default search action
Dominik Janzing
Person information
- affiliation: Max Planck Institute for Intelligent Systems, Tübingen , Germany
Refine list
refinements active!
zoomed in on ?? of ?? records
view refined list in
export refined list as
2020 – today
- 2024
- [j30]Patrick Blöbaum, Peter Götz, Kailash Budhathoki, Atalanti-Anastasia Mastakouri, Dominik Janzing:
DoWhy-GCM: An Extension of DoWhy for Causal Inference in Graphical Causal Models. J. Mach. Learn. Res. 25: 147:1-147:7 (2024) - [c63]Dominik Janzing, Patrick Blöbaum, Atalanti-Anastasia Mastakouri, Philipp Michael Faller, Lenon Minorics, Kailash Budhathoki:
Quantifying intrinsic causal contributions via structure preserving interventions. AISTATS 2024: 2188-2196 - [c62]Philipp Michael Faller, Leena C. Vankadara, Atalanti-Anastasia Mastakouri, Francesco Locatello, Dominik Janzing:
Self-Compatibility: Evaluating Causal Discovery without Ground Truth. AISTATS 2024: 4132-4140 - [c61]Yuchen Zhu, Kailash Budhathoki, Jonas M. Kübler, Dominik Janzing:
Meaningful Causal Aggregation and Paradoxical Confounding. CLeaR 2024: 1192-1217 - [i54]Victor Quintas-Martinez, Mohammad Taha Bahadori, Eduardo Santiago, Jeff Mu, Dominik Janzing, David Heckerman:
Multiply-Robust Causal Change Attribution. CoRR abs/2404.08839 (2024) - [i53]Nastaran Okati, Sergio Hernan Garrido Mejia, William Roy Orchard, Patrick Blöbaum, Dominik Janzing:
Root Cause Analysis of Outliers with Missing Structural Knowledge. CoRR abs/2406.05014 (2024) - 2023
- [c60]Francesco Montagna, Atalanti-Anastasia Mastakouri, Elias Eulig, Nicoletta Noceti, Lorenzo Rosasco, Dominik Janzing, Bryon Aragam, Francesco Locatello:
Assumption violations in causal discovery and the robustness of score matching. NeurIPS 2023 - [c59]Bijan Mazaheri, Atalanti-Anastasia Mastakouri, Dominik Janzing, Michaela Hardt:
Causal information splitting: Engineering proxy features for robustness to distribution shifts. UAI 2023: 1401-1411 - [e5]Mihaela van der Schaar, Cheng Zhang, Dominik Janzing:
Conference on Causal Learning and Reasoning, CLeaR 2023, 11-14 April 2023, Amazon Development Center, Tübingen, Germany, April 11-14, 2023. Proceedings of Machine Learning Research 213, PMLR 2023 [contents] - [i52]Numair Sani, Atalanti-Anastasia Mastakouri, Dominik Janzing:
Bounding probabilities of causation through the causal marginal problem. CoRR abs/2304.02023 (2023) - [i51]Yuchen Zhu, Kailash Budhathoki, Jonas M. Kübler, Dominik Janzing:
Meaningful Causal Aggregation and Paradoxical Confounding. CoRR abs/2304.11625 (2023) - [i50]Bijan Mazaheri, Atalanti-Anastasia Mastakouri, Dominik Janzing, Mila Hardt:
Causal Information Splitting: Engineering Proxy Features for Robustness to Distribution Shifts. CoRR abs/2305.05832 (2023) - [i49]Dominik Janzing, Philipp Michael Faller, Leena Chennuru Vankadara:
Reinterpreting causal discovery as the task of predicting unobserved joint statistics. CoRR abs/2305.06894 (2023) - [i48]Elias Eulig, Atalanti-Anastasia Mastakouri, Patrick Blöbaum, Michaela Hardt, Dominik Janzing:
Toward Falsifying Causal Graphs Using a Permutation-Based Test. CoRR abs/2305.09565 (2023) - [i47]Philipp Michael Faller, Leena Chennuru Vankadara, Atalanti-Anastasia Mastakouri, Francesco Locatello, Dominik Janzing:
Self-Compatibility: Evaluating Causal Discovery without Ground Truth. CoRR abs/2307.09552 (2023) - [i46]Francesco Montagna, Atalanti-Anastasia Mastakouri, Elias Eulig, Nicoletta Noceti, Lorenzo Rosasco, Dominik Janzing, Bryon Aragam, Francesco Locatello:
Assumption violations in causal discovery and the robustness of score matching. CoRR abs/2310.13387 (2023) - 2022
- [c58]Sergio Hernan Garrido Mejia, Elke Kirschbaum, Dominik Janzing:
Obtaining Causal Information by Merging Datasets with MAXENT. AISTATS 2022: 581-603 - [c57]Lenon Minorics, Ali Caner Türkmen, David Kernert, Patrick Blöbaum, Laurent Callot, Dominik Janzing:
