default search action
Haggai Maron
Person information
Refine list
refinements active!
zoomed in on ?? of ?? records
view refined list in
export refined list as
2020 – today
- 2024
- [c37]Beatrice Bevilacqua, Moshe Eliasof, Eli A. Meirom, Bruno Ribeiro, Haggai Maron:
Efficient Subgraph GNNs by Learning Effective Selection Policies. ICLR 2024 - [c36]Derek Lim, Haggai Maron, Marc T. Law, Jonathan Lorraine, James Lucas:
Graph Metanetworks for Processing Diverse Neural Architectures. ICLR 2024 - [c35]Christopher Morris, Fabrizio Frasca, Nadav Dym, Haggai Maron, Ismail Ilkan Ceylan, Ron Levie, Derek Lim, Michael M. Bronstein, Martin Grohe, Stefanie Jegelka:
Position: Future Directions in the Theory of Graph Machine Learning. ICML 2024 - [c34]Guy Bar-Shalom, Beatrice Bevilacqua, Haggai Maron:
Subgraphormer: Unifying Subgraph GNNs and Graph Transformers via Graph Products. ICML 2024 - [c33]Aviv Navon, Aviv Shamsian, Ethan Fetaya, Gal Chechik, Nadav Dym, Haggai Maron:
Equivariant Deep Weight Space Alignment. ICML 2024 - [c32]Aviv Shamsian, Aviv Navon, David W. Zhang, Yan Zhang, Ethan Fetaya, Gal Chechik, Haggai Maron:
Improved Generalization of Weight Space Networks via Augmentations. ICML 2024 - [c31]Bohang Zhang, Lingxiao Zhao, Haggai Maron:
On the Expressive Power of Spectral Invariant Graph Neural Networks. ICML 2024 - [i49]Christopher Morris, Nadav Dym, Haggai Maron, Ismail Ilkan Ceylan, Fabrizio Frasca, Ron Levie, Derek Lim, Michael M. Bronstein, Martin Grohe, Stefanie Jegelka:
Future Directions in Foundations of Graph Machine Learning. CoRR abs/2402.02287 (2024) - [i48]Aviv Shamsian, Aviv Navon, David W. Zhang, Yan Zhang, Ethan Fetaya, Gal Chechik, Haggai Maron:
Improved Generalization of Weight Space Networks via Augmentations. CoRR abs/2402.04081 (2024) - [i47]Guy Bar-Shalom, Beatrice Bevilacqua, Haggai Maron:
Subgraphormer: Unifying Subgraph GNNs and Graph Transformers via Graph Products. CoRR abs/2402.08450 (2024) - [i46]Yoni Kasten, Wuyue Lu, Haggai Maron:
Learning Priors for Non Rigid SfM from Casual Videos. CoRR abs/2404.07097 (2024) - [i45]Moshe Eliasof, Beatrice Bevilacqua, Carola-Bibiane Schönlieb, Haggai Maron:
GRANOLA: Adaptive Normalization for Graph Neural Networks. CoRR abs/2404.13344 (2024) - [i44]Derek Lim, Moe Putterman, Robin Walters, Haggai Maron, Stefanie Jegelka:
The Empirical Impact of Neural Parameter Symmetries, or Lack Thereof. CoRR abs/2405.20231 (2024) - [i43]Bohang Zhang, Lingxiao Zhao, Haggai Maron:
On the Expressive Power of Spectral Invariant Graph Neural Networks. CoRR abs/2406.04336 (2024) - [i42]Guy Bar-Shalom, Yam Eitan, Fabrizio Frasca, Haggai Maron:
A Flexible, Equivariant Framework for Subgraph GNNs via Graph Products and Graph Coarsening. CoRR abs/2406.09291 (2024) - [i41]Yam Eitan, Yoav Gelberg, Guy Bar-Shalom, Fabrizio Frasca, Michael M. Bronstein, Haggai Maron:
Topological Blind Spots: Understanding and Extending Topological Deep Learning Through the Lens of Expressivity. CoRR abs/2408.05486 (2024) - [i40]Edan Kinderman, Itay Hubara, Haggai Maron, Daniel Soudry:
Foldable SuperNets: Scalable Merging of Transformers with Different Initializations and Tasks. CoRR abs/2410.01483 (2024) - [i39]Moe Putterman, Derek Lim, Yoav Gelberg, Stefanie Jegelka, Haggai Maron:
Learning on LoRAs: GL-Equivariant Processing of Low-Rank Weight Spaces for Large Finetuned Models. CoRR abs/2410.04207 (2024) - 2023
- [j8]Christopher Morris, Yaron Lipman, Haggai Maron, Bastian Rieck, Nils M. Kriege, Martin Grohe, Matthias Fey, Karsten M. Borgwardt:
Weisfeiler and Leman go Machine Learning: The Story so far. J. Mach. Learn. Res. 24: 333:1-333:59 (2023) - [c30]Ali Taghibakhshi, Mingyuan Ma, Ashwath Aithal, Onur Yilmaz, Haggai Maron, Matthew West:
Hierarchical Graph Neural Network with Cross-Attention for Cross-Device User Matching. DaWaK 2023: 303-315 - [c29]Derek Lim, Joshua David Robinson, Lingxiao Zhao, Tess E. Smidt, Suvrit Sra, Haggai Maron, Stefanie Jegelka:
Sign and Basis Invariant Networks for Spectral Graph Representation Learning. ICLR 2023 - [c28]Moshe Eliasof, Fabrizio Frasca, Beatrice Bevilacqua, Eran Treister, Gal Chechik, Haggai Maron:
Graph Positional Encoding via Random Feature Propagation. ICML 2023: 9202-9223 - [c27]Aviv Navon, Aviv Shamsian, Idan Achituve, Ethan Fetaya, Gal Chechik, Haggai Maron:
Equivariant Architectures for Learning in Deep Weight Spaces. ICML 2023: 25790-25816 - [c26]Omri Puny, Derek Lim, Bobak Toussi Kiani, Haggai Maron, Yaron Lipman:
Equivariant Polynomials for Graph Neural Networks. ICML 2023: 28191-28222 - [c25]Derek Lim, Joshua Robinson, Stefanie Jegelka, Haggai Maron:
Expressive Sign Equivariant Networks for Spectral Geometric Learning. NeurIPS 2023 - [c24]Dvir Samuel, Rami Ben-Ari, Nir Darshan, Haggai Maron, Gal Chechik:
Norm-guided latent space exploration for text-to-image generation. NeurIPS 2023 - [i38]Aviv Navon, Aviv Shamsian, Idan Achituve, Ethan Fetaya, Gal Chechik, Haggai Maron:
Equivariant Architectures for Learning in Deep Weight Spaces. CoRR abs/2301.12780 (2023) - [i37]Omri Puny, Derek Lim, Bobak Toussi Kiani, Haggai Maron, Yaron Lipman:
Equivariant Polynomials for Graph Neural Networks. CoRR abs/2302.11556 (2023) - [i36]Moshe Eliasof, Fabrizio Frasca, Beatrice Bevilacqua, Eran Treister, Gal Chechik, Haggai Maron:
Graph Positional Encoding via Random Feature Propagation. CoRR abs/2303.02918 (2023) - [i35]Ali Taghibakhshi, Mingyuan Ma, Ashwath Aithal, Onur Yilmaz, Haggai Maron, Matthew West:
Hierarchical Graph Neural Network with Cross-Attention for Cross-Device User Matching. CoRR abs/2304.03215 (2023) - [i34]Dvir Samuel, Rami Ben-Ari, Nir Darshan, Haggai Maron, Gal Chechik:
Norm-guided latent space exploration for text-to-image generation. CoRR abs/2306.08687 (2023) - [i33]Aviv Navon, Aviv Shamsian, Ethan Fetaya, Gal Chechik, Nadav Dym, Haggai Maron:
Equivariant Deep Weight Space Alignment. CoRR abs/2310.13397 (2023) - [i32]Beatrice Bevilacqua, Moshe Eliasof, Eli A. Meirom, Bruno Ribeiro, Haggai Maron:
Efficient Subgraph GNNs by Learning Effective Selection Policies. CoRR abs/2310.20082 (2023) - [i31]Aviv Shamsian, David W. Zhang, Aviv Navon, Yan Zhang, Miltiadis Kofinas, Idan Achituve, Riccardo Valperga, Gertjan J. Burghouts, Efstratios Gavves, Cees G. M. Snoek, Ethan Fetaya, Gal Chechik, Haggai Maron:
Data Augmentations in Deep Weight Spaces. CoRR abs/2311.08851 (2023) - [i30]Derek Lim, Joshua Robinson, Stefanie Jegelka, Haggai Maron:
Expressive Sign Equivariant Networks for Spectral Geometric Learning. CoRR abs/2312.02339 (2023) - [i29]Derek Lim, Haggai Maron, Marc T. Law, Jonathan Lorraine, James Lucas:
Graph Metanetworks for Processing Diverse Neural Architectures. CoRR abs/2312.04501 (2023) - 2022
- [j7]Rinon Gal, Or Patashnik, Haggai Maron, Amit H. Bermano, Gal Chechik, Daniel Cohen-Or:
StyleGAN-NADA: CLIP-guided domain adaptation of image generators. ACM Trans. Graph. 41(4): 141:1-141:13 (2022) - [c23]Beatrice Bevilacqua, Fabrizio Frasca, Derek Lim, Balasubramaniam Srinivasan, Chen Cai, Gopinath Balamurugan, Michael M. Bronstein, Haggai Maron:
Equivariant Subgraph Aggregation Networks. ICLR 2022 - [c22]Eli A. Meirom, Haggai Maron, Shie Mannor, Gal Chechik:
Optimizing Tensor Network Contraction Using Reinforcement Learning. ICML 2022: 15278-15292 - [c21]Aviv Navon, Aviv Shamsian, Idan Achituve, Haggai Maron, Kenji Kawaguchi, Gal Chechik, Ethan Fetaya:
Multi-Task Learning as a Bargaining Game. ICML 2022: 16428-16446 - [c20]Fabrizio Frasca, Beatrice Bevilacqua, Michael M. Bronstein, Haggai Maron:
Understanding and Extending Subgraph GNNs by Rethinking Their Symmetries. NeurIPS 2022 - [c19]Ben Finkelshtein, Chaim Baskin, Haggai Maron, Nadav Dym:
A Simple and Universal Rotation Equivariant Point-Cloud Network. TAG-ML 2022: 107-115 - [i28]Or Litany, Haggai Maron, David Acuna, Jan Kautz, Gal Chechik, Sanja Fidler:
Federated Learning with Heterogeneous Architectures using Graph HyperNetworks. CoRR abs/2201.08459 (2022) - [i27]Aviv Navon, Aviv Shamsian, Idan Achituve, Haggai Maron, Kenji Kawaguchi, Gal Chechik, Ethan Fetaya:
Multi-Task Learning as a Bargaining Game. CoRR abs/2202.01017 (2022) - [i26]Derek Lim, Joshua Robinson, Lingxiao Zhao, Tess E. Smidt, Suvrit Sra, Haggai Maron, Stefanie Jegelka:
Sign and Basis Invariant Networks for Spectral Graph Representation Learning. CoRR abs/2202.13013 (2022) - [i25]Ben Finkelshtein, Chaim Baskin, Haggai Maron, Nadav Dym:
A Simple and Universal Rotation Equivariant Point-cloud Network. CoRR abs/2203.01216 (2022) - [i24]Eli A. Meirom, Haggai Maron, Shie Mannor, Gal Chechik:
Optimizing Tensor Network Contraction Using Reinforcement Learning. CoRR abs/2204.09052 (2022) - [i23]Fabrizio Frasca, Beatrice Bevilacqua, Michael M. Bronstein, Haggai Maron:
Understanding and Extending Subgraph GNNs by Rethinking Their Symmetries. CoRR abs/2206.11140 (2022) - [i22]Sohir Maskey, Ali Parviz, Maximilian Thiessen, Hannes Stärk, Ylli Sadikaj, Haggai Maron:
Generalized Laplacian Positional Encoding for Graph Representation Learning. CoRR abs/2210.15956 (2022) - 2021
- [c18]Dror Moran, Hodaya Koslowsky, Yoni Kasten, Haggai Maron, Meirav Galun, Ronen Basri:
Deep Permutation Equivariant Structure from Motion. ICCV 2021: 5956-5966 - [c17]Nadav Dym, Haggai Maron:
On the Universality of Rotation Equivariant Point Cloud Networks. ICLR 2021 - [c16]Aviv Navon, Idan Achituve, Haggai Maron, Gal Chechik, Ethan Fetaya:
Auxiliary Learning by Implicit Differentiation. ICLR 2021 - [c15]Eli A. Meirom, Haggai Maron, Shie Mannor, Gal Chechik:
Controlling Graph Dynamics with Reinforcement Learning and Graph Neural Networks. ICML 2021: 7565-7577 - [c14]Gilad Yehudai, Ethan Fetaya, Eli A. Meirom, Gal Chechik, Haggai Maron:
From Local Structures to Size Generalization in Graph Neural Networks. ICML 2021: 11975-11986 - [c13]Haggai Maron, Or Litany, Gal Chechik, Ethan Fetaya:
On Learning Sets of Symmetric Elements (Extended Abstract). IJCAI 2021: 4794-4798 - [c12]Yochai Yemini, Ethan Fetaya, Haggai Maron, Sharon Gannot:
Scene-Agnostic Multi-Microphone Speech Dereverberation. Interspeech 2021: 1129-1133 - [c11]Idan Achituve, Haggai Maron, Gal Chechik:
Self-Supervised Learning for Domain Adaptation on Point Clouds. WACV 2021: 123-133 - [i21]Dror Moran, Hodaya Koslowsky, Yoni Kasten, Haggai Maron, Meirav Galun, Ronen Basri:
Deep Permutation Equivariant Structure from Motion. CoRR abs/2104.06703 (2021) - [i20]Rinon Gal, Or Patashnik, Haggai Maron, Gal Chechik, Daniel Cohen-Or:
StyleGAN-NADA: CLIP-Guided Domain Adaptation of Image Generators. CoRR abs/2108.00946 (2021) - [i19]Beatrice Bevilacqua, Fabrizio Frasca, Derek Lim, Balasubramaniam Srinivasan, Chen Cai, Gopinath Balamurugan, Michael M. Bronstein, Haggai Maron:
Equivariant Subgraph Aggregation Networks. CoRR abs/2110.02910 (2021) - [i18]Christopher Morris, Yaron Lipman, Haggai Maron, Bastian Rieck, Nils M. Kriege, Martin Grohe, Matthias Fey, Karsten M. Borgwardt:
Weisfeiler and Leman go Machine Learning: The Story so far. CoRR abs/2112.09992 (2021) - 2020
- [c10]Ilay Luz, Meirav Galun, Haggai Maron, Ronen Basri, Irad Yavneh:
Learning Algebraic Multigrid Using Graph Neural Networks. ICML 2020: 6489-6499 - [c9]Haggai Maron, Or Litany, Gal Chechik, Ethan Fetaya:
On Learning Sets of Symmetric Elements. ICML 2020: 6734-6744 - [c8]Hadar Serviansky, Nimrod Segol, Jonathan Shlomi, Kyle Cranmer, Eilam Gross, Haggai Maron, Yaron Lipman:
Set2Graph: Learning Graphs From Sets. NeurIPS 2020 - [i17]Haggai Maron, Or Litany, Gal Chechik, Ethan Fetaya:
On Learning Sets of Symmetric Elements. CoRR abs/2002.08599 (2020) - [i16]Hadar Serviansky, Nimrod Segol, Jonathan Shlomi, Kyle Cranmer, Eilam Gross, Haggai Maron, Yaron Lipman:
Set2Graph: Learning Graphs From Sets. CoRR abs/2002.08772 (2020) - [i15]Ilay Luz, Meirav Galun, Haggai Maron, Ronen Basri, Irad Yavneh:
Learning Algebraic Multigrid Using Graph Neural Networks. CoRR abs/2003.05744 (2020) - [i14]Idan Achituve, Haggai Maron, Gal Chechik:
Self-Supervised Learning for Domain Adaptation on Point-Clouds. CoRR abs/2003.12641 (2020) - [i13]Aviv Navon, Idan Achituve, Haggai Maron, Gal Chechik, Ethan Fetaya:
Auxiliary Learning by Implicit Differentiation. CoRR abs/2007.02693 (2020) - [i12]Nadav Dym, Haggai Maron:
On the Universality of Rotation Equivariant Point Cloud Networks. CoRR abs/2010.02449 (2020) - [i11]Eli A. Meirom, Haggai Maron, Shie Mannor, Gal Chechik:
How to Stop Epidemics: Controlling Graph Dynamics with Reinforcement Learning and Graph Neural Networks. CoRR abs/2010.05313 (2020) - [i10]Gilad Yehudai, Ethan Fetaya, Eli A. Meirom, Gal Chechik, Haggai Maron:
On Size Generalization in Graph Neural Networks. CoRR abs/2010.08853 (2020) - [i9]Yochai Yemini, Ethan Fetaya, Haggai Maron, Sharon Gannot:
Position-Agnostic Multi-Microphone Speech Dereverberation. CoRR abs/2010.11875 (2020)
2010 – 2019
- 2019
- [j6]Yam Kushinsky, Haggai Maron, Nadav Dym, Yaron Lipman:
Sinkhorn Algorithm for Lifted Assignment Problems. SIAM J. Imaging Sci. 12(2): 716-735 (2019) - [c7]Niv Haim, Nimrod Segol, Heli Ben-Hamu, Haggai Maron, Yaron Lipman:
Surface Networks via General Covers. ICCV 2019: 632-641 - [c6]Haggai Maron, Heli Ben-Hamu, Nadav Shamir, Yaron Lipman:
Invariant and Equivariant Graph Networks. ICLR (Poster) 2019 - [c5]Haggai Maron, Ethan Fetaya, Nimrod Segol, Yaron Lipman:
On the Universality of Invariant Networks. ICML 2019: 4363-4371 - [c4]Matan Atzmon, Niv Haim, Lior Yariv, Ofer Israelov, Haggai Maron, Yaron Lipman:
Controlling Neural Level Sets. NeurIPS 2019: 2032-2041 - [c3]Haggai Maron, Heli Ben-Hamu, Hadar Serviansky, Yaron Lipman:
Provably Powerful Graph Networks. NeurIPS 2019: 2153-2164 - [i8]Haggai Maron, Ethan Fetaya, Nimrod Segol, Yaron Lipman:
On the Universality of Invariant Networks. CoRR abs/1901.09342 (2019) - [i7]Haggai Maron, Heli Ben-Hamu, Hadar Serviansky, Yaron Lipman:
Provably Powerful Graph Networks. CoRR abs/1905.11136 (2019) - [i6]Matan Atzmon, Niv Haim, Lior Yariv, Ofer Israelov, Haggai Maron, Yaron Lipman:
Controlling Neural Level Sets. CoRR abs/1905.11911 (2019) - 2018
- [j5]Matan Atzmon, Haggai Maron, Yaron Lipman:
Point convolutional neural networks by extension operators. ACM Trans. Graph. 37(4): 71 (2018) - [j4]Heli Ben-Hamu, Haggai Maron, Itay Kezurer, Gal Avineri, Yaron Lipman:
Multi-chart generative surface modeling. ACM Trans. Graph. 37(6): 215 (2018) - [c2]Haggai Maron, Yaron Lipman:
(Probably) Concave Graph Matching. NeurIPS 2018: 406-416 - [i5]Matan Atzmon, Haggai Maron, Yaron Lipman:
Point Convolutional Neural Networks by Extension Operators. CoRR abs/1803.10091 (2018) - [i4]Heli Ben-Hamu, Haggai Maron, Itay Kezurer, Gal Avineri, Yaron Lipman:
Multi-chart Generative Surface Modeling. CoRR abs/1806.02143 (2018) - [i3]Haggai Maron, Heli Ben-Hamu, Nadav Shamir, Yaron Lipman:
Invariant and Equivariant Graph Networks. CoRR abs/1812.09902 (2018) - [i2]Niv Haim, Nimrod Segol, Heli Ben-Hamu, Haggai Maron, Yaron Lipman:
Surface Networks via General Covers. CoRR abs/1812.10705 (2018) - 2017
- [j3]Haggai Maron, Meirav Galun, Noam Aigerman, Miri Trope, Nadav Dym, Ersin Yumer, Vladimir G. Kim, Yaron Lipman:
Convolutional neural networks on surfaces via seamless toric covers. ACM Trans. Graph. 36(4): 71:1-71:10 (2017) - [j2]Nadav Dym, Haggai Maron, Yaron Lipman:
DS++: a flexible, scalable and provably tight relaxation for matching problems. ACM Trans. Graph. 36(6): 184:1-184:14 (2017) - [i1]Nadav Dym, Haggai Maron, Yaron Lipman:
DS++: A flexible, scalable and provably tight relaxation for matching problems. CoRR abs/1705.06148 (2017) - 2016
- [j1]Haggai Maron, Nadav Dym, Itay Kezurer, Shahar Z. Kovalsky, Yaron Lipman:
Point registration via efficient convex relaxation. ACM Trans. Graph. 35(4): 73:1-73:12 (2016) - [c1]Anat Levin, Haggai Maron, Michal Yarom:
Passive light and viewpoint sensitive display of 3D content. ICCP 2016: 1-15
