default search action
Fu-Chun Chang
Person information
Refine list
refinements active!
zoomed in on ?? of ?? records
view refined list in
export refined list as
2020 – today
- 2024
- [j6]Ping-Chun Wu, Jian-Wei Su, Yen-Lin Chung, Li-Yang Hong, Jin-Sheng Ren, Fu-Chun Chang, Yuan Wu, Ho-Yu Chen, Chen-Hsun Lin, Hsu-Ming Hsiao, Sih-Han Li, Shyh-Shyuan Sheu, Shih-Chieh Chang, Wei-Chung Lo, Chih-I Wu, Chung-Chuan Lo, Ren-Shuo Liu, Chih-Cheng Hsieh, Kea-Tiong Tang, Meng-Fan Chang:
An 8b-Precision 6T SRAM Computing-in-Memory Macro Using Time-Domain Incremental Accumulation for AI Edge Chips. IEEE J. Solid State Circuits 59(7): 2297-2309 (2024) - 2023
- [j5]Je-Min Hung, Tai-Hao Wen, Yen-Hsiang Huang, Sheng-Po Huang, Fu-Chun Chang, Chin-I Su, Win-San Khwa, Chung-Chuan Lo, Ren-Shuo Liu, Chih-Cheng Hsieh, Kea-Tiong Tang, Yu-Der Chih, Tsung-Yung Jonathan Chang, Meng-Fan Chang:
8-b Precision 8-Mb ReRAM Compute-in-Memory Macro Using Direct-Current-Free Time-Domain Readout Scheme for AI Edge Devices. IEEE J. Solid State Circuits 58(1): 303-315 (2023) - [c7]Tai-Hao Wen, Je-Min Hung, Hung-Hsi Hsu, Yuan Wu, Fu-Chun Chang, Chung-Yuan Li, Chih-Han Chien, Chin-I Su, Win-San Khwa, Jui-Jen Wu, Chung-Chuan Lo, Ren-Shuo Liu, Chih-Cheng Hsieh, Kea-Tiong Tang, Mon-Shu Ho, Yu-Der Chih, Tsung-Yung Jonathan Chang, Meng-Fan Chang:
A 28nm Nonvolatile AI Edge Processor using 4Mb Analog-Based Near-Memory-Compute ReRAM with 27.2 TOPS/W for Tiny AI Edge Devices. VLSI Technology and Circuits 2023: 1-2 - 2022
- [j4]You-Chiun Wang, Fu-Chun Chang:
Efficient token circulation strategies against misers in device-to-device relay using token-based incentive mechanisms. IET Commun. 16(6): 710-724 (2022) - [j3]Jian-Wei Su, Xin Si, Yen-Chi Chou, Ting-Wei Chang, Wei-Hsing Huang, Yung-Ning Tu, Ruhui Liu, Pei-Jung Lu, Ta-Wei Liu, Jing-Hong Wang, Yen-Lin Chung, Jin-Sheng Ren, Fu-Chun Chang, Yuan Wu, Hongwu Jiang, Shanshi Huang, Sih-Han Li, Shyh-Shyuan Sheu, Chih-I Wu, Chung-Chuan Lo, Ren-Shuo Liu, Chih-Cheng Hsieh, Kea-Tiong Tang, Shimeng Yu, Meng-Fan Chang:
Two-Way Transpose Multibit 6T SRAM Computing-in-Memory Macro for Inference-Training AI Edge Chips. IEEE J. Solid State Circuits 57(2): 609-624 (2022) - [c6]Je-Min Hung, Yen-Hsiang Huang, Sheng-Po Huang, Fu-Chun Chang, Tai-Hao Wen, Chin-I Su, Win-San Khwa, Chung-Chuan Lo, Ren-Shuo Liu, Chih-Cheng Hsieh, Kea-Tiong Tang, Yu-Der Chih, Tsung-Yung Jonathan Chang, Meng-Fan Chang:
An 8-Mb DC-Current-Free Binary-to-8b Precision ReRAM Nonvolatile Computing-in-Memory Macro using Time-Space-Readout with 1286.4-21.6TOPS/W for Edge-AI Devices. ISSCC 2022: 1-3 - [c5]Win-San Khwa, Yen-Cheng Chiu, Chuan-Jia Jhang, Sheng-Po Huang, Chun-Ying Lee, Tai-Hao Wen, Fu-Chun Chang, Shao-Ming Yu, Tung-Yin Lee, Meng-Fan Chang:
A 40-nm, 2M-Cell, 8b-Precision, Hybrid SLC-MLC PCM Computing-in-Memory Macro with 20.5 - 65.0TOPS/W for Tiny-Al Edge Devices. ISSCC 2022: 1-3 - [c4]Ping-Chun Wu, Jian-Wei Su, Yen-Lin Chung, Li-Yang Hong, Jin-Sheng Ren, Fu-Chun Chang, Yuan Wu, Ho-Yu Chen, Chen-Hsun Lin, Hsu-Ming Hsiao, Sih-Han Li, Shyh-Shyuan Sheu, Shih-Chieh Chang, Wei-Chung Lo, Chung-Chuan Lo, Ren-Shuo Liu, Chih-Cheng Hsieh, Kea-Tiong Tang, Chih-I Wu, Meng-Fan Chang:
A 28nm 1Mb Time-Domain Computing-in-Memory 6T-SRAM Macro with a 6.6ns Latency, 1241GOPS and 37.01TOPS/W for 8b-MAC Operations for Edge-AI Devices. ISSCC 2022: 1-3 - [c3]Yen-Cheng Chiu, Chia-Sheng Yang, Shih-Hsih Teng, Hsiao-Yu Huang, Fu-Chun Chang, Yuan Wu, Yu-An Chien, Fang-Ling Hsieh, Chung-Yuan Li, Guan-Yi Lin, Po-Jung Chen, Tsen-Hsiang Pan, Chung-Chuan Lo, Win-San Khwa, Ren-Shuo Liu, Chih-Cheng Hsieh, Kea-Tiong Tang, Chieh-Pu Lo, Yu-Der Chih, Tsung-Yung Jonathan Chang, Meng-Fan Chang:
A 22nm 4Mb STT-MRAM Data-Encrypted Near-Memory Computation Macro with a 192GB/s Read-and-Decryption Bandwidth and 25.1-55.1TOPS/W 8b MAC for AI Operations. ISSCC 2022: 178-180 - 2021
- [j2]Chuan-Jia Jhang, Cheng-Xin Xue, Je-Min Hung, Fu-Chun Chang, Meng-Fan Chang:
Challenges and Trends of SRAM-Based Computing-In-Memory for AI Edge Devices. IEEE Trans. Circuits Syst. I Regul. Pap. 68(5): 1773-1786 (2021) - [c2]Cheng-Xin Xue, Je-Min Hung, Hui-Yao Kao, Yen-Hsiang Huang, Sheng-Po Huang, Fu-Chun Chang, Peng Chen, Ta-Wei Liu, Chuan-Jia Jhang, Chin-I Su, Win-San Khwa, Chung-Chuan Lo, Ren-Shuo Liu, Chih-Cheng Hsieh, Kea-Tiong Tang, Yu-Der Chih, Tsung-Yung Jonathan Chang, Meng-Fan Chang:
A 22nm 4Mb 8b-Precision ReRAM Computing-in-Memory Macro with 11.91 to 195.7TOPS/W for Tiny AI Edge Devices. ISSCC 2021: 245-247
2010 – 2019
- 2019
- [c1]Tzu-Hsiang Hsu, Yen-Kai Chen, Tai-Hsing Wen, Wei-Chen Wei, Yi-Ren Chen, Fu-Chun Chang, Ren-Shuo Liu, Chung-Chuan Lo, Kea-Tiong Tang, Meng-Fan Chang, Chih-Cheng Hsieh:
A 0.5V Real-Time Computational CMOS Image Sensor with Programmable Kernel for Always-On Feature Extraction. A-SSCC 2019: 33-34
1990 – 1999
- 1992
- [j1]Frank Yeong-Chyang Shih, Jenlong Moh, Fu-Chun Chang:
A new art-based neural architecture for pattern classification and image enhancement without prior knowledge. Pattern Recognit. 25(5): 533-542 (1992)
Coauthor Index
manage site settings
To protect your privacy, all features that rely on external API calls from your browser are turned off by default. You need to opt-in for them to become active. All settings here will be stored as cookies with your web browser. For more information see our F.A.Q.
Unpaywalled article links
Add open access links from to the list of external document links (if available).
Privacy notice: By enabling the option above, your browser will contact the API of unpaywall.org to load hyperlinks to open access articles. Although we do not have any reason to believe that your call will be tracked, we do not have any control over how the remote server uses your data. So please proceed with care and consider checking the Unpaywall privacy policy.
Archived links via Wayback Machine
For web page which are no longer available, try to retrieve content from the of the Internet Archive (if available).
Privacy notice: By enabling the option above, your browser will contact the API of archive.org to check for archived content of web pages that are no longer available. Although we do not have any reason to believe that your call will be tracked, we do not have any control over how the remote server uses your data. So please proceed with care and consider checking the Internet Archive privacy policy.
Reference lists
Add a list of references from , , and to record detail pages.
load references from crossref.org and opencitations.net
Privacy notice: By enabling the option above, your browser will contact the APIs of crossref.org, opencitations.net, and semanticscholar.org to load article reference information. Although we do not have any reason to believe that your call will be tracked, we do not have any control over how the remote server uses your data. So please proceed with care and consider checking the Crossref privacy policy and the OpenCitations privacy policy, as well as the AI2 Privacy Policy covering Semantic Scholar.
Citation data
Add a list of citing articles from and to record detail pages.
load citations from opencitations.net
Privacy notice: By enabling the option above, your browser will contact the API of opencitations.net and semanticscholar.org to load citation information. Although we do not have any reason to believe that your call will be tracked, we do not have any control over how the remote server uses your data. So please proceed with care and consider checking the OpenCitations privacy policy as well as the AI2 Privacy Policy covering Semantic Scholar.
OpenAlex data
Load additional information about publications from .
Privacy notice: By enabling the option above, your browser will contact the API of openalex.org to load additional information. Although we do not have any reason to believe that your call will be tracked, we do not have any control over how the remote server uses your data. So please proceed with care and consider checking the information given by OpenAlex.
last updated on 2024-07-20 21:16 CEST by the dblp team
all metadata released as open data under CC0 1.0 license
see also: Terms of Use | Privacy Policy | Imprint