Testing Granger Non-Causality in Panels with Cross-Sectional Dependencies. AISTATS 2022: 10534-10554 - [c56]Michel Besserve, Naji Shajarisales, Dominik Janzing, Bernhard Schölkopf:
Cause-effect inference through spectral independence in linear dynamical systems: theoretical foundations. CLeaR 2022: 110-143 - [c55]Osama Makansi, Julius von Kügelgen, Francesco Locatello, Peter Vincent Gehler, Dominik Janzing, Thomas Brox, Bernhard Schölkopf:
You Mostly Walk Alone: Analyzing Feature Attribution in Trajectory Prediction. ICLR 2022 - [c54]Kailash Budhathoki, Lenon Minorics, Patrick Blöbaum, Dominik Janzing:
Causal structure-based root cause analysis of outliers. ICML 2022: 2357-2369 - [c53]Luigi Gresele, Julius von Kügelgen, Jonas M. Kübler, Elke Kirschbaum, Bernhard Schölkopf, Dominik Janzing:
Causal Inference Through the Structural Causal Marginal Problem. ICML 2022: 7793-7824 - [c52]Yonghan Jung, Shiva Prasad Kasiviswanathan, Jin Tian, Dominik Janzing, Patrick Blöbaum, Elias Bareinboim:
On Measuring Causal Contributions via do-interventions. ICML 2022: 10476-10501 - [c51]Paul Rolland, Volkan Cevher, Matthäus Kleindessner, Chris Russell, Dominik Janzing, Bernhard Schölkopf, Francesco Locatello:
Score Matching Enables Causal Discovery of Nonlinear Additive Noise Models. ICML 2022: 18741-18753 - [c50]Leena Chennuru Vankadara, Philipp Michael Faller, Michaela Hardt, Lenon Minorics, Debarghya Ghoshdastidar, Dominik Janzing:
Causal forecasting: generalization bounds for autoregressive models. UAI 2022: 2002-2012 - [i45]Luigi Gresele, Julius von Kügelgen, Jonas M. Kübler, Elke Kirschbaum, Bernhard Schölkopf, Dominik Janzing:
Causal Inference Through the Structural Causal Marginal Problem. CoRR abs/2202.01300 (2022) - [i44]You-Lin Chen, Lenon Minorics, Dominik Janzing:
Correcting Confounding via Random Selection of Background Variables. CoRR abs/2202.02150 (2022) - [i43]Paul Rolland, Volkan Cevher, Matthäus Kleindessner, Chris Russell, Bernhard Schölkopf, Dominik Janzing, Francesco Locatello:
Score matching enables causal discovery of nonlinear additive noise models. CoRR abs/2203.04413 (2022) - [i42]Patrick Blöbaum, Peter Götz, Kailash Budhathoki, Atalanti-Anastasia Mastakouri, Dominik Janzing:
DoWhy-GCM: An extension of DoWhy for causal inference in graphical causal models. CoRR abs/2206.06821 (2022) - [i41]Kailash Budhathoki, George Michailidis, Dominik Janzing:
Explaining the root causes of unit-level changes. CoRR abs/2206.12986 (2022) - [i40]Dominik Janzing, Sergio Hernan Garrido Mejia:
Phenomenological Causality. CoRR abs/2211.09024 (2022) - 2021
- [c49]Michel Besserve, Rémy Sun, Dominik Janzing, Bernhard Schölkopf:
A Theory of Independent Mechanisms for Extrapolation in Generative Models. AAAI 2021: 6741-6749 - [c48]Kailash Budhathoki, Dominik Janzing, Patrick Blöbaum, Hoiyi Ng:
Why did the distribution change? AISTATS 2021: 1666-1674 - [c47]Atalanti-Anastasia Mastakouri, Bernhard Schölkopf, Dominik Janzing:
Necessary and sufficient conditions for causal feature selection in time series with latent common causes. ICML 2021: 7502-7511 - [i39]Dominik Janzing:
Causal version of Principle of Insufficient Reason and MaxEnt. CoRR abs/2102.03906 (2021) - [i38]Kailash Budhathoki, Dominik Janzing, Patrick Blöbaum, Hoiyi Ng:
Why did the distribution change? CoRR abs/2102.13384 (2021) - [i37]Osama Makansi, Julius von Kügelgen, Francesco Locatello, Peter V. Gehler, Dominik Janzing, Thomas Brox, Bernhard Schölkopf:
You Mostly Walk Alone: Analyzing Feature Attribution in Trajectory Prediction. CoRR abs/2110.05304 (2021) - [i36]Leena C. Vankadara, Philipp Michael Faller, Lenon Minorics, Debarghya Ghoshdastidar, Dominik Janzing:
Causal Forecasting: Generalization Bounds for Autoregressive Models. CoRR abs/2111.09831 (2021) - 2020
- [c46]Dominik Janzing, Lenon Minorics, Patrick Blöbaum:
Feature relevance quantification in explainable AI: A causal problem. AISTATS 2020: 2907-2916 - [i35]Michel Besserve, Rémy Sun, Dominik Janzing, Bernhard Schölkopf:
A theory of independent mechanisms for extrapolation in generative models. CoRR abs/2004.00184 (2020) - [i34]Dominik Janzing, Patrick Blöbaum, Lenon Minorics:
Quantifying causal contribution via structure preserving interventions. CoRR abs/2007.00714 (2020)
2010 – 2019
- 2019
- [j29]Patrick Blöbaum, Dominik Janzing, Takashi Washio, Shohei Shimizu, Bernhard Schölkopf:
Analysis of cause-effect inference by comparing regression errors. PeerJ Comput. Sci. 5: e169 (2019) - [c45]Kristof Meding, Dominik Janzing, Bernhard Schölkopf, Felix A. Wichmann:
Perceiving the arrow of time in autoregressive motion. NeurIPS 2019: 2303-2314 - [c44]Atalanti-Anastasia Mastakouri, Bernhard Schölkopf, Dominik Janzing:
Selecting causal brain features with a single conditional independence test per feature. NeurIPS 2019: 12532-12543 - [c43]Dominik Janzing:
Causal Regularization. NeurIPS 2019: 12683-12693 - [p1]Dominik Janzing:
The Cause-Effect Problem: Motivation, Ideas, and Popular Misconceptions. Cause Effect Pairs in Machine Learning 2019: 3-26 - [i33]Dominik Janzing:
Causal Regularization. CoRR abs/1906.12179 (2019) - [i32]Dominik Janzing, Lenon Minorics, Patrick Blöbaum:
Feature relevance quantification in explainable AI: A causality problem. CoRR abs/1910.13413 (2019) - [i31]Dominik Janzing, Kailash Budhathoki, Lenon Minorics, Patrick Blöbaum:
Causal structure based root cause analysis of outliers. CoRR abs/1912.02724 (2019) - 2018
- [j28]Dominik Janzing, Pawel Wocjan:
Does Universal Controllability of Physical Systems Prohibit Thermodynamic Cycles? Open Syst. Inf. Dyn. 25(3): 1850016:1-1850016:25 (2018) - [c42]Michel Besserve, Naji Shajarisales, Bernhard Schölkopf, Dominik Janzing:
Group invariance principles for causal generative models. AISTATS 2018: 557-565 - [c41]Patrick Blöbaum, Dominik Janzing, Takashi Washio, Shohei Shimizu, Bernhard Schölkopf:
Cause-Effect Inference by Comparing Regression Errors. AISTATS 2018: 900-909 - [c40]Dominik Janzing, Bernhard Schölkopf:
Detecting non-causal artifacts in multivariate linear regression models. ICML 2018: 2250-2258 - [i30]Patrick Blöbaum, Dominik Janzing, Takashi Washio, Shohei Shimizu, Bernhard Schölkopf:
Analysis of Cause-Effect Inference via Regression Errors. CoRR abs/1802.06698 (2018) - [i29]Dominik Janzing, Bernhard Schölkopf:
Detecting non-causal artifacts in multivariate linear regression models. CoRR abs/1803.00810 (2018) - 2017
- [c39]Niki Kilbertus, Mateo Rojas-Carulla, Giambattista Parascandolo, Moritz Hardt, Dominik Janzing, Bernhard Schölkopf:
Avoiding Discrimination through Causal Reasoning. NIPS 2017: 656-666 - [c38]Paul K. Rubenstein, Sebastian Weichwald, Stephan Bongers, Joris M. Mooij, Dominik Janzing, Moritz Grosse-Wentrup, Bernhard Schölkopf:
Causal Consistency of Structural Equation Models. UAI 2017 - [i28]Michel Besserve, Naji Shajarisales, Bernhard Schölkopf, Dominik Janzing:
Group invariance principles for causal generative models. CoRR abs/1705.02212 (2017) - [i27]Niki Kilbertus, Mateo Rojas-Carulla, Giambattista Parascandolo, Moritz Hardt, Dominik Janzing, Bernhard Schölkopf:
Avoiding Discrimination through Causal Reasoning. CoRR abs/1706.02744 (2017) - [i26]Paul K. Rubenstein, Sebastian Weichwald, Stephan Bongers, Joris M. Mooij, Dominik Janzing, Moritz Grosse-Wentrup, Bernhard Schölkopf:
Causal Consistency of Structural Equation Models. CoRR abs/1707.00819 (2017) - 2016
- [j27]Joris M. Mooij, Jonas Peters, Dominik Janzing, Jakob Zscheischler, Bernhard Schölkopf:
Distinguishing Cause from Effect Using Observational Data: Methods and Benchmarks. J. Mach. Learn. Res. 17: 32:1-32:102 (2016) - [j26]Moritz Grosse-Wentrup, Dominik Janzing, Markus Siegel, Bernhard Schölkopf:
Identification of causal relations in neuroimaging data with latent confounders: An instrumental variable approach. NeuroImage 125: 825-833 (2016) - [j25]Bernhard Schölkopf, David W. Hogg, Dun Wang, Daniel Foreman-Mackey, Dominik Janzing, Carl-Johann Simon-Gabriel, Jonas Peters:
Modeling confounding by half-sibling regression. Proc. Natl. Acad. Sci. USA 113(27): 7391-7398 (2016) - [e4]Alexander Ihler, Dominik Janzing:
Proceedings of the Thirty-Second Conference on Uncertainty in Artificial Intelligence, UAI 2016, June 25-29, 2016, New York City, NY, USA. AUAI Press 2016, ISBN 978-0-9966431-1-5 [contents] - 2015
- [j24]Dominik Janzing, Bernhard Schölkopf:
Semi-supervised interpolation in an anticausal learning scenario. J. Mach. Learn. Res. 16: 1923-1948 (2015) - [c37]Eleni Sgouritsa, Dominik Janzing, Philipp Hennig, Bernhard Schölkopf:
Inference of Cause and Effect with Unsupervised Inverse Regression. AISTATS 2015 - [c36]Naji Shajarisales, Dominik Janzing, Bernhard Schölkopf, Michel Besserve:
Telling cause from effect in deterministic linear dynamical systems. ICML 2015: 285-294 - [c35]Philipp Geiger, Kun Zhang, Bernhard Schölkopf, Mingming Gong, Dominik Janzing:
Causal Inference by Identification of Vector Autoregressive Processes with Hidden Components. ICML 2015: 1917-1925 - [c34]Bernhard Schölkopf, David W. Hogg, Dun Wang, Daniel Foreman-Mackey, Dominik Janzing, Carl-Johann Simon-Gabriel, Jonas Peters:
Removing systematic errors for exoplanet search via latent causes. ICML 2015: 2218-2226 - [i25]Naji Shajarisales, Dominik Janzing, Bernhard Schölkopf, Michel Besserve:
Telling cause from effect in deterministic linear dynamical systems. CoRR abs/1503.01299 (2015) - [i24]Bernhard Schölkopf, David W. Hogg, Dun Wang, Daniel Foreman-Mackey, Dominik Janzing, Carl-Johann Simon-Gabriel, Jonas Peters:
Removing systematic errors for exoplanet search via latent causes. CoRR abs/1505.03036 (2015) - 2014
- [j23]Jonas Peters, Joris M. Mooij, Dominik Janzing, Bernhard Schölkopf:
Causal discovery with continuous additive noise models. J. Mach. Learn. Res. 15(1): 2009-2053 (2014) - [c33]Samory Kpotufe, Eleni Sgouritsa, Dominik Janzing, Bernhard Schölkopf:
Consistency of Causal Inference under the Additive Noise Model. ICML 2014: 478-486 - [c32]Rafael Chaves, Lukas Luft, Thiago O. Maciel, David Gross, Dominik Janzing, Bernhard Schölkopf:
Inferring latent structures via information inequalities. UAI 2014: 112-121 - [c31]Philipp Geiger, Dominik Janzing, Bernhard Schölkopf:
Estimating Causal Effects by Bounding Confounding. UAI 2014: 240-249 - [e3]Joris M. Mooij, Dominik Janzing, Jonas Peters, Tom Claassen, Antti Hyttinen:
Proceedings of the UAI 2014 Workshop Causal Inference: Learning and Prediction co-located with 30th Conference on Uncertainty in Artificial Intelligence (UAI 2014), Quebec City, Canada, July 27, 2014. CEUR Workshop Proceedings 1274, CEUR-WS.org 2014 [contents] - [i23]Katja Ried, Megan Agnew, Lydia Vermeyden, Dominik Janzing, Robert W. Spekkens, Kevin J. Resch:
Inferring causal structure: a quantum advantage. CoRR abs/1406.5036 (2014) - [i22]Joris M. Mooij, Dominik Janzing, Bernhard Schölkopf:
From Ordinary Differential Equations to Structural Causal Models: the deterministic case. CoRR abs/1408.2063 (2014) - [i21]Joris M. Mooij, Jonas Peters, Dominik Janzing, Jakob Zscheischler, Bernhard Schölkopf:
Distinguishing cause from effect using observational data: methods and benchmarks. CoRR abs/1412.3773 (2014) - 2013
- [j22]Jan Lemeire, Dominik Janzing:
Replacing Causal Faithfulness with Algorithmic Independence of Conditionals. Minds Mach. 23(2): 227-249 (2013) - [c30]Bernhard Schölkopf, Dominik Janzing, Jonas Peters, Eleni Sgouritsa, Kun Zhang, Joris M. Mooij:
Semi-supervised Learning in Causal and Anticausal Settings. Empirical Inference 2013: 129-141 - [c29]Jonas Peters, Dominik Janzing, Bernhard Schölkopf:
Causal Inference on Time Series using Restricted Structural Equation Models. NIPS 2013: 154-162 - [c28]Joris M. Mooij, Dominik Janzing, Bernhard Schölkopf:
From Ordinary Differential Equations to Structural Causal Models: the deterministic case. UAI 2013 - [c27]Eleni Sgouritsa, Dominik Janzing, Jonas Peters, Bernhard Schölkopf:
Identifying Finite Mixtures of Nonparametric Product Distributions and Causal Inference of Confounders. UAI 2013 - [i20]Joris M. Mooij, Dominik Janzing, Bernhard Schölkopf:
From Ordinary Differential Equations to Structural Causal Models: the deterministic case. CoRR abs/1304.7920 (2013) - [i19]Eleni Sgouritsa, Dominik Janzing, Jonas Peters, Bernhard Schölkopf:
Identifying Finite Mixtures of Nonparametric Product Distributions and Causal Inference of Confounders. CoRR abs/1309.6860 (2013) - [i18]Samory Kpotufe, Eleni Sgouritsa, Dominik Janzing, Bernhard Schölkopf:
Consistency of Causal Inference under the Additive Noise Model. CoRR abs/1312.5770 (2013) - 2012
- [j21]Dominik Janzing, Joris M. Mooij, Kun Zhang, Jan Lemeire, Jakob Zscheischler, Povilas Daniusis, Bastian Steudel, Bernhard Schölkopf:
Information-geometric approach to inferring causal directions. Artif. Intell. 182-183: 1-31 (2012) - [c26]Bernhard Schölkopf, Dominik Janzing, Jonas Peters, Eleni Sgouritsa, Kun Zhang, Joris M. Mooij:
On causal and anticausal learning. ICML 2012 - [i17]Dominik Janzing, Eleni Sgouritsa, Oliver Stegle, Jonas Peters, Bernhard Schölkopf:
Detecting low-complexity unobserved causes. CoRR abs/1202.3737 (2012) - [i16]Jonas Peters, Joris M. Mooij, Dominik Janzing, Bernhard Schölkopf:
Identifiability of Causal Graphs using Functional Models. CoRR abs/1202.3757 (2012) - [i15]Kun Zhang, Jonas Peters, Dominik Janzing, Bernhard Schölkopf:
Kernel-based Conditional Independence Test and Application in Causal Discovery. CoRR abs/1202.3775 (2012) - [i14]Jakob Zscheischler, Dominik Janzing, Kun Zhang:
Testing whether linear equations are causal: A free probability theory approach. CoRR abs/1202.3779 (2012) - [i13]Povilas Daniusis, Dominik Janzing, Joris M. Mooij, Jakob Zscheischler, Bastian Steudel, Kun Zhang, Bernhard Schölkopf:
Inferring deterministic causal relations. CoRR abs/1203.3475 (2012) - [i12]Kun Zhang, Bernhard Schölkopf, Dominik Janzing:
Invariant Gaussian Process Latent Variable Models and Application in Causal Discovery. CoRR abs/1203.3534 (2012) - [i11]Dominik Janzing, Jonas Peters, Joris M. Mooij, Bernhard Schölkopf:
Identifying confounders using additive noise models. CoRR abs/1205.2640 (2012) - [i10]Jonas Peters, Dominik Janzing, Bernhard Schölkopf:
Causal Inference on Time Series using Structural Equation Models. CoRR abs/1207.5136 (2012) - 2011
- [j20]Jonas Peters, Dominik Janzing, Bernhard Schölkopf:
Causal Inference on Discrete Data Using Additive Noise Models. IEEE Trans. Pattern Anal. Mach. Intell. 33(12): 2436-2450 (2011) - [c25]Michel Besserve, Dominik Janzing, Nikos K. Logothetis, Bernhard Schölkopf:
Finding dependencies between frequencies with the kernel cross-spectral density. ICASSP 2011: 2080-2083 - [c24]Joris M. Mooij, Dominik Janzing, Tom Heskes, Bernhard Schölkopf:
On Causal Discovery with Cyclic Additive Noise Models. NIPS 2011: 639-647 - [c23]Dominik Janzing, Eleni Sgouritsa, Oliver Stegle, Jonas Peters, Bernhard Schölkopf:
Detecting low-complexity unobserved causes. UAI 2011: 383-391 - [c22]Jonas Peters, Joris M. Mooij, Dominik Janzing, Bernhard Schölkopf:
Identifiability of Causal Graphs using Functional Models. UAI 2011: 589-598 - [c21]Kun Zhang, Jonas Peters, Dominik Janzing, Bernhard Schölkopf:
Kernel-based Conditional Independence Test and Application in Causal Discovery. UAI 2011: 804-813 - [c20]Jakob Zscheischler, Dominik Janzing, Kun Zhang:
