dbo:abstract
|
- En matematiko, lebega lemo estas grava propozicio en . Ĝi donas baron por la projekcia eraro. (eo)
- For Lebesgue's lemma for open covers of compact spaces in topology see Lebesgue's number lemma In mathematics, Lebesgue's lemma is an important statement in approximation theory. It provides a bound for the projection error, controlling the error of approximation by a linear subspace based on a linear projection relative to the optimal error together with the operator norm of the projection. (en)
- En mathématiques, le lemme de Lebesgue est un résultat important en théorie de l'approximation. Il permet d'obtenir une borne sur l'erreur de projection. (fr)
|
dbo:wikiPageID
| |
dbo:wikiPageLength
|
- 1678 (xsd:nonNegativeInteger)
|
dbo:wikiPageRevisionID
| |
dbo:wikiPageWikiLink
| |
dbp:wikiPageUsesTemplate
| |
dcterms:subject
| |
gold:hypernym
| |
rdf:type
| |
rdfs:comment
|
- En matematiko, lebega lemo estas grava propozicio en . Ĝi donas baron por la projekcia eraro. (eo)
- For Lebesgue's lemma for open covers of compact spaces in topology see Lebesgue's number lemma In mathematics, Lebesgue's lemma is an important statement in approximation theory. It provides a bound for the projection error, controlling the error of approximation by a linear subspace based on a linear projection relative to the optimal error together with the operator norm of the projection. (en)
- En mathématiques, le lemme de Lebesgue est un résultat important en théorie de l'approximation. Il permet d'obtenir une borne sur l'erreur de projection. (fr)
|
rdfs:label
|
- Lebega lemo (eo)
- Lemme de Lebesgue (fr)
- Lebesgue's lemma (en)
|
owl:sameAs
| |
prov:wasDerivedFrom
| |
foaf:isPrimaryTopicOf
| |
is dbo:wikiPageRedirects
of | |
is dbo:wikiPageWikiLink
of | |
is foaf:primaryTopic
of | |