rdfs:comment
| - العدد الصحيح هو الذي يُمكن كتابته بدون استخدام الكسور أو الفواصل العشرية، وتتكون مجموعة الأعداد الصحيحة والتي تعتبر مجموعة جزئية من مجموعة الأعداد الحقيقية- من الأعداد الطبيعية (1، 2، 3.) والصفر والأعداد السالبة المقابلة للأعداد الطبيعية (-1، -2، -3..)، وعليه فمجموعة الأعداد الصحيحة تكون مجموعة غير منتهية شأنها في ذلك شأن مجموعة الأعداد الطبيعية، وعادة ما يرمز لها بالحرف اللاتيني Z. (ar)
- Celá čísla se skládají z přirozených čísel (1, 2, 3, …), nuly (0) a záporných celých čísel (−1, −2, −3, …). Množina celých čísel se v matematice většinou označuje Z, nebo , podle Zahlen (německy čísla). Podobně jako přirozená čísla, tvoří celá čísla nekonečnou spočetnou množinu. Studiem celých čísel se zabývá teorie čísel. (cs)
- Ακέραιοι ονομάζονται όλοι οι φυσικοί αριθμοί μαζί με τους αντίθετους τους και το μηδέν. Το σύνολο των ακεραίων δηλαδή το σύνολο: Συμβολίζεται με το γράμμα , αρχικό της λέξης Zahl που στα γερμανικά σημαίνει αριθμός. Το σύνολο ορίζεται επίσης ως εξής: Όπως και το σύνολο των φυσικών, το σύνολο των ακεραίων είναι άπειρο αριθμήσιμο με πληθάριθμο (άλεφ-μηδέν). (el)
- Die natürlichen Zahlen sind die beim Zählen verwendeten Zahlen 1, 2, 3, 4, 5, 6, 7, 8, 9, 10 usw. Je nach Definition kann auch die 0 (Null) zu den natürlichen Zahlen gezählt werden. Die Menge der natürlichen Zahlen bildet mit der Addition und der Multiplikation zusammen eine mathematische Struktur, die als kommutativer Halbring bezeichnet wird. (de)
- Natura nombro estas unu el la pozitivaj entjeroj (1, 2, 3, 4 ...). Kelkfoje ankaŭ la nombron 0 (nul aŭ nulo) oni kalkulas inter naturaj nombroj. Naturaj nombroj havas du ĉefajn uzojn: Oni uzas ilin por nombri objektojn (ekz-e, "estas tri pomoj sur la tablo") aŭ por ordigi objektojn (ekz-e "ĝi estas la trie plej granda urbo en la lando"). En la dua signifo ili estas nomataj vicmontraj nombroj aŭ numeroj. La simbolo por la aro de ĉiuj naturaj nombroj estas aŭ . (eo)
- En matemáticas, un número natural es cualquiera de los números que se usan para contar los elementos de ciertos conjuntos. En obras más modernas, aparece también como ℕ = {0, 1, 2, 3, 4, …}. De dos números vecinos, el que se encuentra a la derecha se llama siguiente o sucesivo, por lo que el conjunto de los números naturales es ordenado e infinito. El conjunto de todos los números naturales iguales o menores que cierto número natural , es decir, el conjunto , se llama segmento de una sucesión natural y se denota o bien . (es)