Testing whether linear equations are causal: A free probability theory approach. UAI 2011: 839-846 - [i9]Bernhard Schölkopf, Dominik Janzing, Jonas Peters, Kun Zhang:
Robust Learning via Cause-Effect Models. CoRR abs/1112.2738 (2011) - 2010
- [j19]Dominik Janzing, Bastian Steudel:
Justifying Additive Noise Model-Based Causal Discovery via Algorithmic Information Theory. Open Syst. Inf. Dyn. 17(2): 189-212 (2010) - [j18]Dominik Janzing, Pawel Wocjan:
A promiseBQP-complete string rewriting problem. Quantum Inf. Comput. 10(3&4): 234-257 (2010) - [j17]Dominik Janzing, Bernhard Schölkopf:
Causal inference using the algorithmic Markov condition. IEEE Trans. Inf. Theory 56(10): 5168-5194 (2010) - [c19]Bastian Steudel, Dominik Janzing, Bernhard Schölkopf:
Causal Markov Condition for Submodular Information Measures. COLT 2010: 464-476 - [c18]Dominik Janzing, Patrik O. Hoyer, Bernhard Schölkopf:
Telling cause from effect based on high-dimensional observations. ICML 2010: 479-486 - [c17]Joris M. Mooij, Oliver Stegle, Dominik Janzing, Kun Zhang, Bernhard Schölkopf:
Probabilistic latent variable models for distinguishing between cause and effect. NIPS 2010: 1687-1695 - [c16]Povilas Daniusis, Dominik Janzing, Joris M. Mooij, Jakob Zscheischler, Bastian Steudel, Kun Zhang, Bernhard Schölkopf:
Inferring deterministic causal relations. UAI 2010: 143-150 - [c15]Kun Zhang, Bernhard Schölkopf, Dominik Janzing:
Invariant Gaussian Process Latent Variable Models and Application in Causal Discovery. UAI 2010: 717-724 - [c14]Isabelle Guyon, Dominik Janzing, Bernhard Schölkopf:
Causality: Objectives and Assessment. NIPS Causality: Objectives and Assessment 2010: 1-42 - [c13]Joris M. Mooij, Dominik Janzing:
Distinguishing between cause and effect. NIPS Causality: Objectives and Assessment 2010: 147-156 - [c12]Jonas Peters, Dominik Janzing, Bernhard Schölkopf:
Identifying Cause and Effect on Discrete Data using Additive Noise Models. AISTATS 2010: 597-604 - [e2]Isabelle Guyon, Dominik Janzing, Bernhard Schölkopf:
Causality: Objectives and Assessment (NIPS 2008 Workshop), Whistler, Canada, December 12, 2008. JMLR Proceedings 6, JMLR.org 2010 [contents] - [i8]Bastian Steudel, Dominik Janzing, Bernhard Schölkopf:
Causal Markov condition for submodular information measures. CoRR abs/1002.4020 (2010) - [i7]Dominik Janzing:
Is there a physically universal cellular automaton or Hamiltonian? CoRR abs/1009.1720 (2010)
2000 – 2009
- 2009
- [c11]Joris M. Mooij, Dominik Janzing, Jonas Peters, Bernhard Schölkopf:
Regression by dependence minimization and its application to causal inference in additive noise models. ICML 2009: 745-752 - [c10]Jonas Peters, Dominik Janzing, Arthur Gretton, Bernhard Schölkopf:
Detecting the direction of causal time series. ICML 2009: 801-808 - [c9]Dominik Janzing, Jonas Peters, Joris M. Mooij, Bernhard Schölkopf:
Identifying confounders using additive noise models. UAI 2009: 249-257 - [e1]Dominik Janzing, Steffen L. Lauritzen, Bernhard Schölkopf:
Machine learning approaches to statistical dependences and causality, 27.09. - 02.10.2009. Dagstuhl Seminar Proceedings 09401, Schloss Dagstuhl - Leibniz-Zentrum für Informatik, Germany 2009 [contents] - [r2]Dominik Janzing:
Entropy of Entanglement. Compendium of Quantum Physics 2009: 205-209 - [r1]Dominik Janzing:
Quantum Entropy. Compendium of Quantum Physics 2009: 543-546 - [i6]Dominik Janzing, Steffen L. Lauritzen, Bernhard Schölkopf:
09401 Abstracts Collection - Machine learning approaches to statistical dependences and causality. Machine learning approaches to statistical dependences and causality 2009 - [i5]Dominik Janzing, Bastian Steudel:
Justifying additive-noise-model based causal discovery via algorithmic information theory. CoRR abs/0910.1691 (2009) - 2008
- [j16]Dominik Janzing, Thomas Decker:
How much is a quantum controller controlled by the controlled system? Appl. Algebra Eng. Commun. Comput. 19(3): 241-258 (2008) - [j15]Xiaohai Sun, Dominik Janzing, Bernhard Schölkopf:
Causal reasoning by evaluating the complexity of conditional densities with kernel methods. Neurocomputing 71(7-9): 1248-1256 (2008) - [j14]Pawel Wocjan, Dominik Janzing, Thomas Decker:
Measuring 4-local qubit observables could probabilistically solve PSPACE. Quantum Inf. Comput. 8(8): 741-755 (2008) - [c8]Jonas Peters, Dominik Janzing, Arthur Gretton, Bernhard Schölkopf:
Kernel Methods for Detecting the Direction of Time Series. GfKl 2008: 57-66 - [c7]Patrik O. Hoyer, Dominik Janzing, Joris M. Mooij, Jonas Peters, Bernhard Schölkopf:
Nonlinear causal discovery with additive noise models. NIPS 2008: 689-696 - [i4]Dominik Janzing, Bernhard Schölkopf:
Causal inference using the algorithmic Markov condition. CoRR abs/0804.3678 (2008) - 2007
- [j13]Dominik Janzing, Pawel Wocjan:
A Simple PromiseBQP-complete Matrix Problem. Theory Comput. 3(1): 61-79 (2007) - [c6]Xiaohai Sun, Dominik Janzing, Bernhard Schölkopf:
Distinguishing between cause and effect via kernel-based complexity measures for conditional distributions. ESANN 2007: 441-446 - [c5]Xiaohai Sun, Dominik Janzing:
Learning causality by identifying common effects with kernel-based dependence measures. ESANN 2007: 453-458 - [c4]Xiaohai Sun, Dominik Janzing:
Exploring the causal order of binary variables via exponential hierarchies of Markov kernels. ESANN 2007: 465-470 - [c3]Xiaohai Sun, Dominik Janzing, Bernhard Schölkopf, Kenji Fukumizu:
A kernel-based causal learning algorithm. ICML 2007: 855-862 - 2006
- [b2]Dominik Janzing:
Computer science approach to quantum control. Univeristätsverlag Karlsruhe 2006, ISBN 978-3-86644-083-8, pp. I-II, 1-137 - [b1]Dominik Janzing:
Computer science approach to quantum control. Karlsruhe University, Germany, 2006 - [j12]Dominik Janzing, Jörn Müller-Quade:
Guest editorial. Inform. Forsch. Entwickl. 21(1-2): 1-2 (2006) - [j11]Dominik Janzing:
Quantum computing models as a tool box for controlling and understanding the nanoscopic world. Inform. Forsch. Entwickl. 21(1-2): 83-90 (2006) - [c2]Xiaohai Sun, Dominik Janzing, Bernhard Schölkopf:
Causal Inference by Choosing Graphs with Most Plausible Markov Kernels. AI&M 2006 - 2005
- [j10]Dominik Janzing, Pawel Wocjan:
Ergodic Quantum Computing. Quantum Inf. Process. 4(2): 129-158 (2005) - [c1]Dominik Janzing:
Über den Zusammenhang zwischen thermodynamisch reversiblem, kryptograpisch seitenkanalfreiem sowie quantenkohärentem Rechnen. GI Jahrestagung (1) 2005: 443 - 2003
- [j9]Dominik Janzing, Pawel Wocjan, Thomas Beth:
On The Computational Power Of Physical Interactions: Bounds On The Number Of Time Steps For Simulating Arbitrary Interaction Graphs. Int. J. Found. Comput. Sci. 14(5): 889- (2003) - [j8]Pawel Wocjan, Dominik Janzing, Thomas Beth:
Two QCMA-complete problems. Quantum Inf. Comput. 3(6): 635-643 (2003) - [j7]Pawel Wocjan, Dominik Janzing, Thomas Beth:
Treating the Independent Set Problem by 2D Ising Interactions with Adiabatic Quantum Computing. Quantum Inf. Process. 2(4): 259-270 (2003) - [j6]Dominik Janzing, Thomas Beth:
Quasi-order of clocks and their synchronism and quantum bounds for copying timing information. IEEE Trans. Inf. Theory 49(1): 230-240 (2003) - [i3]Dominik Janzing, Daniel Herrmann:
Reliable and Efficient Inference of Bayesian Networks from Sparse Data by Statistical Learning Theory. CoRR cs.LG/0309015 (2003) - 2002
- [j5]Pawel Wocjan, Dominik Janzing, Thomas Beth:
Simulating arbitrary pair-interactions by a given Hamiltonian: graph-theoretical bounds on the time-complexity. Quantum Inf. Comput. 2(2): 117-132 (2002) - [j4]Pawel Wocjan, Martin Rötteler, Dominik Janzing, Thomas Beth:
Universal simulation of Hamiltonians using a finite set of control operations. Quantum Inf. Comput. 2(2): 133-150 (2002) - [j3]Dominik Janzing, Thomas Beth:
Quantum algorithm for measuring the eigenvalues of U ⊗ U-1 for a black-box unitary transformation U. Quantum Inf. Comput. 2(3): 192-197 (2002) - [j2]Dominik Janzing:
Quantum algorithm for measuring the energy of n qubits with unknown pair-interactions. Quantum Inf. Comput. 2(3): 198-207 (2002) - [i2]Pawel Wocjan, Dominik Janzing, Thomas Beth:
Required sample size for learning sparse Bayesian networks with many variables. CoRR cs.LG/0204052 (2002) - 2001
- [j1]Rainer Steinwandt, Dominik Janzing, Thomas Beth:
On using quantum protocols to detect traffic analysis. Quantum Inf. Comput. 1(3): 62-69 (2001) - [i1]Pawel Wocjan, Dominik Janzing, Thomas Beth:
Lower Bound on the Chromatic Number by Spectra of Weighted Adjacency Matrices. CoRR cs.DM/0112023 (2001)
Coauthor Index
manage site settings
To protect your privacy, all features that rely on external API calls from your browser are turned off by default. You need to opt-in for them to become active. All settings here will be stored as cookies with your web browser. For more information see our F.A.Q.
Unpaywalled article links
Add open access links from to the list of external document links (if available).
Privacy notice: By enabling the option above, your browser will contact the API of unpaywall.org to load hyperlinks to open access articles. Although we do not have any reason to believe that your call will be tracked, we do not have any control over how the remote server uses your data. So please proceed with care and consider checking the Unpaywall privacy policy.
Archived links via Wayback Machine
For web page which are no longer available, try to retrieve content from the of the Internet Archive (if available).
Privacy notice: By enabling the option above, your browser will contact the API of archive.org to check for archived content of web pages that are no longer available. Although we do not have any reason to believe that your call will be tracked, we do not have any control over how the remote server uses your data. So please proceed with care and consider checking the Internet Archive privacy policy.
Reference lists
Add a list of references from , , and to record detail pages.
load references from crossref.org and opencitations.net
Privacy notice: By enabling the option above, your browser will contact the APIs of crossref.org, opencitations.net, and semanticscholar.org to load article reference information. Although we do not have any reason to believe that your call will be tracked, we do not have any control over how the remote server uses your data. So please proceed with care and consider checking the Crossref privacy policy and the OpenCitations privacy policy, as well as the AI2 Privacy Policy covering Semantic Scholar.
Citation data
Add a list of citing articles from and to record detail pages.
load citations from opencitations.net
Privacy notice: By enabling the option above, your browser will contact the API of opencitations.net and semanticscholar.org to load citation information. Although we do not have any reason to believe that your call will be tracked, we do not have any control over how the remote server uses your data. So please proceed with care and consider checking the OpenCitations privacy policy as well as the AI2 Privacy Policy covering Semantic Scholar.
OpenAlex data
Load additional information about publications from .
Privacy notice: By enabling the option above, your browser will contact the API of openalex.org to load additional information. Although we do not have any reason to believe that your call will be tracked, we do not have any control over how the remote server uses your data. So please proceed with care and consider checking the information given by OpenAlex.
last updated on 2024-09-18 00:12 CEST by the dblp team
all metadata released as open data under CC0 1.0 license
see also: Terms of Use | Privacy Policy | Imprint