsuregawa:
Finding Periodic Patterns in Big Data. BDA 2015: 121-133 - [c29]Haichuan Shang, Xiang Zhao, R. Uday Kiran, Masaru Kitsuregawa:
Towards Scale-out Capability on Social Graphs. CIKM 2015: 253-262 - [c28]R. Uday Kiran, Masaru Kitsuregawa:
Discovering Chronic-Frequent Patterns in Transactional Databases. DNIS 2015: 12-26 - [c27]R. Uday Kiran, Haichuan Shang, Masashi Toyoda, Masaru Kitsuregawa:
Discovering Recurring Patterns in Time Series. EDBT 2015: 97-108 - 2014
- [c26]R. Uday Kiran, Masaru Kitsuregawa:
Novel Techniques to Reduce Search Space in Periodic-Frequent Pattern Mining. DASFAA (2) 2014: 377-391 - 2013
- [c25]R. Uday Kiran, Masaru Kitsuregawa:
An Improved Neighborhood-Restricted Association Rule-based Recommender System. ADC 2013: 43-50 - [c24]R. Uday Kiran, Masaru Kitsuregawa:
Discovering Quasi-Periodic-Frequent Patterns in Transactional Databases. BDA 2013: 97-115 - [c23]R. Uday Kiran, Masaru Kitsuregawa:
Towards Addressing the Coverage Problem in Association Rule-Based Recommender Systems. DEXA (2) 2013: 418-425 - [c22]R. Uday Kiran, Masaru Kitsuregawa:
Mining Correlated Patterns with Multiple Minimum All-Confidence Thresholds. PAKDD Workshops 2013: 295-306 - [c21]R. Uday Kiran, Masashi Toyoda, Masaru Kitsuregawa:
Towards efficient discovery of coverage patterns in transactional databases. SSDBM 2013: 38:1-38:4 - 2012
- [j2]Mittapally Kumara Swamy, P. Krishna Reddy, R. Uday Kiran, M. Venugopal Reddy:
Temporality-based user interface design approaches for desktop and small screen environment. Int. J. Comput. Sci. Eng. 7(1): 52-64 (2012) - [c20]R. Uday Kiran, Masaru Kitsuregawa:
Towards Efficient Discovery of Frequent Patterns with Relative Support. COMAD 2012: 92-99 - [c19]M. Venu, R. Uday Kiran, R. Kiranmai:
A robust neural network classifier to model the compressive strength of high performance concrete using feature subset selection. COMPUTE 2012: 1 - [c18]R. Uday Kiran, Masaru Kitsuregawa:
Efficient Discovery of Correlated Patterns in Transactional Databases Using Items' Support Intervals. DEXA (1) 2012: 234-248 - [c17]P. Gowtham Srinivas, P. Krishna Reddy, Bhargav Sripada, R. Uday Kiran, D. Satheesh Kumar:
Discovering Coverage Patterns for Banner Advertisement Placement. PAKDD (2) 2012: 133-144 - 2011
- [c16]Somya Srivastava, R. Uday Kiran, P. Krishna Reddy:
Discovering Diverse-Frequent Patterns in Transactional Databases. COMAD 2011: 69-78 - [c15]R. Uday Kiran, P. Krishna Reddy:
An Alternative Interestingness Measure for Mining Periodic-Frequent Patterns. DASFAA (1) 2011: 183-192 - [c14]Mohak Sharma, P. Krishna Reddy, R. Uday Kiran, Thirumalaisamy Ragunathan:
Improving the Performance of Recommender System by Exploiting the Categories of Products. DNIS 2011: 137-146 - [c13]R. Uday Kiran, P. Krishna Reddy:
Novel techniques to reduce search space in multiple minimum supports-based frequent pattern mining algorithms. EDBT 2011: 11-20 - [c12]Akshat Surana, R. Uday Kiran, P. Krishna Reddy:
An Efficient Approach to Mine Periodic-Frequent Patterns in Transactional Databases. PAKDD Workshops 2011: 254-266 - [c11]Bhargav Sripada, Krishna Reddy Polepalli, Rage Uday Kiran:
Coverage patterns for efficient banner advertisement placement. WWW (Companion Volume) 2011: 131-132 - 2010
- [j1]R. Uday Kiran, P. Krishna Reddy, Mittapally Kumara Swamy, G. Syamasundar Reddy:
Analysing dynamics of crop problems by applying text analysis methods on farm advisory data of eSaguTM. Int. J. Comput. Sci. Eng. 5(2): 154-164 (2010) - [c10]R. Uday Kiran, Krishna Reddy Polepalli:
An Efficient Approach to Mine Rare Association Rules Using Maximum Items' Support Constraints. BNCOD 2010: 84-95 - [c9]Akshat Surana, R. Uday Kiran, P. Krishna Reddy:
Selecting a Right Interestingness Measure for Rare Association Rules. COMAD 2010: 115 - [c8]R. Uday Kiran, P. Krishna Reddy:
Mining periodic-frequent patterns with maximum items' support constraints. Bangalore Compute Conf. 2010: 1:1-1:8 - [c7]R. Uday Kiran, P. Krishna Reddy:
Mining Rare Association Rules in the Datasets with Widely Varying Items' Frequencies. DASFAA (1) 2010: 49-62 - [c6]R. Uday Kiran, P. Krishna Reddy:
Towards Efficient Mining of Periodic-Frequent Patterns in Transactional Databases. DEXA (2) 2010: 194-208 - [c5]Mittapally Kumara Swamy, P. Krishna Reddy, R. Uday Kiran, M. Venugopal Reddy:
Interface Tailoring by Exploiting Temporality of Attributes for Small Screens. DNIS 2010: 284-295
2000 – 2009
- 2009
- [c4]R. Uday Kiran, P. Krishna Reddy:
An improved multiple minimum support based approach to mine rare association rules. CIDM 2009: 340-347 - [c3]R. Uday Kiran, P. Krishna Reddy:
Mining Rare Periodic-Frequent Patterns Using Multiple Minimum Supports. COMAD 2009 - [c2]R. Uday Kiran, P. Krishna Reddy:
An Improved Frequent Pattern-growth Approach to Discover Rare Association Rules. KDIR 2009: 43-52 - 2007
- [c1]R. Uday Kiran, P. Krishna Reddy:
Understanding the Dynamics of Crop Problems by Analyzing Farm Advisory Data in eSagu TM . DNIS 2007: 272-284
Coauthor Index
manage site settings
To protect your privacy, all features that rely on external API calls from your browser are turned off by default. You need to opt-in for them to become active. All settings here will be stored as cookies with your web browser. For more information see our F.A.Q.
Unpaywalled article links
Add open access links from to the list of external document links (if available).
Privacy notice: By enabling the option above, your browser will contact the API of unpaywall.org to load hyperlinks to open access articles. Although we do not have any reason to believe that your call will be tracked, we do not have any control over how the remote server uses your data. So please proceed with care and consider checking the Unpaywall privacy policy.
Archived links via Wayback Machine
For web page which are no longer available, try to retrieve content from the of the Internet Archive (if available).
Privacy notice: By enabling the option above, your browser will contact the API of archive.org to check for archived content of web pages that are no longer available. Although we do not have any reason to believe that your call will be tracked, we do not have any control over how the remote server uses your data. So please proceed with care and consider checking the Internet Archive privacy policy.
Reference lists
Add a list of references from , , and to record detail pages.
load references from crossref.org and opencitations.net
Privacy notice: By enabling the option above, your browser will contact the APIs of crossref.org, opencitations.net, and semanticscholar.org to load article reference information. Although we do not have any reason to believe that your call will be tracked, we do not have any control over how the remote server uses your data. So please proceed with care and consider checking the Crossref privacy policy and the OpenCitations privacy policy, as well as the AI2 Privacy Policy covering Semantic Scholar.
Citation data
Add a list of citing articles from and to record detail pages.
load citations from opencitations.net
Privacy notice: By enabling the option above, your browser will contact the API of opencitations.net and semanticscholar.org to load citation information. Although we do not have any reason to believe that your call will be tracked, we do not have any control over how the remote server uses your data. So please proceed with care and consider checking the OpenCitations privacy policy as well as the AI2 Privacy Policy covering Semantic Scholar.
OpenAlex data
Load additional information about publications from .
Privacy notice: By enabling the option above, your browser will contact the API of openalex.org to load additional information. Although we do not have any reason to believe that your call will be tracked, we do not have any control over how the remote server uses your data. So please proceed with care and consider checking the information given by OpenAlex.
last updated on 2024-10-07 21:18 CEST by the dblp team
all metadata released as open data under CC0 1.0 license
see also: Terms of Use | Privacy Policy | Imprint