- Is iad na slánuimhir na uimhreacha aiceanta {0, 1, 2, 3, 4, ... } mar aon leis an dhiúl do na huimhreacha aiceanta dheimhneach { -1, -2, -3, -4, ...}. Is fo-thacar iad na slánuimhir {..., -2, -1, 0, 1, 2, ...} do na réaduimhir. Is tacar éigríochta iad na slánuimhir freisin. Úsáidtear an siombail chun an tacar iomlán do uimhreacha aiceanta a léiriú: Úsáidtear an focal Slánuimhir i ríomhchlárú freisin. Is cineál sonraí bunúsach é slánuimhir. Chuirtear é in iúil le 'int' i roinnt ríomhchlár, Java ina measc. San cás seo, ní tacar éigríochta atá i gceist san gcás seo. (ga)
- In matematica i numeri naturali sono quei numeri usati per contare e ordinare. Nel linguaggio comune i "numeri cardinali" sono quelli usati per contare e i "numeri ordinali" sono quelli usati per ordinare. I numeri naturali corrispondono all'insieme {0, 1, 2, 3, 4, …}. Essi vengono fatti corrispondere biunivocamente all'insieme dei numeri interi non negativi {0, +1, +2, +3, +4, …}. Talvolta vengono usati anche per indicare l'insieme dei numeri interi positivi {1, 2, 3, 4, …}. (it)
- 数学における整数(せいすう、英: integer, whole number, 独: Ganze Zahl, 仏: nombre entier, 西: número entero)は、1 とそれに 1 ずつ加えて得られる自然数 (1, 2, 3, 4, …) 、これらに−1を乗じて得られる負数 (−1, −2, −3, −4, …) 、および 0 の総称である。 整数の全体からなる集合は、一般に太字の または黒板太字の で表す。これはドイツ語 Zahlen(「数」の意・複数形)に由来する。 抽象代数学、特に代数的整数論では、しばしば「代数体の整数環」の元という意味で代数的整数あるいは「整数」という言葉を用いる。有理数全体の成す体はそれ自身が代数体の最も簡単な例であり、有理数体の代数体としての整数環すなわち、「有理数の中で整なもの」の全体の成す環は、本項でいう意味での整数全体の成す環である。一般の「整数」との区別のためにここでいう意味の整数を有理整数 (rational integer) と呼ぶことがある。 (ja)
- 自然数(しぜんすう、英: natural number)とは、個数もしくは順番を表す一群の数のことである。集合論においては、自然数は物の個数を数える基数のうちで有限のものであると考えることもできるし、物の並べ方を示す順序数のうちで有限のものであると考えることもできる。 自然数を 1, 2, 3, … とする流儀と、0, 1, 2, 3, … とする流儀があり、前者は数論などでよく使われ、後者は集合論、論理学などでよく使われる(詳しくはの節を参照)。日本では高校教育課程においては0を入れないが、大学以降では0を含めることも多い(より正確には、代数学では0を含め、解析学では除外することが多い)。いずれにしても、0 を自然数に含めるかどうかが問題になるときは、その旨を明記する必要がある。自然数の代わりに前者を正整数、後者を非負整数と言い換えることによりこの問題を避けることもある。 数学の基礎付けにおいては、自然数の間の加法についての形式的な逆元を考えることによって整数を定義する。正の整数ないしは負でない整数を自然数と同一視し、自然数を整数の一部として取扱うことができる。自然数と同様に整数の全体も可算無限集合である。 なお、文脈によっては、その一群に属する個々の数(例えば 3 や 18)を指して自然数ということもある。 (ja)
- ( 다른 뜻에 대해서는 정수 (동음이의) 문서를 참고하십시오.)( 정수환은 여기로 연결됩니다. 대수적 수체의 부분환에 대해서는 대수적 정수환 문서를 참고하십시오.)
( 정수환은 여기로 연결됩니다. 대한민국의 가수에 대해서는 정수환 (1987년) 문서를 참고하십시오.)
