default search action
Geoff Pleiss
Person information
Refine list
refinements active!
zoomed in on ?? of ?? records
view refined list in
export refined list as
2020 – today
- 2024
- [j2]Taiga Abe, Estefany Kelly Buchanan, Geoff Pleiss, John P. Cunningham:
Pathologies of Predictive Diversity in Deep Ensembles. Trans. Mach. Learn. Res. 2024 (2024) - [c27]Kaiwen Wu, Jonathan Wenger, Haydn T. Jones, Geoff Pleiss, Jacob R. Gardner:
Large-Scale Gaussian Processes via Alternating Projection. AISTATS 2024: 2620-2628 - [c26]Agustinus Kristiadi, Felix Strieth-Kalthoff, Marta Skreta, Pascal Poupart, Alán Aspuru-Guzik, Geoff Pleiss:
A Sober Look at LLMs for Material Discovery: Are They Actually Good for Bayesian Optimization Over Molecules? ICML 2024 - [c25]Jinsoo Yoo, Yunpeng Liu, Frank Wood, Geoff Pleiss:
Layerwise Proximal Replay: A Proximal Point Method for Online Continual Learning. ICML 2024 - [i34]Agustinus Kristiadi, Felix Strieth-Kalthoff, Marta Skreta, Pascal Poupart, Alán Aspuru-Guzik, Geoff Pleiss:
A Sober Look at LLMs for Material Discovery: Are They Actually Good for Bayesian Optimization Over Molecules? CoRR abs/2402.05015 (2024) - [i33]Jason Yoo, Yunpeng Liu, Frank Wood, Geoff Pleiss:
Layerwise Proximal Replay: A Proximal Point Method for Online Continual Learning. CoRR abs/2402.09542 (2024) - [i32]Alexandre Bouchard-Côté, Trevor Campbell, Geoff Pleiss, Nikola Surjanovic:
MCMC-driven learning. CoRR abs/2402.09598 (2024) - [i31]Natalie Maus, Kyurae Kim, Geoff Pleiss, David Eriksson, John P. Cunningham, Jacob R. Gardner:
Approximation-Aware Bayesian Optimization. CoRR abs/2406.04308 (2024) - [i30]Jason Yoo, Dylan Green, Geoff Pleiss, Frank Wood:
Online Continual Learning of Video Diffusion Models From a Single Video Stream. CoRR abs/2406.04814 (2024) - [i29]Agustinus Kristiadi, Felix Strieth-Kalthoff, Sriram Ganapathi Subramanian, Vincent Fortuin, Pascal Poupart, Geoff Pleiss:
How Useful is Intermittent, Asynchronous Expert Feedback for Bayesian Optimization? CoRR abs/2406.06459 (2024) - 2023
- [c24]Alexandre Capone, Sandra Hirche, Geoff Pleiss:
Sharp Calibrated Gaussian Processes. NeurIPS 2023 - [c23]Andres Potapczynski, Marc Finzi, Geoff Pleiss, Andrew Gordon Wilson:
CoLA: Exploiting Compositional Structure for Automatic and Efficient Numerical Linear Algebra. NeurIPS 2023 - [i28]Taiga Abe, Estefany Kelly Buchanan, Geoff Pleiss, John P. Cunningham:
Pathologies of Predictive Diversity in Deep Ensembles. CoRR abs/2302.00704 (2023) - [i27]Alexandre Capone, Geoff Pleiss, Sandra Hirche:
Sharp Calibrated Gaussian Processes. CoRR abs/2302.11961 (2023) - [i26]Andres Potapczynski, Marc Finzi, Geoff Pleiss, Andrew Gordon Wilson:
CoLA: Exploiting Compositional Structure for Automatic and Efficient Numerical Linear Algebra. CoRR abs/2309.03060 (2023) - [i25]Kaiwen Wu, Jonathan Wenger, Haydn Jones, Geoff Pleiss, Jacob R. Gardner:
Large-Scale Gaussian Processes via Alternating Projection. CoRR abs/2310.17137 (2023) - 2022
- [j1]Gao Huang, Zhuang Liu, Geoff Pleiss, Laurens van der Maaten, Kilian Q. Weinberger:
Convolutional Networks with Dense Connectivity. IEEE Trans. Pattern Anal. Mach. Intell. 44(12): 8704-8716 (2022) - [c22]Jonathan Wenger, Geoff Pleiss, Philipp Hennig, John P. Cunningham, Jacob R. Gardner:
Preconditioning for Scalable Gaussian Process Hyperparameter Optimization. ICML 2022: 23751-23780 - [c21]Luhuan Wu, Geoff Pleiss, John P. Cunningham:
Variational nearest neighbor Gaussian process. ICML 2022: 24114-24130 - [c20]Taiga Abe, Estefany Kelly Buchanan, Geoff Pleiss, Richard S. Zemel, John P. Cunningham:
Deep Ensembles Work, But Are They Necessary? NeurIPS 2022 - [c19]Jonathan Wenger, Geoff Pleiss, Marvin Pförtner, Philipp Hennig, John P. Cunningham:
Posterior and Computational Uncertainty in Gaussian Processes. NeurIPS 2022 - [i24]Luhuan Wu, Geoff Pleiss, John P. Cunningham:
Variational Nearest Neighbor Gaussian Processes. CoRR abs/2202.01694 (2022) - [i23]Taiga Abe, Estefany Kelly Buchanan, Geoff Pleiss, Richard S. Zemel, John P. Cunningham:
Deep Ensembles Work, But Are They Necessary? CoRR abs/2202.06985 (2022) - [i22]Jonathan Wenger, Geoff Pleiss, Marvin Pförtner, Philipp Hennig, John P. Cunningham:
Posterior and Computational Uncertainty in Gaussian Processes. CoRR abs/2205.15449 (2022) - 2021
- [c18]Luhuan Wu, Andrew Miller, Lauren Anderson, Geoff Pleiss, David M. Blei, John P. Cunningham:
Hierarchical Inducing Point Gaussian Process for Inter-domian Observations. AISTATS 2021: 2926-2934 - [c17]Andres Potapczynski, Luhuan Wu, Dan Biderman, Geoff Pleiss, John P. Cunningham:
Bias-Free Scalable Gaussian Processes via Randomized Truncations. ICML 2021: 8609-8619 - [c16]Geoff Pleiss, John P. Cunningham:
The Limitations of Large Width in Neural Networks: A Deep Gaussian Process Perspective. NeurIPS 2021: 3349-3363 - [c15]Anthony L. Caterini, Gabriel Loaiza-Ganem, Geoff Pleiss, John P. Cunningham:
Rectangular Flows for Manifold Learning. NeurIPS 2021: 30228-30241 - [i21]Andres Potapczynski, Luhuan Wu, Dan Biderman, Geoff Pleiss, John P. Cunningham:
Bias-Free Scalable Gaussian Processes via Randomized Truncations. CoRR abs/2102.06695 (2021) - [i20]Luhuan Wu, Andrew Miller, Lauren Anderson, Geoff Pleiss, David M. Blei, John P. Cunningham:
Hierarchical Inducing Point Gaussian Process for Inter-domain Observations. CoRR abs/2103.00393 (2021) - [i19]Martin Jankowiak, Geoff Pleiss:
Scalable Cross Validation Losses for Gaussian Process Models. CoRR abs/2105.11535 (2021) - [i18]Anthony L. Caterini, Gabriel Loaiza-Ganem, Geoff Pleiss, John P. Cunningham:
Rectangular Flows for Manifold Learning. CoRR abs/2106.01413 (2021) - [i17]Geoff Pleiss, John P. Cunningham:
The Limitations of Large Width in Neural Networks: A Deep Gaussian Process Perspective. CoRR abs/2106.06529 (2021) - [i16]Jonathan Wenger, Geoff Pleiss, Philipp Hennig, John P. Cunningham, Jacob R. Gardner:
Reducing the Variance of Gaussian Process Hyperparameter Optimization with Preconditioning. CoRR abs/2107.00243 (2021) - 2020
- [c14]Elliott Gordon-Rodríguez, Gabriel Loaiza-Ganem, Geoff Pleiss, John P. Cunningham:
Uses and Abuses of the Cross-Entropy Loss: Case Studies in Modern Deep Learning. ICBINB@NeurIPS 2020: 1-10 - [c13]Yurong You, Yan Wang, Wei-Lun Chao, Divyansh Garg, Geoff Pleiss, Bharath Hariharan, Mark E. Campbell, Kilian Q. Weinberger:
Pseudo-LiDAR++: Accurate Depth for 3D Object Detection in Autonomous Driving. ICLR 2020 - [c12]Martin Jankowiak, Geoff Pleiss, Jacob R. Gardner:
Parametric Gaussian Process Regressors. ICML 2020: 4702-4712 - [c11]Geoff Pleiss, Tianyi Zhang, Ethan R. Elenberg, Kilian Q. Weinberger:
Identifying Mislabeled Data using the Area Under the Margin Ranking. NeurIPS 2020 - [c10]Geoff Pleiss, Martin Jankowiak, David Eriksson, Anil Damle, Jacob R. Gardner:
Fast Matrix Square Roots with Applications to Gaussian Processes and Bayesian Optimization. NeurIPS 2020 - [c9]Martin Jankowiak, Geoff Pleiss, Jacob R. Gardner:
Deep Sigma Point Processes. UAI 2020: 789-798 - [i15]Gao Huang, Zhuang Liu, Geoff Pleiss, Laurens van der Maaten, Kilian Q. Weinberger:
Convolutional Networks with Dense Connectivity. CoRR abs/2001.02394 (2020) - [i14]Geoff Pleiss, Tianyi Zhang, Ethan R. Elenberg, Kilian Q. Weinberger:
Identifying Mislabeled Data using the Area Under the Margin Ranking. CoRR abs/2001.10528 (2020) - [i13]Martin Jankowiak, Geoff Pleiss, Jacob R. Gardner:
Deep Sigma Point Processes. CoRR abs/2002.09112 (2020) - [i12]Geoff Pleiss, Martin Jankowiak, David Eriksson, Anil Damle, Jacob R. Gardner:
Fast Matrix Square Roots with Applications to Gaussian Processes and Bayesian Optimization. CoRR abs/2006.11267 (2020) - [i11]Elliott Gordon-Rodríguez, Gabriel Loaiza-Ganem, Geoff Pleiss, John P. Cunningham:
Uses and Abuses of the Cross-Entropy Loss: Case Studies in Modern Deep Learning. CoRR abs/2011.05231 (2020)
2010 – 2019
- 2019
- [c8]Ke Alexander Wang, Geoff Pleiss, Jacob R. Gardner, Stephen Tyree, Kilian Q. Weinberger, Andrew Gordon Wilson:
Exact Gaussian Processes on a Million Data Points. NeurIPS 2019: 14622-14632 - [i10]Ke Alexander Wang, Geoff Pleiss, Jacob R. Gardner, Stephen Tyree, Kilian Q. Weinberger, Andrew Gordon Wilson:
Exact Gaussian Processes on a Million Data Points. CoRR abs/1903.08114 (2019) - [i9]Yurong You, Yan Wang, Wei-Lun Chao, Divyansh Garg, Geoff Pleiss, Bharath Hariharan, Mark Campbell, Kilian Q. Weinberger:
Pseudo-LiDAR++: Accurate Depth for 3D Object Detection in Autonomous Driving. CoRR abs/1906.06310 (2019) - [i8]Martin Jankowiak, Geoff Pleiss, Jacob R. Gardner:
Sparse Gaussian Process Regression Beyond Variational Inference. CoRR abs/1910.07123 (2019) - 2018
- [c7]Jacob R. Gardner, Geoff Pleiss, Ruihan Wu, Kilian Q. Weinberger, Andrew Gordon Wilson:
Product Kernel Interpolation for Scalable Gaussian Processes. AISTATS 2018: 1407-1416 - [c6]Geoff Pleiss, Jacob R. Gardner, Kilian Q. Weinberger, Andrew Gordon Wilson:
Constant-Time Predictive Distributions for Gaussian Processes. ICML 2018: 4111-4120 - [c5]Jacob R. Gardner, Geoff Pleiss, Kilian Q. Weinberger, David Bindel, Andrew Gordon Wilson:
GPyTorch: Blackbox Matrix-Matrix Gaussian Process Inference with GPU Acceleration. NeurIPS 2018: 7587-7597 - [i7]Jacob R. Gardner, Geoff Pleiss, Ruihan Wu, Kilian Q. Weinberger, Andrew Gordon Wilson:
Product Kernel Interpolation for Scalable Gaussian Processes. CoRR abs/1802.08903 (2018) - [i6]Geoff Pleiss, Jacob R. Gardner, Kilian Q. Weinberger, Andrew Gordon Wilson:
Constant-Time Predictive Distributions for Gaussian Processes. CoRR abs/1803.06058 (2018) - [i5]Jacob R. Gardner, Geoff Pleiss, David Bindel, Kilian Q. Weinberger, Andrew Gordon Wilson:
GPyTorch: Blackbox Matrix-Matrix Gaussian Process Inference with GPU Acceleration. CoRR abs/1809.11165 (2018) - 2017
- [c4]Paul Upchurch, Jacob R. Gardner, Geoff Pleiss, Robert Pless, Noah Snavely, Kavita Bala, Kilian Q. Weinberger:
Deep Feature Interpolation for Image Content Changes. CVPR 2017: 6090-6099 - [c3]Gao Huang, Yixuan Li, Geoff Pleiss, Zhuang Liu, John E. Hopcroft, Kilian Q. Weinberger:
Snapshot Ensembles: Train 1, Get M for Free. ICLR (Poster) 2017 - [c2]Chuan Guo, Geoff Pleiss, Yu Sun, Kilian Q. Weinberger:
On Calibration of Modern Neural Networks. ICML 2017: 1321-1330 - [c1]Geoff Pleiss, Manish Raghavan, Felix Wu, Jon M. Kleinberg, Kilian Q. Weinberger:
On Fairness and Calibration. NIPS 2017: 5680-5689 - [i4]Gao Huang, Yixuan Li, Geoff Pleiss, Zhuang Liu, John E. Hopcroft, Kilian Q. Weinberger:
Snapshot Ensembles: Train 1, get M for free. CoRR abs/1704.00109 (2017) - [i3]Chuan Guo, Geoff Pleiss, Yu Sun, Kilian Q. Weinberger:
On Calibration of Modern Neural Networks. CoRR abs/1706.04599 (2017) - [i2]Geoff Pleiss, Danlu Chen, Gao Huang, Tongcheng Li, Laurens van der Maaten, Kilian Q. Weinberger:
Memory-Efficient Implementation of DenseNets. CoRR abs/1707.06990 (2017) - [i1]Geoff Pleiss, Manish Raghavan, Felix Wu, Jon M. Kleinberg, Kilian Q. Weinberger:
On Fairness and Calibration. CoRR abs/1709.02012 (2017)
Coauthor Index
manage site settings
To protect your privacy, all features that rely on external API calls from your browser are turned off by default. You need to opt-in for them to become active. All settings here will be stored as cookies with your web browser. For more information see our F.A.Q.
Unpaywalled article links
Add open access links from to the list of external document links (if available).
Privacy notice: By enabling the option above, your browser will contact the API of unpaywall.org to load hyperlinks to open access articles. Although we do not have any reason to believe that your call will be tracked, we do not have any control over how the remote server uses your data. So please proceed with care and consider checking the Unpaywall privacy policy.
Archived links via Wayback Machine
For web page which are no longer available, try to retrieve content from the of the Internet Archive (if available).
Privacy notice: By enabling the option above, your browser will contact the API of archive.org to check for archived content of web pages that are no longer available. Although we do not have any reason to believe that your call will be tracked, we do not have any control over how the remote server uses your data. So please proceed with care and consider checking the Internet Archive privacy policy.
Reference lists
Add a list of references from , , and to record detail pages.
load references from crossref.org and opencitations.net
Privacy notice: By enabling the option above, your browser will contact the APIs of crossref.org, opencitations.net, and semanticscholar.org to load article reference information. Although we do not have any reason to believe that your call will be tracked, we do not have any control over how the remote server uses your data. So please proceed with care and consider checking the Crossref privacy policy and the OpenCitations privacy policy, as well as the AI2 Privacy Policy covering Semantic Scholar.
Citation data
Add a list of citing articles from and to record detail pages.
load citations from opencitations.net
Privacy notice: By enabling the option above, your browser will contact the API of opencitations.net and semanticscholar.org to load citation information. Although we do not have any reason to believe that your call will be tracked, we do not have any control over how the remote server uses your data. So please proceed with care and consider checking the OpenCitations privacy policy as well as the AI2 Privacy Policy covering Semantic Scholar.
OpenAlex data
Load additional information about publications from .
Privacy notice: By enabling the option above, your browser will contact the API of openalex.org to load additional information. Although we do not have any reason to believe that your call will be tracked, we do not have any control over how the remote server uses your data. So please proceed with care and consider checking the information given by OpenAlex.
last updated on 2024-10-04 21:00 CEST by the dblp team
all metadata released as open data under CC0 1.0 license
see also: Terms of Use | Privacy Policy | Imprint