default search action
Shay Moran
Person information
Refine list
refinements active!
zoomed in on ?? of ?? records
view refined list in
export refined list as
2020 – today
- 2024
- [c81]Noga Alon, Shay Moran, Hilla Schefler, Amir Yehudayoff:
A Unified Characterization of Private Learnability via Graph Theory. COLT 2024: 94-129 - [c80]Marco Bressan, Nicolò Cesa-Bianchi, Emmanuel Esposito, Yishay Mansour, Shay Moran, Maximilian Thiessen:
A Theory of Interpretable Approximations. COLT 2024: 648-668 - [c79]Zachary Chase, Bogdan Chornomaz, Steve Hanneke, Shay Moran, Amir Yehudayoff:
Dual VC Dimension Obstructs Sample Compression by Embeddings. COLT 2024: 923-946 - [c78]Lee Cohen, Yishay Mansour, Shay Moran, Han Shao:
Learnability Gaps of Strategic Classification. COLT 2024: 1223-1259 - [c77]Liad Erez, Alon Cohen, Tomer Koren, Yishay Mansour, Shay Moran:
The Real Price of Bandit Information in Multiclass Classification. COLT 2024: 1573-1598 - [c76]Steve Hanneke, Shay Moran, Tom Waknine:
List Sample Compression and Uniform Convergence. COLT 2024: 2360-2388 - [c75]Steve Hanneke, Shay Moran, Tom Waknine:
Open problem: Direct Sums in Learning Theory. COLT 2024: 5325-5329 - [c74]Niva Elkin-Koren, Uri Hacohen, Roi Livni, Shay Moran:
Can Copyright Be Reduced to Privacy? FORC 2024: 3:1-3:18 - [c73]Shay Moran, Roei Davidson, Nir Grinberg:
EnronSR: A Benchmark for Evaluating AI-Generated Email Replies. ICWSM 2024: 2063-2075 - [c72]Zachary Chase, Bogdan Chornomaz, Shay Moran, Amir Yehudayoff:
Local Borsuk-Ulam, Stability, and Replicability. STOC 2024: 1769-1780 - [i102]Yuval Filmus, Steve Hanneke, Idan Mehalel, Shay Moran:
Bandit-Feedback Online Multiclass Classification: Variants and Tradeoffs. CoRR abs/2402.07453 (2024) - [i101]Lee Cohen, Yishay Mansour, Shay Moran, Han Shao:
Learnability Gaps of Strategic Classification. CoRR abs/2402.19303 (2024) - [i100]Marek Eliás, Haim Kaplan, Yishay Mansour, Shay Moran:
Learning-Augmented Algorithms with Explicit Predictors. CoRR abs/2403.07413 (2024) - [i99]Steve Hanneke, Shay Moran, Tom Waknine:
List Sample Compression and Uniform Convergence. CoRR abs/2403.10889 (2024) - [i98]Liad Erez, Alon Cohen, Tomer Koren, Yishay Mansour, Shay Moran:
The Real Price of Bandit Information in Multiclass Classification. CoRR abs/2405.10027 (2024) - [i97]Edith Cohen, Haim Kaplan, Yishay Mansour, Shay Moran, Kobbi Nissim, Uri Stemmer, Eliad Tsfadia:
Data Reconstruction: When You See It and When You Don't. CoRR abs/2405.15753 (2024) - [i96]Zachary Chase, Bogdan Chornomaz, Steve Hanneke, Shay Moran, Amir Yehudayoff:
Dual VC Dimension Obstructs Sample Compression by Embeddings. CoRR abs/2405.17120 (2024) - [i95]Marco Bressan, Nicolò Cesa-Bianchi, Emmanuel Esposito, Yishay Mansour, Shay Moran, Maximilian Thiessen:
A Theory of Interpretable Approximations. CoRR abs/2406.10529 (2024) - [i94]Liad Erez, Alon Cohen, Tomer Koren, Yishay Mansour, Shay Moran:
Fast Rates for Bandit PAC Multiclass Classification. CoRR abs/2406.12406 (2024) - [i93]Roi Livni, Shay Moran, Kobbi Nissim, Chirag Pabbaraju:
Credit Attribution and Stable Compression. CoRR abs/2406.15916 (2024) - [i92]Simone Fioravanti, Steve Hanneke, Shay Moran, Hilla Schefler, Iska Tsubari:
Ramsey Theorems for Trees and a General 'Private Learning Implies Online Learning' Theorem. CoRR abs/2407.07765 (2024) - 2023
- [j17]Noga Alon, Alon Gonen, Elad Hazan, Shay Moran:
Boosting Simple Learners. TheoretiCS 2 (2023) - [c71]Yuval Filmus, Steve Hanneke, Idan Mehalel, Shay Moran:
Optimal Prediction Using Expert Advice and Randomized Littlestone Dimension. COLT 2023: 773-836 - [c70]Shay Moran, Ohad Sharon, Iska Tsubari, Sivan Yosebashvili:
List Online Classification. COLT 2023: 1885-1913 - [c69]Nataly Brukhim, Steve Hanneke, Shay Moran:
Improper Multiclass Boosting. COLT 2023: 5433-5452 - [c68]Steve Hanneke, Shay Moran, Qian Zhang:
Universal Rates for Multiclass Learning. COLT 2023: 5615-5681 - [c67]Steve Hanneke, Shay Moran, Vinod Raman, Unique Subedi, Ambuj Tewari:
Multiclass Online Learning and Uniform Convergence. COLT 2023: 5682-5696 - [c66]Olivier Bousquet, Steve Hanneke, Shay Moran, Jonathan Shafer, Ilya O. Tolstikhin:
Fine-Grained Distribution-Dependent Learning Curves. COLT 2023: 5890-5924 - [c65]Zachary Chase, Shay Moran, Amir Yehudayoff:
Stability and Replicability in Learning. FOCS 2023: 2430-2439 - [c64]Alkis Kalavasis, Amin Karbasi, Shay Moran, Grigoris Velegkas:
Statistical Indistinguishability of Learning Algorithms. ICML 2023: 15586-15622 - [c63]Nataly Brukhim, Amit Daniely, Yishay Mansour, Shay Moran:
Multiclass Boosting: Simple and Intuitive Weak Learning Criteria. NeurIPS 2023 - [c62]Surbhi Goel, Steve Hanneke, Shay Moran, Abhishek Shetty:
Adversarial Resilience in Sequential Prediction via Abstention. NeurIPS 2023 - [c61]Steve Hanneke, Shay Moran, Jonathan Shafer:
A Trichotomy for Transductive Online Learning. NeurIPS 2023 - [c60]Haim Kaplan, Yishay Mansour, Shay Moran, Kobbi Nissim, Uri Stemmer:
Black-Box Differential Privacy for Interactive ML. NeurIPS 2023 - [c59]Shay Moran, Hilla Schefler, Jonathan Shafer:
The Bayesian Stability Zoo. NeurIPS 2023 - [i91]Noga Alon, Olivier Bousquet, Kasper Green Larsen, Shay Moran, Shlomo Moran:
Diagonalization Games. CoRR abs/2301.01924 (2023) - [i90]Yuval Filmus, Steve Hanneke, Idan Mehalel, Shay Moran:
Optimal Prediction Using Expert Advice and Randomized Littlestone Dimension. CoRR abs/2302.13849 (2023) - [i89]Haim Kaplan, Yishay Mansour, Shay Moran, Kobbi Nissim, Uri Stemmer:
On Differentially Private Online Predictions. CoRR abs/2302.14099 (2023) - [i88]Shay Moran, Ohad Sharon, Iska Tsubari:
List Online Classification. CoRR abs/2303.15383 (2023) - [i87]Zachary Chase, Shay Moran, Amir Yehudayoff:
Replicability and stability in learning. CoRR abs/2304.03757 (2023) - [i86]Noga Alon, Shay Moran, Hilla Schefler, Amir Yehudayoff:
A Unified Characterization of Private Learnability via Graph Theory. CoRR abs/2304.03996 (2023) - [i85]Alkis Kalavasis, Amin Karbasi, Shay Moran, Grigoris Velegkas:
Statistical Indistinguishability of Learning Algorithms. CoRR abs/2305.14311 (2023) - [i84]Niva Elkin-Koren, Uri Hacohen, Roi Livni, Shay Moran:
Can Copyright be Reduced to Privacy? CoRR abs/2305.14822 (2023) - [i83]Surbhi Goel, Steve Hanneke, Shay Moran, Abhishek Shetty:
Adversarial Resilience in Sequential Prediction via Abstention. CoRR abs/2306.13119 (2023) - [i82]Nataly Brukhim, Amit Daniely, Yishay Mansour, Shay Moran:
Multiclass Boosting: Simple and Intuitive Weak Learning Criteria. CoRR abs/2307.00642 (2023) - [i81]Steve Hanneke, Shay Moran, Qian Zhang:
Universal Rates for Multiclass Learning. CoRR abs/2307.02066 (2023) - [i80]Shay Moran, Hilla Schefler, Jonathan Shafer:
The Bayesian Stability Zoo. CoRR abs/2310.18428 (2023) - [i79]Zachary Chase, Bogdan Chornomaz, Shay Moran, Amir Yehudayoff:
Local Borsuk-Ulam, Stability, and Replicability. CoRR abs/2311.01599 (2023) - [i78]Steve Hanneke, Shay Moran, Jonathan Shafer:
A Trichotomy for Transductive Online Learning. CoRR abs/2311.06428 (2023) - [i77]Noga Alon, Olivier Bousquet, Kasper Green Larsen, Shay Moran, Shlomo Moran:
Diagonalization Games. Electron. Colloquium Comput. Complex. TR23 (2023) - 2022
- [j16]Noga Alon, Mark Bun, Roi Livni, Maryanthe Malliaris, Shay Moran:
Private and Online Learnability Are Equivalent. J. ACM 69(4): 28:1-28:34 (2022) - [j15]Jérémie Chalopin, Victor Chepoi, Shay Moran, Manfred K. Warmuth:
Unlabeled sample compression schemes and corner peelings for ample and maximum classes. J. Comput. Syst. Sci. 127: 1-28 (2022) - [c58]Olivier Bousquet, Amit Daniely, Haim Kaplan, Yishay Mansour, Shay Moran, Uri Stemmer:
Monotone Learning. COLT 2022: 842-866 - [c57]Nataly Brukhim, Daniel Carmon, Irit Dinur, Shay Moran, Amir Yehudayoff:
A Characterization of Multiclass Learnability. FOCS 2022: 943-955 - [c56]Yuval Filmus, Idan Mehalel, Shay Moran:
A Resilient Distributed Boosting Algorithm. ICML 2022: 6465-6473 - [c55]Kunal Dutta, Arijit Ghosh, Shay Moran:
Uniform Brackets, Containers, and Combinatorial Macbeath Regions. ITCS 2022: 59:1-59:10 - [c54]Mahdi Haghifam, Shay Moran, Daniel M. Roy, Gintare Karolina Dziugaite:
Understanding Generalization via Leave-One-Out Conditional Mutual Information. ISIT 2022: 2487-2492 - [c53]Ron Amit, Baruch Epstein, Shay Moran, Ron Meir:
Integral Probability Metrics PAC-Bayes Bounds. NeurIPS 2022 - [c52]Steve Hanneke, Amin Karbasi, Mohammad Mahmoody, Idan Mehalel, Shay Moran:
On Optimal Learning Under Targeted Data Poisoning. NeurIPS 2022 - [c51]Steve Hanneke, Amin Karbasi, Shay Moran, Grigoris Velegkas:
Universal Rates for Interactive Learning. NeurIPS 2022 - [c50]Gal Yona, Shay Moran, Gal Elidan, Amir Globerson:
Active learning with label comparisons. UAI 2022: 2289-2298 - [i76]Olivier Bousquet, Amit Daniely, Haim Kaplan, Yishay Mansour, Shay Moran, Uri Stemmer:
Monotone Learning. CoRR abs/2202.05246 (2022) - [i75]Nataly Brukhim, Daniel Carmon, Irit Dinur, Shay Moran, Amir Yehudayoff:
A Characterization of Multiclass Learnability. CoRR abs/2203.01550 (2022) - [i74]Josef Minarík, Shay Moran, Michael Skotnica:
How Expressive Are Friendly School Partitions? CoRR abs/2203.10772 (2022) - [i73]Gal Yona, Shay Moran, Gal Elidan, Amir Globerson:
Active Learning with Label Comparisons. CoRR abs/2204.04670 (2022) - [i72]Yuval Filmus, Idan Mehalel, Shay Moran:
A Resilient Distributed Boosting Algorithm. CoRR abs/2206.04713 (2022) - [i71]Mahdi Haghifam, Shay Moran, Daniel M. Roy, Gintare Karolina Dziugaite:
Understanding Generalization via Leave-One-Out Conditional Mutual Information. CoRR abs/2206.14800 (2022) - [i70]Ron Amit, Baruch Epstein, Shay Moran, Ron Meir:
Integral Probability Metrics PAC-Bayes Bounds. CoRR abs/2207.00614 (2022) - [i69]Olivier Bousquet, Steve Hanneke, Shay Moran, Jonathan Shafer, Ilya O. Tolstikhin:
Fine-Grained Distribution-Dependent Learning Curves. CoRR abs/2208.14615 (2022) - [i68]Steve Hanneke, Amin Karbasi, Mohammad Mahmoody, Idan Mehalel, Shay Moran:
On Optimal Learning Under Targeted Data Poisoning. CoRR abs/2210.02713 (2022) - [i67]Olivier Bousquet, Haim Kaplan, Aryeh Kontorovich, Yishay Mansour, Shay Moran, Menachem Sadigurschi, Uri Stemmer:
Differentially-Private Bayes Consistency. CoRR abs/2212.04216 (2022) - [i66]Maryanthe Malliaris, Shay Moran:
The unstable formula theorem revisited. CoRR abs/2212.05050 (2022) - [i65]Nataly Brukhim, Daniel Carmon, Irit Dinur, Shay Moran, Amir Yehudayoff:
A Characterization of Multiclass Learnability. Electron. Colloquium Comput. Complex. TR22 (2022) - 2021
- [j14]Tomer Moran, Shay Moran, Shlomo Moran:
Elementary Derivations of the Euclidean Hurwitz Algebras Adapted from Gadi Moran's last paper. Am. Math. Mon. 128(8): 726-736 (2021) - [c49]Mark Braverman, Gillat Kol, Shay Moran, Raghuvansh R. Saxena:
Near Optimal Distributed Learning of Halfspaces with Two Parties. COLT 2021: 724-758 - [c48]Steve Hanneke, Roi Livni, Shay Moran:
Online Learning with Simple Predictors and a Combinatorial Characterization of Minimax in 0/1 Games. COLT 2021: 2289-2314 - [c47]Noga Alon, Steve Hanneke, Ron Holzman, Shay Moran:
A Theory of PAC Learnability of Partial Concept Classes. FOCS 2021: 658-671 - [c46]Olivier Bousquet, Mark Braverman, Gillat Kol, Klim Efremenko, Shay Moran:
Statistically Near-Optimal Hypothesis Selection. FOCS 2021: 909-919 - [c45]Yuval Dagan, Yuval Filmus, Daniel Kane, Shay Moran:
The Entropy of Lies: Playing Twenty Questions with a Liar. ITCS 2021: 1:1-1:16 - [c44]Nataly Brukhim, Elad Hazan, Shay Moran, Indraneel Mukherjee, Robert E. Schapire:
Multiclass Boosting and the Cost of Weak Learning. NeurIPS 2021: 3057-3067 - [c43]Mahdi Haghifam, Gintare Karolina Dziugaite, Shay Moran, Daniel M. Roy:
Towards a Unified Information-Theoretic Framework for Generalization. NeurIPS 2021: 26370-26381 - [c42]Shai Ben-David, Pavel Hrubes, Shay Moran, Amir Shpilka, Amir Yehudayoff:
Learnability can be independent of set theory (invited paper). STOC 2021: 11 - [c41]Noga Alon, Omri Ben-Eliezer, Yuval Dagan, Shay Moran, Moni Naor, Eylon Yogev:
Adversarial laws of large numbers and optimal regret in online classification. STOC 2021: 447-455 - [c40]Noga Alon, Alon Gonen, Elad Hazan, Shay Moran:
Boosting simple learners. STOC 2021: 481-489 - [c39]Olivier Bousquet, Steve Hanneke, Shay Moran, Ramon van Handel, Amir Yehudayoff:
A theory of universal learning. STOC 2021: 532-541 - [i64]Noga Alon, Omri Ben-Eliezer, Yuval Dagan, Shay Moran, Moni Naor, Eylon Yogev:
Adversarial Laws of Large Numbers and Optimal Regret in Online Classification. CoRR abs/2101.09054 (2021) - [i63]Steve Hanneke, Roi Livni, Shay Moran:
Online Learning with Simple Predictors and a Combinatorial Characterization of Minimax in 0/1 Games. CoRR abs/2102.01646 (2021) - [i62]Noga Alon, Steve Hanneke, Ron Holzman, Shay Moran:
A Theory of PAC Learnability of Partial Concept Classes. CoRR abs/2107.08444 (2021) - [i61]Maryanthe Malliaris, Shay Moran:
Agnostic Online Learning and Excellent Sets. CoRR abs/2108.05569 (2021) - [i60]Olivier Bousquet, Mark Braverman, Klim Efremenko, Gillat Kol, Shay Moran:
Statistically Near-Optimal Hypothesis Selection. CoRR abs/2108.07880 (2021) - [i59]Mahdi Haghifam, Gintare Karolina Dziugaite, Shay Moran, Daniel M. Roy:
Towards a Unified Information-Theoretic Framework for Generalization. CoRR abs/2111.05275 (2021) - [i58]Kunal Dutta, Arijit Ghosh, Shay Moran:
Uniform Brackets, Containers, and Combinatorial Macbeath Regions. CoRR abs/2111.10048 (2021) - 2020
- [j13]Stijn Cambie, Bogdan Chornomaz, Zeev Dvir, Yuval Filmus, Shay Moran:
A Sauer-Shelah-Perles Lemma for Lattices. Electron. J. Comb. 27(4): 4 (2020) - [j12]Shay Moran, Amir Yehudayoff:
On Weak ε-Nets and the Radon Number. Discret. Comput. Geom. 64(4): 1125-1140 (2020) - [c38]Shay Moran, Ido Nachum, Itai Panasoff, Amir Yehudayoff:
On the Perceptron's Compression. CiE 2020: 310-325 - [c37]Noga Alon, Amos Beimel, Shay Moran, Uri Stemmer:
Closure Properties for Private Classification and Online Prediction. COLT 2020: 119-152 - [c36]Olivier Bousquet, Steve Hanneke, Shay Moran, Nikita Zhivotovskiy:
Proper Learning, Helly Number, and an Optimal SVM Bound. COLT 2020: 582-609 - [c35]Mark Bun, Roi Livni, Shay Moran:
An Equivalence Between Private Classification and Online Prediction. FOCS 2020: 389-402 - [c34]Raef Bassily, Albert Cheu, Shay Moran, Aleksandar Nikolov, Jonathan R. Ullman, Zhiwei Steven Wu:
Private Query Release Assisted by Public Data. ICML 2020: 695-703 - [c33]Raef Bassily, Shay Moran, Anupama Nandi:
Learning from Mixtures of Private and Public Populations. NeurIPS 2020 - [c32]Olivier Bousquet, Roi Livni, Shay Moran:
Synthetic Data Generators - Sequential and Private. NeurIPS 2020 - [c31]Nataly Brukhim, Xinyi Chen, Elad Hazan, Shay Moran:
Online Agnostic Boosting via Regret Minimization. NeurIPS 2020 - [c30]Roi Livni, Shay Moran:
A Limitation of the PAC-Bayes Framework. NeurIPS 2020 - [i57]Noga Alon, Alon Gonen, Elad Hazan, Shay Moran:
Boosting Simple Learners. CoRR abs/2001.11704 (2020) - [i56]Mark Bun, Roi Livni, Shay Moran:
An Equivalence Between Private Classification and Online Prediction. CoRR abs/2003.00563 (2020) - [i55]Nataly Brukhim, Xinyi Chen, Elad Hazan, Shay Moran:
Online Agnostic Boosting via Regret Minimization. CoRR abs/2003.01150 (2020) - [i54]Noga Alon, Amos Beimel, Shay Moran, Uri Stemmer:
Closure Properties for Private Classification and Online Prediction. CoRR abs/2003.04509 (2020) - [i53]Raef Bassily, Albert Cheu, Shay Moran, Aleksandar Nikolov, Jonathan R. Ullman, Zhiwei Steven Wu:
Private Query Release Assisted by Public Data. CoRR abs/2004.10941 (2020) - [i52]Olivier Bousquet, Steve Hanneke, Shay Moran, Nikita Zhivotovskiy:
Proper Learning, Helly Number, and an Optimal SVM Bound. CoRR abs/2005.11818 (2020) - [i51]Roi Livni, Shay Moran:
A Limitation of the PAC-Bayes Framework. CoRR abs/2006.13508 (2020) - [i50]Raef Bassily, Shay Moran, Anupama Nandi:
Learning from Mixtures of Private and Public Populations. CoRR abs/2008.00331 (2020) - [i49]Mahdi Haghifam, Gintare Karolina Dziugaite, Shay Moran, Daniel M. Roy:
On the Information Complexity of Proper Learners for VC Classes in the Realizable Case. CoRR abs/2011.02970 (2020) - [i48]Olivier Bousquet, Steve Hanneke, Shay Moran, Ramon van Handel, Amir Yehudayoff:
A Theory of Universal Learning. CoRR abs/2011.04483 (2020)
2010 – 2019
- 2019
- [j11]Gillat Kol, Shay Moran, Amir Shpilka, Amir Yehudayoff:
Approximate Nonnegative Rank is Equivalent to the Smooth Rectangle Bound. Comput. Complex. 28(1): 1-25 (2019) - [j10]Yuval Dagan, Yuval Filmus, Ariel Gabizon, Shay Moran:
Twenty (Short) Questions. Comb. 39(3): 597-626 (2019) - [j9]Daniel M. Kane, Shachar Lovett, Shay Moran:
Near-optimal Linear Decision Trees for k-SUM and Related Problems. J. ACM 66(3): 16:1-16:18 (2019) - [j8]Shai Ben-David, Pavel Hrubes, Shay Moran, Amir Shpilka, Amir Yehudayoff:
Learnability can be undecidable. Nat. Mach. Intell. 1(1): 44-48 (2019) - [j7]Shai Ben-David, Pavel Hrubes, Shay Moran, Amir Shpilka, Amir Yehudayoff:
Author Correction: Learnability can be undecidable. Nat. Mach. Intell. 1(2): 121 (2019) - [c29]Amos Beimel, Shay Moran, Kobbi Nissim, Uri Stemmer:
Private Center Points and Learning of Halfspaces. COLT 2019: 269-282 - [c28]Olivier Bousquet, Daniel Kane, Shay Moran:
The Optimal Approximation Factor in Density Estimation. COLT 2019: 318-341 - [c27]Daniel Kane, Roi Livni, Shay Moran, Amir Yehudayoff:
On Communication Complexity of Classification Problems. COLT 2019: 1903-1943 - [c26]Shay Moran, Amir Yehudayoff:
On Weak epsilon-Nets and the Radon Number. SoCG 2019: 51:1-51:14 - [c25]Jérémie Chalopin, Victor Chepoi, Shay Moran, Manfred K. Warmuth:
Unlabeled Sample Compression Schemes and Corner Peelings for Ample and Maximum Classes. ICALP 2019: 34:1-34:15 - [c24]Akshay Balsubramani, Sanjoy Dasgupta, Yoav Freund, Shay Moran:
An adaptive nearest neighbor rule for classification. NeurIPS 2019: 7577-7586 - [c23]Alon Cohen, Avinatan Hassidim, Haim Kaplan, Yishay Mansour, Shay Moran:
Learning to Screen. NeurIPS 2019: 8612-8621 - [c22]Alon Gonen, Elad Hazan, Shay Moran:
Private Learning Implies Online Learning: An Efficient Reduction. NeurIPS 2019: 8699-8709 - [c21]Raef Bassily, Shay Moran, Noga Alon:
Limits of Private Learning with Access to Public Data. NeurIPS 2019: 10342-10352 - [c20]Noga Alon, Roi Livni, Maryanthe Malliaris, Shay Moran:
Private PAC learning implies finite Littlestone dimension. STOC 2019: 852-860 - [i47]Olivier Bousquet, Roi Livni, Shay Moran:
Passing Tests without Memorizing: Two Models for Fooling Discriminators. CoRR abs/1902.03468 (2019) - [i46]Alon Cohen, Avinatan Hassidim, Haim Kaplan, Yishay Mansour, Shay Moran:
Learning and Generalization for Matching Problems. CoRR abs/1902.04741 (2019) - [i45]Olivier Bousquet, Daniel Kane, Shay Moran:
The Optimal Approximation Factor in Density Estimation. CoRR abs/1902.05876 (2019) - [i44]Amos Beimel, Shay Moran, Kobbi Nissim, Uri Stemmer:
Private Center Points and Learning of Halfspaces. CoRR abs/1902.10731 (2019) - [i43]Alon Gonen, Elad Hazan, Shay Moran:
Private Learning Implies Online Learning: An Efficient Reduction. CoRR abs/1905.11311 (2019) - [i42]Akshay Balsubramani, Sanjoy Dasgupta, Yoav Freund, Shay Moran:
An adaptive nearest neighbor rule for classification. CoRR abs/1905.12717 (2019) - [i41]Mark Braverman, Gillat Kol, Shay Moran, Raghuvansh R. Saxena:
Convex Set Disjointness, Distributed Learning of Halfspaces, and LP Feasibility. CoRR abs/1909.03547 (2019) - [i40]Noga Alon, Raef Bassily, Shay Moran:
Limits of Private Learning with Access to Public Data. CoRR abs/1910.11519 (2019) - 2018
- [j6]Zeev Dvir, Shay Moran:
A Sauer-Shelah-Perles Lemma for Sumsets. Electron. J. Comb. 25(4): 4 (2018) - [c19]Raef Bassily, Shay Moran, Ido Nachum, Jonathan Shafer, Amir Yehudayoff:
Learners that Use Little Information. ALT 2018: 25-55 - [c18]Daniel M. Kane, Shachar Lovett, Shay Moran:
Generalized Comparison Trees for Point-Location Problems. ICALP 2018: 82:1-82:13 - [c17]Moshe Babaioff, Yannai A. Gonczarowski, Yishay Mansour, Shay Moran:
Are Two (Samples) Really Better Than One? EC 2018: 175 - [c16]Daniel M. Kane, Shachar Lovett, Shay Moran:
Near-optimal linear decision trees for k-SUM and related problems. STOC 2018: 554-563 - [i39]Moshe Babaioff, Yannai A. Gonczarowski, Yishay Mansour, Shay Moran:
Are Two (Samples) Really Better Than One? On the Non-Asymptotic Performance of Empirical Revenue Maximization. CoRR abs/1802.08037 (2018) - [i38]Daniel M. Kane, Shachar Lovett, Shay Moran:
Generalized comparison trees for point-location problems. CoRR abs/1804.08237 (2018) - [i37]Noga Alon, Roi Livni, Maryanthe Malliaris, Shay Moran:
Private PAC learning implies finite Littlestone dimension. CoRR abs/1806.00949 (2018) - [i36]Shay Moran, Ido Nachum, Itai Panasoff, Amir Yehudayoff:
On the Perceptron's Compression. CoRR abs/1806.05403 (2018) - [i35]Zeev Dvir, Shay Moran:
A Sauer-Shelah-Perles Lemma for Sumsets. CoRR abs/1806.05737 (2018) - [i34]Yuval Dagan, Yuval Filmus, Daniel Kane, Shay Moran:
The entropy of lies: playing twenty questions with a liar. CoRR abs/1811.02177 (2018) - [i33]Jérémie Chalopin, Victor Chepoi, Shay Moran, Manfred K. Warmuth:
Unlabeled sample compression schemes and corner peelings for ample and maximum classes. CoRR abs/1812.02099 (2018) - [i32]Daniel M. Kane, Shachar Lovett, Shay Moran:
Generalized comparison trees for point-location problems. Electron. Colloquium Comput. Complex. TR18 (2018) - 2017
- [c15]Daniel M. Kane, Shachar Lovett, Shay Moran, Jiapeng Zhang:
Active Classification with Comparison Queries. FOCS 2017: 355-366 - [c14]Noga Alon, Moshe Babaioff, Yannai A. Gonczarowski, Yishay Mansour, Shay Moran, Amir Yehudayoff:
Submultiplicative Glivenko-Cantelli and Uniform Convergence of Revenues. NIPS 2017: 1656-1665 - [c13]Yuval Dagan, Yuval Filmus, Ariel Gabizon, Shay Moran:
Twenty (simple) questions. STOC 2017: 9-21 - [i31]Daniel M. Kane, Shachar Lovett, Shay Moran, Jiapeng Zhang:
Active classification with comparison queries. CoRR abs/1704.03564 (2017) - [i30]Daniel M. Kane, Shachar Lovett, Shay Moran:
Near-optimal linear decision trees for k-SUM and related problems. CoRR abs/1705.01720 (2017) - [i29]Noga Alon, Moshe Babaioff, Yannai A. Gonczarowski, Yishay Mansour, Shay Moran, Amir Yehudayoff:
Submultiplicative Glivenko-Cantelli and Uniform Convergence of Revenues. CoRR abs/1705.08430 (2017) - [i28]Shay Moran, Amir Yehudayoff:
On weak $ε$-nets and the Radon number. CoRR abs/1707.05381 (2017) - [i27]Raef Bassily, Shay Moran, Ido Nachum, Jonathan Shafer, Amir Yehudayoff:
Learners that Leak Little Information. CoRR abs/1710.05233 (2017) - [i26]Shai Ben-David, Pavel Hrubes, Shay Moran, Amir Shpilka, Amir Yehudayoff:
A learning problem that is independent of the set theory ZFC axioms. CoRR abs/1711.05195 (2017) - [i25]Daniel M. Kane, Roi Livni, Shay Moran, Amir Yehudayoff:
On Communication Complexity of Classification Problems. CoRR abs/1711.05893 (2017) - [i24]Daniel M. Kane, Shachar Lovett, Shay Moran:
Near-optimal linear decision trees for k-SUM and related problems. Electron. Colloquium Comput. Complex. TR17 (2017) - [i23]Daniel M. Kane, Roi Livni, Shay Moran, Amir Yehudayoff:
On Communication Complexity of Classification Problems. Electron. Colloquium Comput. Complex. TR17 (2017) - [i22]Daniel M. Kane, Shachar Lovett, Shay Moran, Jiapeng Zhang:
Active classification with comparison queries. Electron. Colloquium Comput. Complex. TR17 (2017) - 2016
- [b1]Shay Moran:
Generalization and simplification in machine learning. Technion - Israel Institute of Technology, Israel, 2016 - [j5]Gillat Kol, Shay Moran, Amir Shpilka, Amir Yehudayoff:
Direct Sum Fails for Zero-Error Average Communication. Algorithmica 76(3): 782-795 (2016) - [j4]Benjamin Doerr, Carola Doerr, Shay Moran, Shlomo Moran:
Simple and optimal randomized fault-tolerant rumor spreading. Distributed Comput. 29(2): 89-104 (2016) - [j3]Shay Moran, Amir Yehudayoff:
Sample Compression Schemes for VC Classes. J. ACM 63(3): 21:1-21:10 (2016) - [j2]Shay Moran, Amir Yehudayoff:
A Note on Average-Case Sorting. Order 33(1): 23-28 (2016) - [c12]Shay Moran, Manfred K. Warmuth:
Labeled Compression Schemes for Extremal Classes. ALT 2016: 34-49 - [c11]Noga Alon, Shay Moran, Amir Yehudayoff:
Sign rank versus VC dimension. COLT 2016: 47-80 - [c10]Karl Bringmann, László Kozma, Shay Moran, N. S. Narayanaswamy:
Hitting Set for Hypergraphs of Low VC-dimension. ESA 2016: 23:1-23:18 - [c9]Shay Moran, Amir Yehudayoff:
Sample compression schemes for VC classes. ITA 2016: 1-14 - [c8]Shay Moran, Cyrus Rashtchian:
Shattered Sets and the Hilbert Function. MFCS 2016: 70:1-70:14 - [c7]Ofir David, Shay Moran, Amir Yehudayoff:
Supervised learning through the lens of compression. NIPS 2016: 2784-2792 - [c6]Shay Moran, Makrand Sinha, Amir Yehudayoff:
Fooling Pairs in Randomized Communication Complexity. SIROCCO 2016: 49-59 - [i21]Ofir David, Shay Moran, Amir Yehudayoff:
On statistical learning via the lens of compression. CoRR abs/1610.03592 (2016) - [i20]Yuval Dagan, Yuval Filmus, Ariel Gabizon, Shay Moran:
Twenty (simple) questions. CoRR abs/1611.01655 (2016) - 2015
- [c5]Balthazar Bauer, Shay Moran, Amir Yehudayoff:
Internal Compression of Protocols to Entropy. APPROX-RANDOM 2015: 481-496 - [c4]Friedrich Eisenbrand, Shay Moran, Rom Pinchasi, Martin Skutella:
Node-Balancing by Edge-Increments. ESA 2015: 450-458 - [c3]Shay Moran, Amir Shpilka, Avi Wigderson, Amir Yehudayoff:
Compressing and Teaching for Low VC-Dimension. FOCS 2015: 40-51 - [i19]Shay Moran, Amir Shpilka, Avi Wigderson, Amir Yehudayoff:
Teaching and compressing for low VC-dimension. CoRR abs/1502.06187 (2015) - [i18]Shay Moran, Amir Yehudayoff:
Proper PAC learning is compressing. CoRR abs/1503.06960 (2015) - [i17]Friedrich Eisenbrand, Shay Moran, Rom Pinchasi, Martin Skutella:
Node-balancing by edge-increments. CoRR abs/1504.06919 (2015) - [i16]Shay Moran, Manfred K. Warmuth:
Labeled compression schemes for extremal classes. CoRR abs/1506.00165 (2015) - [i15]Shay Moran, Rom Pinchasi:
Matchings vs hitting sets among half-spaces in low dimensional euclidean spaces. CoRR abs/1507.02504 (2015) - [i14]Shay Moran, Cyrus Rashtchian:
Shattered Sets and the Hilbert Function. CoRR abs/1511.08245 (2015) - [i13]Karl Bringmann, László Kozma, Shay Moran, N. S. Narayanaswamy:
Hitting Set in hypergraphs of low VC-dimension. CoRR abs/1512.00481 (2015) - [i12]Shay Moran, Cyrus Rashtchian:
Shattered Sets and the Hilbert Function. Electron. Colloquium Comput. Complex. TR15 (2015) - [i11]Shay Moran, Amir Shpilka, Avi Wigderson, Amir Yehudayoff:
Teaching and compressing for low VC-dimension. Electron. Colloquium Comput. Complex. TR15 (2015) - [i10]Shay Moran, Amir Yehudayoff:
Proper PAC learning is compressing. Electron. Colloquium Comput. Complex. TR15 (2015) - 2014
- [c2]Gillat Kol, Shay Moran, Amir Shpilka, Amir Yehudayoff:
Approximate Nonnegative Rank Is Equivalent to the Smooth Rectangle Bound. ICALP (1) 2014: 701-712 - [c1]Gillat Kol, Shay Moran, Amir Shpilka, Amir Yehudayoff:
Direct sum fails for zero error average communication. ITCS 2014: 517-522 - [i9]Noga Alon, Shay Moran, Amir Yehudayoff:
Sign rank, VC dimension and spectral gaps. Electron. Colloquium Comput. Complex. TR14 (2014) - [i8]Balthazar Bauer, Shay Moran, Amir Yehudayoff:
Internal compression of protocols to entropy. Electron. Colloquium Comput. Complex. TR14 (2014) - [i7]Gillat Kol, Shay Moran, Amir Shpilka, Amir Yehudayoff:
Approximate Nonnegative Rank is Equivalent to the Smooth Rectangle Bound. Electron. Colloquium Comput. Complex. TR14 (2014) - [i6]Shay Moran, Makrand Sinha, Amir Yehudayoff:
Fooling Pairs in Randomized Communication Complexity. Electron. Colloquium Comput. Complex. TR14 (2014) - 2013
- [j1]László Kozma, Shay Moran:
Shattering, Graph Orientations, and Connectivity. Electron. J. Comb. 20(3): 44 (2013) - [i5]Gillat Kol, Shay Moran, Amir Shpilka, Amir Yehudayoff:
Direct Sum Fails for Zero Error Average Communication. Electron. Colloquium Comput. Complex. TR13 (2013) - [i4]Shay Moran, Amir Yehudayoff:
A note on average-case sorting. Electron. Colloquium Comput. Complex. TR13 (2013) - 2012
- [i3]Benjamin Doerr, Shay Moran, Shlomo Moran, Carola Winzen:
Fast Fault Tolerant Rumor Spreading with Minimum Message Complexity. CoRR abs/1209.6158 (2012) - [i2]László Kozma, Shay Moran:
Shattering, Graph Orientations, and Connectivity. CoRR abs/1211.1319 (2012) - [i1]Shay Moran:
Shattering-Extremal Systems. CoRR abs/1211.2980 (2012)
Coauthor Index
manage site settings
To protect your privacy, all features that rely on external API calls from your browser are turned off by default. You need to opt-in for them to become active. All settings here will be stored as cookies with your web browser. For more information see our F.A.Q.
Unpaywalled article links
Add open access links from to the list of external document links (if available).
Privacy notice: By enabling the option above, your browser will contact the API of unpaywall.org to load hyperlinks to open access articles. Although we do not have any reason to believe that your call will be tracked, we do not have any control over how the remote server uses your data. So please proceed with care and consider checking the Unpaywall privacy policy.
Archived links via Wayback Machine
For web page which are no longer available, try to retrieve content from the of the Internet Archive (if available).
Privacy notice: By enabling the option above, your browser will contact the API of archive.org to check for archived content of web pages that are no longer available. Although we do not have any reason to believe that your call will be tracked, we do not have any control over how the remote server uses your data. So please proceed with care and consider checking the Internet Archive privacy policy.
Reference lists
Add a list of references from , , and to record detail pages.
load references from crossref.org and opencitations.net
Privacy notice: By enabling the option above, your browser will contact the APIs of crossref.org, opencitations.net, and semanticscholar.org to load article reference information. Although we do not have any reason to believe that your call will be tracked, we do not have any control over how the remote server uses your data. So please proceed with care and consider checking the Crossref privacy policy and the OpenCitations privacy policy, as well as the AI2 Privacy Policy covering Semantic Scholar.
Citation data
Add a list of citing articles from and to record detail pages.
load citations from opencitations.net
Privacy notice: By enabling the option above, your browser will contact the API of opencitations.net and semanticscholar.org to load citation information. Although we do not have any reason to believe that your call will be tracked, we do not have any control over how the remote server uses your data. So please proceed with care and consider checking the OpenCitations privacy policy as well as the AI2 Privacy Policy covering Semantic Scholar.
OpenAlex data
Load additional information about publications from .
Privacy notice: By enabling the option above, your browser will contact the API of openalex.org to load additional information. Although we do not have any reason to believe that your call will be tracked, we do not have any control over how the remote server uses your data. So please proceed with care and consider checking the information given by OpenAlex.
last updated on 2024-10-08 21:30 CEST by the dblp team
all metadata released as open data under CC0 1.0 license
see also: Terms of Use | Privacy Policy | Imprint