수학에서 정수(整數, 문화어: 옹근수, integer)는 양의 정수(1, 2, 3, 4, 5, 6, 7, 8, ... , n), 음의 정수(-1, -2, -3, -4, -5, -6, -7, -8...) 및 0으로 이루어진 수의 체계이다. 또는 자연수, 자연수의 음수 및 영을 통칭하는 말이다. 수론의 가장 기본적인 연구 대상이다. 정수 전체의 집합의 기호는 이다. (ko)
- Liczby całkowite – liczby naturalne oraz liczby przeciwne do nich a także liczba zero. Są uogólnieniem zbioru liczb naturalnych na zbiór, w którym wykonalne jest odejmowanie. Uogólnieniem liczb całkowitych są liczby wymierne. Zbiór liczb całkowitych oznaczamy w matematyce symbolem (od niem. Zahlen – liczby). W Polsce w większości szkół podstawowych i średnich, w celu ułatwienia skojarzenia z polską nazwą, stosuje się symbol przy czym MEN zaleca używanie oznaczenia . (pl)
- 自然数(参考ISO 80000-2和中所采用的定义)指非负整数 ,为免歧义有时也直接以非负整数代替自然数使用。数学中,一般以代表以自然数组成的集合。自然数集是一個可數的,無上界的無窮集合。非零自然数即指正整数。 自然数可用于计数(如:桌子上有“三”个苹果)和定序(如:国内“第三”大城市)。 (zh)
- 整数,在電腦應用上也稱為整型,是序列中所有的数的统称,包括负整数、零(0)与正整数。和自然數一樣,整數也是一個可數的無限集合。這個集合在数学上通常表示粗體或,源于德语单词Zahlen(意为“数”)的。 在代數數論中,這些屬於有理數的一般整數會被稱為有理整數,用以和高斯整數等的概念加以區分。 (zh)
- العدد الطبيعي في الرياضيات، هو كل عدد صحيح موجب، مثل 1، 2، 3... 12، 563. ويضيف بعض العلماء الصفر إلى هذه المجموعة من الأعداد. يرمز لمجموعة الأعداد الطبيعية بالحرف اللاتيني N.و هي مجموعة أعداد غير منتهية. يمثل الواحد 1 أصغر الأعداد الطبيعية التي لا تتضمن الصفر ℕ*، بينما يمثل الصفر 0 أصغر الأعداد في مجموعة الأعداد الطبيعية التي تتضمن الصفر ℕ0، ويتم إنشاؤها بواسطة علاقة الترجع:كل عدد طبيعي له موال وهو أيضا عدد صحيح طبيعي، 1 عدد صحيح طبيعي. أي: «1 عدد طبيعي، وإذا كان عدداً طبيعياً، فإن عدد طبيعي أيضاً». ¤ الأعداد الطبيعية تكتب من دون فاصلة /./ ومن دون كسر 1/3 (ar)
- Els nombres enters són els que designen quantitats no fraccionables en parts més petites que la unitat. Per exemple −3, 80, −4 o 2019 són enters, mentre que ; −1,5; 3,14; o no ho són. Els enters es poden qualificar també amb l'adjectiu "sencer": que no hi manca cap part. Aquesta no és, però, forma correcte d'anomenar-los. Són una extensió dels nombres naturals de forma que a més de comptar coses, permeten comptabilitzar pèrdues o deutes. També són necessaris en magnituds com les altures o la temperatura en què cal considerar valors per sobre o per sota de zero. (ca)
- Un nombre natural és qualsevol dels nombres 0, 1, 2, 3…, 19, 20, 21..., que es poden utilitzar per a comptar els elements d'un conjunt finit. Per exemple: 24 pomes, 2 camions o 1123 peixos, són situacions on es compta amb nombres naturals. El conjunt de tots els nombres naturals se simbolitza per la lletra o N. Segons Kronecker, matemàtic alemany (1823–1891): En tot cas, segur que Kronecker es referiria als naturals si a la seva època la nomenclatura fos l'actual. Així, ara hauria dit: "Déu va crear els nombres naturals; tota la resta és obra de l'home". (ca)
- Přirozeným číslem (číslem z oboru přirozených čísel) se v matematice rozumí čísla, které je možné použít pro vyjádření počtu („na stole je šest mincí“) nebo pořadí („toto je třetí největší město“). Čísla používaná pro vyjádření počtu se v matematice označují jako kardinální čísla, zatímco čísla určená pro vyjádření pořadí se nazývají ordinální čísla. Přirozená čísla patří mezi základní matematické koncepty, a protože se považují za nejjednodušší na pochopení, začíná výuka matematiky obvykle od přirozených čísel. Množina všech přirozených čísel se obvykle označuje písmenem . (cs)
