default search action
Volodymyr Kuleshov
Person information
Refine list
refinements active!
zoomed in on ?? of ?? records
view refined list in
export refined list as
2020 – today
- 2024
- [j5]Junjie Yin, Jiahao Dong, Yingheng Wang, Christopher De Sa, Volodymyr Kuleshov:
ModuLoRA: Finetuning 2-Bit LLMs on Consumer GPUs by Integrating with Modular Quantizers. Trans. Mach. Learn. Res. 2024 (2024) - [c31]Shachi Deshpande, Charles Marx, Volodymyr Kuleshov:
Online Calibrated and Conformal Prediction Improves Bayesian Optimization. AISTATS 2024: 1450-1458 - [c30]Aaron Gokaslan, A. Feder Cooper, Jasmine Collins, Landan Seguin, Austin Jacobson, Mihir Patel, Jonathan Frankle, Cory Stephenson, Volodymyr Kuleshov:
Common Canvas: Open Diffusion Models Trained on Creative-Commons Images. CVPR 2024: 8250-8260 - [c29]Yair Schiff, Chia-Hsiang Kao, Aaron Gokaslan, Tri Dao, Albert Gu, Volodymyr Kuleshov:
Caduceus: Bi-Directional Equivariant Long-Range DNA Sequence Modeling. ICML 2024 - [c28]Yair Schiff, Zhong Yi Wan, Jeffrey B. Parker, Stephan Hoyer, Volodymyr Kuleshov, Fei Sha, Leonardo Zepeda-Núñez:
DySLIM: Dynamics Stable Learning by Invariant Measure for Chaotic Systems. ICML 2024 - [c27]Albert Tseng, Jerry Chee, Qingyao Sun, Volodymyr Kuleshov, Christopher De Sa:
QuIP#: Even Better LLM Quantization with Hadamard Incoherence and Lattice Codebooks. ICML 2024 - [i37]Top Piriyakulkij, Yingheng Wang, Volodymyr Kuleshov:
Diffusion Variational Inference: Diffusion Models as Expressive Variational Posteriors. CoRR abs/2401.02739 (2024) - [i36]Albert Tseng, Jerry Chee, Qingyao Sun, Volodymyr Kuleshov, Christopher De Sa:
QuIP#: Even Better LLM Quantization with Hadamard Incoherence and Lattice Codebooks. CoRR abs/2402.04396 (2024) - [i35]Yair Schiff, Zhong Yi Wan, Jeffrey B. Parker, Stephan Hoyer, Volodymyr Kuleshov, Fei Sha, Leonardo Zepeda-Núñez:
DySLIM: Dynamics Stable Learning by Invariant Measure for Chaotic Systems. CoRR abs/2402.04467 (2024) - [i34]Yair Schiff, Chia-Hsiang Kao, Aaron Gokaslan, Tri Dao, Albert Gu, Volodymyr Kuleshov:
Caduceus: Bi-Directional Equivariant Long-Range DNA Sequence Modeling. CoRR abs/2403.03234 (2024) - [i33]Subham Sekhar Sahoo, Marianne Arriola, Yair Schiff, Aaron Gokaslan, Edgar Marroquin, Justin T. Chiu, Alexander M. Rush, Volodymyr Kuleshov:
Simple and Effective Masked Diffusion Language Models. CoRR abs/2406.07524 (2024) - [i32]Charles Marx, Volodymyr Kuleshov, Stefano Ermon:
Calibrated Probabilistic Forecasts for Arbitrary Sequences. CoRR abs/2409.19157 (2024) - 2023
- [c26]Qian Yang, Yuexing Hao, Kexin Quan, Stephen Yang, Yiran Zhao, Volodymyr Kuleshov, Fei Wang:
Harnessing Biomedical Literature to Calibrate Clinicians' Trust in AI Decision Support Systems. CHI 2023: 14:1-14:14 - [c25]John X. Morris, Volodymyr Kuleshov, Vitaly Shmatikov, Alexander M. Rush:
Text Embeddings Reveal (Almost) As Much As Text. EMNLP 2023: 12448-12460 - [c24]Richa Rastogi, Yair Schiff, Alon Hacohen, Zhaozhi Li, Ian Lee, Yuntian Deng, Mert R. Sabuncu, Volodymyr Kuleshov:
Semi-Parametric Inducing Point Networks and Neural Processes. ICLR 2023 - [c23]Subham Sekhar Sahoo, Anselm Paulus, Marin Vlastelica, Vít Musil, Volodymyr Kuleshov, Georg Martius:
Backpropagation through Combinatorial Algorithms: Identity with Projection Works. ICLR 2023 - [c22]Phillip Si, Zeyi Chen, Subham Sekhar Sahoo, Yair Schiff, Volodymyr Kuleshov:
Semi-Autoregressive Energy Flows: Exploring Likelihood-Free Training of Normalizing Flows. ICML 2023: 31732-31753 - [c21]Yingheng Wang, Yair Schiff, Aaron Gokaslan, Weishen Pan, Fei Wang, Christopher De Sa, Volodymyr Kuleshov:
InfoDiffusion: Representation Learning Using Information Maximizing Diffusion Models. ICML 2023: 36336-36354 - [c20]Jerry Chee, Yaohui Cai, Volodymyr Kuleshov, Christopher De Sa:
QuIP: 2-Bit Quantization of Large Language Models With Guarantees. NeurIPS 2023 - [i31]Volodymyr Kuleshov, Shachi Deshpande:
Online Calibrated Regression for Adversarially Robust Forecasting. CoRR abs/2302.12196 (2023) - [i30]Shachi Deshpande, Volodymyr Kuleshov:
Calibrated Propensity Scores for Causal Effect Estimation. CoRR abs/2306.00382 (2023) - [i29]Yingheng Wang, Yair Schiff, Aaron Gokaslan, Weishen Pan, Fei Wang, Christopher De Sa, Volodymyr Kuleshov:
InfoDiffusion: Representation Learning Using Information Maximizing Diffusion Models. CoRR abs/2306.08757 (2023) - [i28]Jerry Chee, Yaohui Cai, Volodymyr Kuleshov, Christopher De Sa:
QuIP: 2-Bit Quantization of Large Language Models With Guarantees. CoRR abs/2307.13304 (2023) - [i27]Junjie Yin, Jiahao Dong, Yingheng Wang, Christopher De Sa, Volodymyr Kuleshov:
ModuLoRA: Finetuning 3-Bit LLMs on Consumer GPUs by Integrating with Modular Quantizers. CoRR abs/2309.16119 (2023) - [i26]John X. Morris, Volodymyr Kuleshov, Vitaly Shmatikov, Alexander M. Rush:
Text Embeddings Reveal (Almost) As Much As Text. CoRR abs/2310.06816 (2023) - [i25]Aaron Gokaslan, A. Feder Cooper, Jasmine Collins, Landan Seguin, Austin Jacobson, Mihir Patel, Jonathan Frankle, Cory Stephenson, Volodymyr Kuleshov:
CommonCanvas: An Open Diffusion Model Trained with Creative-Commons Images. CoRR abs/2310.16825 (2023) - [i24]Jacqueline R. M. A. Maasch, Weishen Pan, Shantanu Gupta, Volodymyr Kuleshov, Kyra Gan, Fei Wang:
Local Discovery by Partitioning: Polynomial-Time Causal Discovery Around Exposure-Outcome Pairs. CoRR abs/2310.17816 (2023) - [i23]Top Piriyakulkij, Volodymyr Kuleshov, Kevin Ellis:
Active Preference Inference using Language Models and Probabilistic Reasoning. CoRR abs/2312.12009 (2023) - [i22]Subham Sekhar Sahoo, Aaron Gokaslan, Chris De Sa, Volodymyr Kuleshov:
Diffusion Models With Learned Adaptive Noise. CoRR abs/2312.13236 (2023) - 2022
- [c19]Yuntian Deng, Volodymyr Kuleshov, Alexander M. Rush:
Model Criticism for Long-Form Text Generation. EMNLP 2022: 11887-11912 - [c18]Phillip Si, Allan Bishop, Volodymyr Kuleshov:
Autoregressive Quantile Flows for Predictive Uncertainty Estimation. ICLR 2022 - [c17]Volodymyr Kuleshov, Shachi Deshpande:
Calibrated and Sharp Uncertainties in Deep Learning via Density Estimation. ICML 2022: 11683-11693 - [c16]Shachi Deshpande, Kaiwen Wang, Dhruv Sreenivas, Zheng Li, Volodymyr Kuleshov:
Deep Multi-Modal Structural Equations For Causal Effect Estimation With Unstructured Proxies. NeurIPS 2022 - [i21]Shachi Deshpande, Zheng Li, Volodymyr Kuleshov:
Multi-Modal Causal Inference with Deep Structural Equation Models. CoRR abs/2203.09672 (2022) - [i20]Richa Rastogi, Yuntian Deng, Ian Lee, Mert R. Sabuncu, Volodymyr Kuleshov:
Semi-Parametric Deep Neural Networks in Linear Time and Memory. CoRR abs/2205.11718 (2022) - [i19]Subham Sekhar Sahoo, Marin Vlastelica, Anselm Paulus, Vít Musil, Volodymyr Kuleshov, Georg Martius:
Gradient Backpropagation Through Combinatorial Algorithms: Identity with Projection Works. CoRR abs/2205.15213 (2022) - [i18]Phillip Si, Volodymyr Kuleshov:
Energy Flows: Towards Determinant-Free Training of Normalizing Flows. CoRR abs/2206.06672 (2022) - [i17]Yuntian Deng, Volodymyr Kuleshov, Alexander M. Rush:
Model Criticism for Long-Form Text Generation. CoRR abs/2210.08444 (2022) - [i16]Jacqueline R. M. A. Maasch, Hao Zhang, Qian Yang, Fei Wang, Volodymyr Kuleshov:
Regularized Data Programming with Bayesian Priors. CoRR abs/2210.08677 (2022) - 2021
- [i15]Bojian Hou, Hao Zhang, Gur Ladizhinsky, Stephen Yang, Volodymyr Kuleshov, Fei Wang, Qian Yang:
Clinical Evidence Engine: Proof-of-Concept For A Clinical-Domain-Agnostic Decision Support Infrastructure. CoRR abs/2111.00621 (2021) - [i14]Shachi Deshpande, Volodymyr Kuleshov:
Calibration Improves Bayesian Optimization. CoRR abs/2112.04620 (2021) - [i13]Phillip Si, Allan Bishop, Volodymyr Kuleshov:
Autoregressive Quantile Flows for Predictive Uncertainty Estimation. CoRR abs/2112.04643 (2021) - [i12]Volodymyr Kuleshov, Evgenii Nikishin, Shantanu Thakoor, Tingfung Lau, Stefano Ermon:
Quantifying and Understanding Adversarial Examples in Discrete Input Spaces. CoRR abs/2112.06276 (2021) - [i11]Volodymyr Kuleshov, Shachi Deshpande:
Calibrated and Sharp Uncertainties in Deep Learning via Simple Density Estimation. CoRR abs/2112.07184 (2021)
2010 – 2019
- 2019
- [c15]Ali Malik, Volodymyr Kuleshov, Jiaming Song, Danny Nemer, Harlan Seymour, Stefano Ermon:
Calibrated Model-Based Deep Reinforcement Learning. ICML 2019: 4314-4323 - [c14]Sawyer Birnbaum, Volodymyr Kuleshov, S. Zayd Enam, Pang Wei Koh, Stefano Ermon:
Temporal FiLM: Capturing Long-Range Sequence Dependencies with Feature-Wise Modulations. NeurIPS 2019: 10287-10298 - [i10]Ali Malik, Volodymyr Kuleshov, Jiaming Song, Danny Nemer, Harlan Seymour, Stefano Ermon:
Calibrated Model-Based Deep Reinforcement Learning. CoRR abs/1906.08312 (2019) - [i9]Sawyer Birnbaum, Volodymyr Kuleshov, S. Zayd Enam, Pang Wei Koh, Stefano Ermon:
Temporal FiLM: Capturing Long-Range Sequence Dependencies with Feature-Wise Modulations. CoRR abs/1909.06628 (2019) - 2018
- [j4]Hongyu Ren, Russell Stewart, Jiaming Song, Volodymyr Kuleshov, Stefano Ermon:
Learning with Weak Supervision from Physics and Data-Driven Constraints. AI Mag. 39(1): 27-38 (2018) - [j3]Victoria Popic, Volodymyr Kuleshov, Michael P. Snyder, Serafim Batzoglou:
Fast Metagenomic Binning via Hashing and Bayesian Clustering. J. Comput. Biol. 25(7): 677-688 (2018) - [c13]Volodymyr Kuleshov, Nathan Fenner, Stefano Ermon:
Accurate Uncertainties for Deep Learning Using Calibrated Regression. ICML 2018: 2801-2809 - [c12]Hongyu Ren, Russell Stewart, Jiaming Song, Volodymyr Kuleshov, Stefano Ermon:
Adversarial Constraint Learning for Structured Prediction. IJCAI 2018: 2637-2643 - [i8]Hongyu Ren, Russell Stewart, Jiaming Song, Volodymyr Kuleshov, Stefano Ermon:
Adversarial Constraint Learning for Structured Prediction. CoRR abs/1805.10561 (2018) - [i7]Volodymyr Kuleshov, Nathan Fenner, Stefano Ermon:
Accurate Uncertainties for Deep Learning Using Calibrated Regression. CoRR abs/1807.00263 (2018) - 2017
- [b1]Volodymyr Kuleshov:
Intelligent systems for personalized genomic medicine. Stanford University, USA, 2017 - [c11]Volodymyr Kuleshov, Stefano Ermon:
Estimating Uncertainty Online Against an Adversary. AAAI 2017: 2110-2116 - [c10]Volodymyr Kuleshov, S. Zayd Enam, Stefano Ermon:
Audio Super-Resolution using Neural Networks. ICLR (Workshop) 2017 - [c9]Volodymyr Kuleshov, Stefano Ermon:
Neural Variational Inference and Learning in Undirected Graphical Models. NIPS 2017: 6734-6743 - [c8]Victoria Popic, Volodymyr Kuleshov, Michael P. Snyder, Serafim Batzoglou:
GATTACA: Lightweight Metagenomic Binning Using Kmer Counting. RECOMB 2017: 391-392 - [c7]Volodymyr Kuleshov, Stefano Ermon:
Hybrid Deep Discriminative/Generative Models for Semi-Supervised Learning. UAI 2017 - [i6]Volodymyr Kuleshov, S. Zayd Enam, Stefano Ermon:
Audio Super Resolution using Neural Networks. CoRR abs/1708.00853 (2017) - [i5]Volodymyr Kuleshov, Stefano Ermon:
Neural Variational Inference and Learning in Undirected Graphical Models. CoRR abs/1711.02679 (2017) - 2016
- [j2]Volodymyr Kuleshov, Michael P. Snyder, Serafim Batzoglou:
Genome assembly from synthetic long read clouds. Bioinform. 32(12): 216-224 (2016) - [i4]Volodymyr Kuleshov, Stefano Ermon:
Reliable Confidence Estimation via Online Learning. CoRR abs/1607.03594 (2016) - 2015
- [c6]Volodymyr Kuleshov, Arun Tejasvi Chaganty, Percy Liang:
Tensor Factorization via Matrix Factorization. AISTATS 2015 - [c5]Volodymyr Kuleshov, Percy Liang:
Calibrated Structured Prediction. NIPS 2015: 3474-3482 - [c4]Volodymyr Kuleshov, Okke Schrijvers:
Inverse Game Theory: Learning Utilities in Succinct Games. WINE 2015: 413-427 - [i3]Volodymyr Kuleshov, Arun Tejasvi Chaganty, Percy Liang:
Simultaneous diagonalization: the asymmetric, low-rank, and noisy settings. CoRR abs/1501.06318 (2015) - [i2]Volodymyr Kuleshov, Arun Tejasvi Chaganty, Percy Liang:
Tensor Factorization via Matrix Factorization. CoRR abs/1501.07320 (2015) - 2014
- [j1]Volodymyr Kuleshov:
Probabilistic single-individual haplotyping. Bioinform. 30(17): 379-385 (2014) - [i1]Volodymyr Kuleshov, Doina Precup:
Algorithms for multi-armed bandit problems. CoRR abs/1402.6028 (2014) - 2013
- [c3]Volodymyr Kuleshov:
Fast algorithms for sparse principal component analysis based on Rayleigh quotient iteration. ICML (3) 2013: 1418-1425 - 2012
- [c2]Volodymyr Kuleshov, Gordon T. Wilfong:
On the Efficiency of the Simplest Pricing Mechanisms in Two-Sided Markets. WINE 2012: 284-297 - 2010
- [c1]Volodymyr Kuleshov, Adrian Vetta:
On the Efficiency of Markets with Two-Sided Proportional Allocation Mechanisms. SAGT 2010: 246-261