Coauthor Index
manage site settings
To protect your privacy, all features that rely on external API calls from your browser are turned off by default. You need to opt-in for them to become active. All settings here will be stored as cookies with your web browser. For more information see our F.A.Q.
Unpaywalled article links
Add open access links from to the list of external document links (if available).
Privacy notice: By enabling the option above, your browser will contact the API of unpaywall.org to load hyperlinks to open access articles. Although we do not have any reason to believe that your call will be tracked, we do not have any control over how the remote server uses your data. So please proceed with care and consider checking the Unpaywall privacy policy.
Archived links via Wayback Machine
For web page which are no longer available, try to retrieve content from the of the Internet Archive (if available).
Privacy notice: By enabling the option above, your browser will contact the API of archive.org to check for archived content of web pages that are no longer available. Although we do not have any reason to believe that your call will be tracked, we do not have any control over how the remote server uses your data. So please proceed with care and consider checking the Internet Archive privacy policy.
Reference lists
Add a list of references from , , and to record detail pages.
load references from crossref.org and opencitations.net
Privacy notice: By enabling the option above, your browser will contact the APIs of crossref.org, opencitations.net, and semanticscholar.org to load article reference information. Although we do not have any reason to believe that your call will be tracked, we do not have any control over how the remote server uses your data. So please proceed with care and consider checking the Crossref privacy policy and the OpenCitations privacy policy, as well as the AI2 Privacy Policy covering Semantic Scholar.
Citation data
Add a list of citing articles from and to record detail pages.
load citations from opencitations.net
Privacy notice: By enabling the option above, your browser will contact the API of opencitations.net and semanticscholar.org to load citation information. Although we do not have any reason to believe that your call will be tracked, we do not have any control over how the remote server uses your data. So please proceed with care and consider checking the OpenCitations privacy policy as well as the AI2 Privacy Policy covering Semantic Scholar.
OpenAlex data
Load additional information about publications from .
Privacy notice: By enabling the option above, your browser will contact the API of openalex.org to load additional information. Although we do not have any reason to believe that your call will be tracked, we do not have any control over how the remote server uses your data. So please proceed with care and consider checking the information given by OpenAlex.
last updated on 2024-11-14 00:56 CET by the dblp team
all metadata released as open data under CC0 1.0 license
see also: Terms of Use | Privacy Policy | Imprint