- Στα μαθηματικά, οι φυσικοί αριθμοί είναι εκείνοι που χρησιμοποιούνται για τη μέτρηση ("υπάρχουν έξι νομίσματα στο τραπέζι") και για τη σύγκριση ("υπάρχουν περισσότερες καρέκλες από τους πίνακες"). Μια μεταγενέστερη έννοια είναι εκείνη ενός ονομαστικού αριθμού, ο οποίος χρησιμοποιείται μόνο για την ονομασία. (el)
- Die ganzen Zahlen (auch Ganzzahlen, lateinisch numeri integri) sind eine Erweiterung der natürlichen Zahlen. Die ganzen Zahlen umfassen alle Zahlen …, −3, −2, −1, 0, 1, 2, 3, … und enthalten damit alle natürlichen Zahlen sowie deren additive Inverse. Die Menge der ganzen Zahlen wird meist mit dem Buchstaben mit Doppelstrich bezeichnet (das „Z“ steht für das deutsche Wort „Zahlen“). Das alternative Symbol ist mittlerweile weniger verbreitet; ein Nachteil dieses Fettdruck-Symbols ist die schwierige handschriftliche Darstellbarkeit. Der Unicode des Zeichens lautet U+2124 und hat die Gestalt ℤ. (de)
- La entjeroj (aŭ plenaj nombroj) konsistas el la naturaj nombroj (1, 2, 3, …), la respondaj negativaj nombroj (−1, −2, −3, …) kaj 0 (nulo). Matematikistoj kutime signas la aron de la entjeroj per aŭ Z. La naturaj nombroj estas subaro de la entjeroj, kion oni signas per ⊂ . La entjero m estas nomata divizoro de la entjero n, se la kvociento de n per m ankaŭ estas entjero. Ekz-e 3 estas divizoro de 9, kaj 1, 2, 3, 4, 6, 12 estas ĉiuj pozitivaj divizoroj de 12. (eo)
- Zenbaki arruntak multzo bateko elementuak zenbatzeko erabiltzen diren zenbakiak dira: 0, 1, 2, 3, 4, 5, 6... Matematikari batzuek (zenbaki-teoriari ekin ziotenak) zero arrunta ez dela deritzote, baina beste batzuk ez dira uste berekoak (multzo-teoria, logika eta informatikari ekin ziotenak). Entziklopedia honetan, zero arrunta dela kontuan hartuko dugu. Zenbaki arruntak zer diren edonork dakien arren, haren definizioa ez da inolaz ere erraza. Peano-ren axiomak zenbaki arrunten multzoa, , adiera bakarreko moduan deskribatzen dute: (eu)
- Zenbaki osoen multzoan zenbaki arruntak biltzen dira (0,1,2,...), beren aurkakoekin batera (-0,-1,-2,...). -0 eta 0 berdintzat jotzen dira. Zenbaki osoen multzoa hizkiaz izendatu ohi da ('Zahlen' germanierazko hitzetik). Zenbaki osoak batu, kendu eta biderkatu egin daitezke: emaitza beti izango da zenbaki oso bat. x+a=b motako ekuazioen soluzioa, non a eta b zenbaki osoak diren, zenbaki osoa izango da. Zenbaki arrunten kasuan ez da esaterako gauza bera gertatzen. Zorrotzago, zenbaki osoen multzoak, batuketa eta biderketa eragiketak definitu ondoren, osatzen duela esan behar da. (eu)
- Un número entero es un elemento del conjunto numérico que contiene los números naturales; que son o ; dependiendo de cómo se definan, sus opuestos, y en la segunda definición, además el cero. Los enteros negativos, como −1 o −13 (se leen «menos uno», «menos trece», etc.), son menores que cero y también son menores que todos los enteros positivos. Para resaltar la diferencia entre positivos y negativos, se puede escribir un signo «menos» delante de los negativos: -1, -5, etc. Y si no se escribe signo al número se asume que es positivo. (es)