Coauthor Index
manage site settings
To protect your privacy, all features that rely on external API calls from your browser are turned off by default. You need to opt-in for them to become active. All settings here will be stored as cookies with your web browser. For more information see our F.A.Q.
Unpaywalled article links
Add open access links from to the list of external document links (if available).
Privacy notice: By enabling the option above, your browser will contact the API of unpaywall.org to load hyperlinks to open access articles. Although we do not have any reason to believe that your call will be tracked, we do not have any control over how the remote server uses your data. So please proceed with care and consider checking the Unpaywall privacy policy.
Archived links via Wayback Machine
For web page which are no longer available, try to retrieve content from the of the Internet Archive (if available).
Privacy notice: By enabling the option above, your browser will contact the API of archive.org to check for archived content of web pages that are no longer available. Although we do not have any reason to believe that your call will be tracked, we do not have any control over how the remote server uses your data. So please proceed with care and consider checking the Internet Archive privacy policy.
Reference lists
Add a list of references from , , and to record detail pages.
load references from crossref.org and opencitations.net
Privacy notice: By enabling the option above, your browser will contact the APIs of crossref.org, opencitations.net, and semanticscholar.org to load article reference information. Although we do not have any reason to believe that your call will be tracked, we do not have any control over how the remote server uses your data. So please proceed with care and consider checking the Crossref privacy policy and the OpenCitations privacy policy, as well as the AI2 Privacy Policy covering Semantic Scholar.
Citation data
Add a list of citing articles from and to record detail pages.
load citations from opencitations.net
Privacy notice: By enabling the option above, your browser will contact the API of opencitations.net and semanticscholar.org to load citation information. Although we do not have any reason to believe that your call will be tracked, we do not have any control over how the remote server uses your data. So please proceed with care and consider checking the OpenCitations privacy policy as well as the AI2 Privacy Policy covering Semantic Scholar.
OpenAlex data
Load additional information about publications from .
Privacy notice: By enabling the option above, your browser will contact the API of openalex.org to load additional information. Although we do not have any reason to believe that your call will be tracked, we do not have any control over how the remote server uses your data. So please proceed with care and consider checking the information given by OpenAlex.
last updated on 2024-10-18 19:29 CEST by the dblp team
all metadata released as open data under CC0 1.0 license
see also: Terms of Use | Privacy Policy | Imprint