default search action
Javier Antorán
Person information
Refine list
refinements active!
zoomed in on ?? of ?? records
view refined list in
export refined list as
2020 – today
- 2024
- [j3]Riccardo Barbano, Javier Antorán, Johannes Leuschner, José Miguel Hernández-Lobato, Bangti Jin, Zeljko Kereta:
Image Reconstruction via Deep Image Prior Subspaces. Trans. Mach. Learn. Res. 2024 (2024) - [j2]Tomas Geffner, Javier Antorán, Adam Foster, Wenbo Gong, Chao Ma, Emre Kiciman, Amit Sharma, Angus Lamb, Martin Kukla, Nick Pawlowski, Agrin Hilmkil, Joel Jennings, Meyer Scetbon, Miltiadis Allamanis, Cheng Zhang:
Deep End-to-end Causal Inference. Trans. Mach. Learn. Res. 2024 (2024) - [c11]Jihao Andreas Lin, Shreyas Padhy, Javier Antorán, Austin Tripp, Alexander Terenin, Csaba Szepesvári, José Miguel Hernández-Lobato, David Janz:
Stochastic Gradient Descent for Gaussian Processes Done Right. ICLR 2024 - [i22]James Urquhart Allingham, Bruno Kacper Mlodozeniec, Shreyas Padhy, Javier Antorán, David Krueger, Richard E. Turner, Eric T. Nalisnick, José Miguel Hernández-Lobato:
A Generative Model of Symmetry Transformations. CoRR abs/2403.01946 (2024) - [i21]Javier Antorán:
Scalable Bayesian Inference in the Era of Deep Learning: From Gaussian Processes to Deep Neural Networks. CoRR abs/2404.19157 (2024) - [i20]Jihao Andreas Lin, Shreyas Padhy, Bruno Mlodozeniec, Javier Antorán, José Miguel Hernández-Lobato:
Improving Linear System Solvers for Hyperparameter Optimisation in Iterative Gaussian Processes. CoRR abs/2405.18457 (2024) - [i19]Fengzhe Zhang, Jiajun He, Laurence I. Midgley, Javier Antorán, José Miguel Hernández-Lobato:
Efficient and Unbiased Sampling of Boltzmann Distributions via Consistency Models. CoRR abs/2409.07323 (2024) - 2023
- [j1]Javier Antorán, Riccardo Barbano, Johannes Leuschner, José Miguel Hernández-Lobato, Bangti Jin:
Uncertainty Estimation for Computed Tomography with a Linearised Deep Image Prior. Trans. Mach. Learn. Res. 2023 (2023) - [c10]Javier Antorán, Shreyas Padhy, Riccardo Barbano, Eric T. Nalisnick, David Janz, José Miguel Hernández-Lobato:
Sampling-based inference for large linear models, with application to linearised Laplace. ICLR 2023 - [c9]Jihao Andreas Lin, Javier Antorán, Shreyas Padhy, David Janz, José Miguel Hernández-Lobato, Alexander Terenin:
Sampling from Gaussian Process Posteriors using Stochastic Gradient Descent. NeurIPS 2023 - [c8]Laurence I. Midgley, Vincent Stimper, Javier Antorán, Emile Mathieu, Bernhard Schölkopf, José Miguel Hernández-Lobato:
SE(3) Equivariant Augmented Coupling Flows. NeurIPS 2023 - [e2]Javier Antorán, Arno Blaas, Kelly Buchanan, Fan Feng, Vincent Fortuin, Sahra Ghalebikesabi, Andreas Kriegler, Ian Mason, David Rohde, Francisco J. R. Ruiz, Tobias Uelwer, Yubin Xie, Rui Yang:
Proceedings on "I Can't Believe It's Not Better: Failure Modes in the Age of Foundation Models" at NeurIPS 2023 Workshops, 16 December 2023, New Orleans, Louisiana, USA. Proceedings of Machine Learning Research 239, PMLR 2023 [contents] - [i18]Riccardo Barbano, Javier Antorán, Johannes Leuschner, José Miguel Hernández-Lobato, Zeljko Kereta, Bangti Jin:
Fast and Painless Image Reconstruction in Deep Image Prior Subspaces. CoRR abs/2302.10279 (2023) - [i17]Jihao Andreas Lin, Javier Antorán, Shreyas Padhy, David Janz, José Miguel Hernández-Lobato, Alexander Terenin:
Sampling from Gaussian Process Posteriors using Stochastic Gradient Descent. CoRR abs/2306.11589 (2023) - [i16]Jihao Andreas Lin, Javier Antorán, José Miguel Hernández-Lobato:
Online Laplace Model Selection Revisited. CoRR abs/2307.06093 (2023) - [i15]Laurence I. Midgley, Vincent Stimper, Javier Antorán, Emile Mathieu, Bernhard Schölkopf, José Miguel Hernández-Lobato:
SE(3) Equivariant Augmented Coupling Flows. CoRR abs/2308.10364 (2023) - [i14]Jihao Andreas Lin, Shreyas Padhy, Javier Antorán, Austin Tripp, Alexander Terenin, Csaba Szepesvári, José Miguel Hernández-Lobato, David Janz:
Stochastic Gradient Descent for Gaussian Processes Done Right. CoRR abs/2310.20581 (2023) - 2022
- [c7]Javier Antorán, David Janz, James Urquhart Allingham, Erik A. Daxberger, Riccardo Barbano, Eric T. Nalisnick, José Miguel Hernández-Lobato:
Adapting the Linearised Laplace Model Evidence for Modern Deep Learning. ICML 2022: 796-821 - [e1]Javier Antorán, Arno Blaas, Fan Feng, Sahra Ghalebikesabi, Ian Mason, Melanie F. Pradier, David Rohde, Francisco J. R. Ruiz, Aaron Schein:
Proceedings on "I Can't Believe It's Not Better! - Understanding Deep Learning Through Empirical Falsification" at NeurIPS 2022 Workshops, 03 December 2022, New Orleans, Louisiana, USA. Proceedings of Machine Learning Research 187, PMLR 2022 [contents] - [i13]Tomas Geffner, Javier Antorán, Adam Foster, Wenbo Gong, Chao Ma, Emre Kiciman, Amit Sharma, Angus Lamb, Martin Kukla, Nick Pawlowski, Miltiadis Allamanis, Cheng Zhang:
Deep End-to-end Causal Inference. CoRR abs/2202.02195 (2022) - [i12]Javier Antorán, Riccardo Barbano, Johannes Leuschner, José Miguel Hernández-Lobato, Bangti Jin:
A Probabilistic Deep Image Prior for Computational Tomography. CoRR abs/2203.00479 (2022) - [i11]Javier Antorán, David Janz, James Urquhart Allingham, Erik A. Daxberger, Riccardo Barbano, Eric T. Nalisnick, José Miguel Hernández-Lobato:
Adapting the Linearised Laplace Model Evidence for Modern Deep Learning. CoRR abs/2206.08900 (2022) - [i10]Riccardo Barbano, Johannes Leuschner, Javier Antorán, Bangti Jin, José Miguel Hernández-Lobato:
Bayesian Experimental Design for Computed Tomography with the Linearised Deep Image Prior. CoRR abs/2207.05714 (2022) - [i9]Javier Antorán, Shreyas Padhy, Riccardo Barbano, Eric T. Nalisnick, David Janz, José Miguel Hernández-Lobato:
Sampling-based inference for large linear models, with application to linearised Laplace. CoRR abs/2210.04994 (2022) - 2021
- [c6]Umang Bhatt, Javier Antorán, Yunfeng Zhang, Q. Vera Liao, Prasanna Sattigeri, Riccardo Fogliato, Gabrielle Gauthier Melançon, Ranganath Krishnan, Jason Stanley, Omesh Tickoo, Lama Nachman, Rumi Chunara, Madhulika Srikumar, Adrian Weller, Alice Xiang:
Uncertainty as a Form of Transparency: Measuring, Communicating, and Using Uncertainty. AIES 2021: 401-413 - [c5]Chelsea Murray, James Urquhart Allingham, Javier Antorán, José Miguel Hernández-Lobato:
Addressing Bias in Active Learning with Depth Uncertainty Networks... or Not. ICBINB@NeurIPS 2021: 59-63 - [c4]Javier Antorán, Umang Bhatt, Tameem Adel, Adrian Weller, José Miguel Hernández-Lobato:
Getting a CLUE: A Method for Explaining Uncertainty Estimates. ICLR 2021 - [c3]Erik A. Daxberger, Eric T. Nalisnick, James Urquhart Allingham, Javier Antorán, José Miguel Hernández-Lobato:
Bayesian Deep Learning via Subnetwork Inference. ICML 2021: 2510-2521 - [i8]Chelsea Murray, James Urquhart Allingham, Javier Antorán, José Miguel Hernández-Lobato:
Depth Uncertainty Networks for Active Learning. CoRR abs/2112.06796 (2021) - [i7]Chelsea Murray, James Urquhart Allingham, Javier Antorán, José Miguel Hernández-Lobato:
Addressing Bias in Active Learning with Depth Uncertainty Networks... or Not. CoRR abs/2112.06926 (2021) - 2020
- [c2]Javier Antorán, James Urquhart Allingham, José Miguel Hernández-Lobato:
Depth Uncertainty in Neural Networks. NeurIPS 2020 - [i6]Javier Antorán, James Urquhart Allingham, José Miguel Hernández-Lobato:
Variational Depth Search in ResNets. CoRR abs/2002.02797 (2020) - [i5]Javier Antorán, Umang Bhatt, Tameem Adel, Adrian Weller, José Miguel Hernández-Lobato:
Getting a CLUE: A Method for Explaining Uncertainty Estimates. CoRR abs/2006.06848 (2020) - [i4]Javier Antorán, James Urquhart Allingham, José Miguel Hernández-Lobato:
Depth Uncertainty in Neural Networks. CoRR abs/2006.08437 (2020) - [i3]Erik A. Daxberger, Eric T. Nalisnick, James Urquhart Allingham, Javier Antorán, José Miguel Hernández-Lobato:
Expressive yet Tractable Bayesian Deep Learning via Subnetwork Inference. CoRR abs/2010.14689 (2020) - [i2]Umang Bhatt, Yunfeng Zhang, Javier Antorán, Q. Vera Liao, Prasanna Sattigeri, Riccardo Fogliato, Gabrielle Gauthier Melançon, Ranganath Krishnan, Jason Stanley, Omesh Tickoo, Lama Nachman, Rumi Chunara, Adrian Weller, Alice Xiang:
Uncertainty as a Form of Transparency: Measuring, Communicating, and Using Uncertainty. CoRR abs/2011.07586 (2020)
2010 – 2019
- 2019
- [c1]Javier Antorán, Antonio Miguel:
Disentangling and Learning Robust Representations with Natural Clustering. ICMLA 2019: 694-699 - [i1]Javier Antorán, Antonio Miguel:
Disentangling in Variational Autoencoders with Natural Clustering. CoRR abs/1901.09415 (2019)
Coauthor Index
manage site settings
To protect your privacy, all features that rely on external API calls from your browser are turned off by default. You need to opt-in for them to become active. All settings here will be stored as cookies with your web browser. For more information see our F.A.Q.
Unpaywalled article links
Add open access links from to the list of external document links (if available).
Privacy notice: By enabling the option above, your browser will contact the API of unpaywall.org to load hyperlinks to open access articles. Although we do not have any reason to believe that your call will be tracked, we do not have any control over how the remote server uses your data. So please proceed with care and consider checking the Unpaywall privacy policy.
Archived links via Wayback Machine
For web page which are no longer available, try to retrieve content from the of the Internet Archive (if available).
Privacy notice: By enabling the option above, your browser will contact the API of archive.org to check for archived content of web pages that are no longer available. Although we do not have any reason to believe that your call will be tracked, we do not have any control over how the remote server uses your data. So please proceed with care and consider checking the Internet Archive privacy policy.
Reference lists
Add a list of references from , , and to record detail pages.
load references from crossref.org and opencitations.net
Privacy notice: By enabling the option above, your browser will contact the APIs of crossref.org, opencitations.net, and semanticscholar.org to load article reference information. Although we do not have any reason to believe that your call will be tracked, we do not have any control over how the remote server uses your data. So please proceed with care and consider checking the Crossref privacy policy and the OpenCitations privacy policy, as well as the AI2 Privacy Policy covering Semantic Scholar.
Citation data
Add a list of citing articles from and to record detail pages.
load citations from opencitations.net
Privacy notice: By enabling the option above, your browser will contact the API of opencitations.net and semanticscholar.org to load citation information. Although we do not have any reason to believe that your call will be tracked, we do not have any control over how the remote server uses your data. So please proceed with care and consider checking the OpenCitations privacy policy as well as the AI2 Privacy Policy covering Semantic Scholar.
OpenAlex data
Load additional information about publications from .
Privacy notice: By enabling the option above, your browser will contact the API of openalex.org to load additional information. Although we do not have any reason to believe that your call will be tracked, we do not have any control over how the remote server uses your data. So please proceed with care and consider checking the information given by OpenAlex.
last updated on 2024-10-15 20:45 CEST by the dblp team
all metadata released as open data under CC0 1.0 license
see also: Terms of Use | Privacy Policy | Imprint