- En mathématiques, un entier relatif, un entier rationnel ou simplement un nombre entier est un nombre qui se présente comme un entier naturel auquel on a adjoint un signe positif ou négatif indiquant sa position par rapport à 0 sur un axe orienté. Les entiers positifs (supérieurs à zéro) s'identifient aux entiers naturels : 0, 1, 2, 3… tandis que les entiers négatifs sont leurs opposés : 0, −1, −2, −3… L'entier 0 lui-même est donc le seul nombre à la fois positif et négatif. (fr)
- In mathematics, the natural numbers are those numbers used for counting (as in "there are six coins on the table") and ordering (as in "this is the third largest city in the country"). Numbers used for counting are called cardinal numbers, and numbers used for ordering are called ordinal numbers. Natural numbers are sometimes used as labels, known as nominal numbers, having none of the properties of numbers in a mathematical sense (e.g. sports jersey numbers). (en)
- Sa mhatamaitic, is iad na huimhreacha aiceanta ná iad siúd a úsáidtear le haghaidh (mar atá i "tá sé bhonn ar an mbord") agus le h (mar atá i "is í seo an tríú cathair is mó sa tír"). I ngnáththéarmaíocht mhatamaiticiúil, is iad na focail a úsáidtear sa ghnáthchaint chun "" a chomhaireamh, agus is iad na focail a úsáidtear le haghaidh áite nó céime in ord seicheamhach na "h". (ga)
- Dalam matematika, terdapat dua kesepakatan mengenai himpunan bilangan asli. Yang pertama definisi menurut matematikawan tradisional, yaitu himpunan bilangan bulat positif yang bukan nol {1, 2, 3, 4, ...}. Sedangkan yang kedua definisi oleh logikawan dan ilmuwan komputer, adalah himpunan nol dan bilangan bulat positif {0, 1, 2, 3, ...}. Bilangan asli merupakan salah satu konsep matematika yg paling sederhana dan termasuk konsep pertama yang bisa dipelajari dan dimengerti oleh manusia, bahkan beberapa penelitian menunjukkan beberapa jenis kera juga bisa menangkapnya. (in)
- Bilangan bulat adalah bilangan yang dapat dituliskan tanpa komponen desimal atau pecahan. Sebagai contoh, 21, 4, 0, -3, -67 dan -2048 merupakan bilangan bulat, sedangkan 9,75, 5 12, dan bukan.Himpunan bilangan bulat terdiri dari angka 0, semua bilangan bulat positif (juga disebut dengan bilangan asli), dan invers aditif-nya, semua bilangan bulat negatif . Dalam matematika, himpunan ini sering dilambangkan dengan , atau huruf tebal. Huruf kapital Z yang digunakan berasal dari kata Zahlen, yang berarti bilangan dalam bahasa Jerman. (in)
- En mathématiques, un entier naturel est un nombre permettant fondamentalement de compter des objets considérés comme des unités équivalentes : un jeton, deux jetons… une carte, deux cartes, trois cartes… Un tel nombre entier peut s'écrire avec une suite finie de chiffres en notation décimale positionnelle (sans signe et sans virgule). Les définitions modernes d’entier naturel sont fondées sur :
* 1 ; 2 ; 3 ; 4 ; 5 ; 6 ; 7 ; 8 ; 9 ; 10 ; 11 ; … ou
* 0 ; 1 ; 2 ; 3 ; 4 ; 5 ; 6 ; 7 ; 8 ; 9 ; 10 ; 11 ; … (fr)
- I numeri interi (o numeri interi relativi o, semplicemente, numeri relativi) corrispondono all'insieme ottenuto unendo i numeri naturali (0, 1, 2, ...) e i numeri interi negativi (−1, −2, −3,...), cioè quelli ottenuti ponendo un segno “−” davanti ai naturali. Questo insieme in matematica viene indicato con Z o , perché è la lettera iniziale di “Zahl” che in tedesco significa numero (originariamente "far di conto", infatti l'espressione implica l'utilizzo dei numeri negativi). (it)
- ( 자연수(自然水)는 자연에서 나는 물을 가리키기도 합니다.) 수학에서 자연수(自然數, 영어: natural number)는 수를 셀 때나 순서를 매길 때 사용되는 수다. 양의 정수(陽-整數, 영어: positive integer) 1, 2, 3, ...로 정의되거나, 음이 아닌 정수(陰-整數, 영어: non-negative integer) 0, 1, 2, 3, ...로 정의된다. 범자연수(汎自然數, 문화어: 옹근수(-數), 완수(完數), 영어: whole number)라는 용어는 첫째 정의를 택할 경우에 음이 아닌 정수를 가리키는 데 사용되며, 이에 대응하는 문화어와 영어는 둘째 정의를 택할 경우에 정수를 가리키는 데 사용된다. 자연수의 집합은 대문자 N을 써서 표기하며, 보통 칠판 볼드체 ℕ를 사용한다. 자연수의 수를 세는 역할을 일반화하면 기수의 개념을 얻으며, 자연수의 순서를 매기는 기능을 일반화하면 순서수의 개념을 얻는다. 자연수의 집합의 대수적 성질을 일반화하면 반환의 개념을 얻는다. 특히 자연수는 많은 스포츠 점수 같은 경기나 게임에 사용될수 있으며 우리가 가장 흔히 보는 수로도 볼 수 있다. (ko)
- De gehele getallen zijn alle getallen in de rij …, −3, −2, −1, 0, 1, 2, 3, … die voortgezet wordt door er steeds 1 bij te tellen of er 1 af te trekken. De gehele getallen omvatten 0, de natuurlijke getallen, dus de getallen waarmee wordt geteld, en de tegengestelden daarvan, de negatieve gehele getallen. De wiskundetak die zich met de studie bezighoudt naar de eigenschappen van de gehele getallen, noemt men de getaltheorie. (nl)
- Liczby naturalne – liczby służące podawaniu liczności (trzy osoby, zob. liczebnik główny/kardynalny) i ustalania kolejności (trzecia osoba, zob. liczebnik porządkowy), poddane w matematyce dalszym uogólnieniom (odpowiednio: liczby kardynalne, liczby porządkowe). Badaniem własności liczb naturalnych zajmują się arytmetyka i teoria liczb. W matematyce określenie liczby naturalne oznacza na ogół liczby całkowite dodatnie. (pl)
- Een natuurlijk getal is een getal dat het resultaat is van een telling van een eindig aantal dingen, dus een van de getallen De verzameling natuurlijke getallen wordt aangegeven met het symbool . Er is geen overeenstemming of het getal 0 bij de natuurlijke getallen hoort. In de traditionele definitie beginnen de natuurlijke getallen bij 1 – van daaraf begint men immers te tellen. Vanaf de negentiende eeuw ziet men de definitie opduiken die 0 wel tot de natuurlijke getallen rekent (zie geschiedenis). In de wiskunde wordt tegenwoordig vrij algemeen het getal 0 tot de natuurlijke getallen gerekend. (nl)
- Um número natural é um número inteiro não negativo Em alguns contextos, número natural é definido como um número inteiro positivo, sendo também o zero considerado como um número natural (mesmo não sendo positivo ): O conjunto dos números naturais é, comumente, denotado pelo símbolo O símbolo é usado para explicitar que o zero não está sendo incluso, i.e. Uma construção do conjunto dos números naturais que não depende do conjunto dos números inteiros foi desenvolvida por Giuseppe Peano no século XIX e costuma ser chamada de Axiomática de Peano. (pt)
- Um número inteiro é um número que pode ser escrito sem um componente fracional. Por exemplo, 21, 4, 0, e −2048 são números inteiros, enquanto 9.75, 52, e √2 não são. O conjunto dos números inteiros é representado pelo símbolo , cuja letra é originada da palavra alemã Zahlen ([ˈtsaːlən], "números"). Os inteiros (juntamente com a operação de adição) formam o menor grupo que contém o monoide aditivo dos números naturais. Como os números naturais, os inteiros formam um conjunto infinito contável. (pt)
- De naturliga talen är de heltal som är icke-negativa {0, 1, 2, 3, 4, …}, alternativt de heltal som är positiva {1, 2, 3, 4, …}. Den första definitionen är vanlig i Sverige och allmänt i matematisk logik, mängdlära och beräkningsvetenskap, medan den senare kan hittas i bland annat amerikansk litteratur och bland talteoretiker. Mängden av de naturliga talen betecknas ℕ (ett vanligt N i fetstil kan även användas). ℕ är diskret, uppräkneligt oändlig och har kardinalitet Alef-noll (ℵ₀). För att undvika förvirring kan ℤ+ användas för att beteckna de positiva heltalen, och ℕ0 för de icke-negativa. (sv)
- Натурáльные чи́сла (от лат. naturalis «естественный») — числа, возникающие естественным образом при счёте (1, 2, 3, 4, 5, 6, 7 и так далее). Последовательность всех натуральных чисел, расположенных в порядке возрастания, называется натуральным рядом. Множество натуральных чисел является бесконечным, так как для любого натурального числа найдётся натуральное число, большее чем . Натуральные числа ещё можно называть целыми положительными числами. Поэтому Отрицательные и нецелые (дробные) числа к натуральным не относятся. (ru)
- Heltalen är unionen av mängden naturliga tal {0, 1, 2, ...} och mängden negativa heltal {-1, -2, -3, ...}. Mängden av hela tal betecknas med den dubbelstrukna bokstaven ℤ (ibland fetstilta bokstaven Z), från det tyska ordet Zahlen (tal). Ibland definierar man delmängder av ℤ: ℤ+, ℤ* och ℤ–.
* ℤ+ är 1, 2, 3, 4, 5 ...
* ℤ* är 0, 1, 2, 3, 4, 5 ...
* ℤ– är ... -5, -4, -3, -2, -1 Beroende på definition kan endera ℤ+ eller ℤ* vara detsamma som mängden naturliga tal. (sv)
- Ці́лі чи́сла — в математиці елементи множини, яка утворюється замиканням натуральних чисел відносно віднімання. Таким чином, цілі числа замкнуті відносно додавання, віднімання та множення. Необхідність розгляду цілих чисел викликана неможливістю в загальному випадку відняти від одного натурального числа інше — можна віднімати тільки менше число від більшого. Введення нуля і від’ємних чисел робить віднімання такою ж повноцінною операцією, як додавання. Множина цілих чисел складається з Числа 142857; 0; -273 є цілими.Числа 5½; 9,75 не є цілими. (uk)
- Натура́льні чи́сла — числа, що виникають природним чином при лічбі. Це числа: 1, 2, 3, 4, … Множину натуральних чисел прийнято позначати знаком Існують два основних підходи до означення натуральних чисел:
* числа, що використовуються при лічбі предметів (перший, другий, третій…) — підхід, загальноприйнятий у більшості країн світу; формалізованим різновидом цього підходу є аксіоматичне описання системи натуральних чисел за допомогою аксіом Пеано.
* числа для позначення кількості предметів (один предмет, два предмети…). (uk)
- Це́лые чи́сла — расширение множества натуральных чисел, получаемое добавлением к нему нуля и отрицательных чисел. Необходимость рассмотрения целых чисел продиктована невозможностью в общем случае вычесть из одного натурального числа другое — можно вычитать только меньшее число из большего. Введение нуля и отрицательных чисел делает вычитание такой же полноценной операцией, как сложение. Вещественное число является целым, если его десятичное представление не содержит дробной части (но может содержать знак). Примеры вещественных чисел: (ru)
|