An Entity of Type: WikicatNormedSpaces, from Named Graph: http://dbpedia.org, within Data Space: dbpedia.org

For Lebesgue's lemma for open covers of compact spaces in topology see Lebesgue's number lemma In mathematics, Lebesgue's lemma is an important statement in approximation theory. It provides a bound for the projection error, controlling the error of approximation by a linear subspace based on a linear projection relative to the optimal error together with the operator norm of the projection.

Property Value
dbo:abstract
  • En matematiko, lebega lemo estas grava propozicio en . Ĝi donas baron por la projekcia eraro. (eo)
  • For Lebesgue's lemma for open covers of compact spaces in topology see Lebesgue's number lemma In mathematics, Lebesgue's lemma is an important statement in approximation theory. It provides a bound for the projection error, controlling the error of approximation by a linear subspace based on a linear projection relative to the optimal error together with the operator norm of the projection. (en)
  • En mathématiques, le lemme de Lebesgue est un résultat important en théorie de l'approximation. Il permet d'obtenir une borne sur l'erreur de projection. (fr)
dbo:wikiPageID
  • 2069644 (xsd:integer)
dbo:wikiPageLength
  • 1678 (xsd:nonNegativeInteger)
dbo:wikiPageRevisionID
  • 1109130385 (xsd:integer)
dbo:wikiPageWikiLink
dbp:wikiPageUsesTemplate
dcterms:subject
gold:hypernym
rdf:type
rdfs:comment
  • En matematiko, lebega lemo estas grava propozicio en . Ĝi donas baron por la projekcia eraro. (eo)
  • For Lebesgue's lemma for open covers of compact spaces in topology see Lebesgue's number lemma In mathematics, Lebesgue's lemma is an important statement in approximation theory. It provides a bound for the projection error, controlling the error of approximation by a linear subspace based on a linear projection relative to the optimal error together with the operator norm of the projection. (en)
  • En mathématiques, le lemme de Lebesgue est un résultat important en théorie de l'approximation. Il permet d'obtenir une borne sur l'erreur de projection. (fr)
rdfs:label
  • Lebega lemo (eo)
  • Lemme de Lebesgue (fr)
  • Lebesgue's lemma (en)
owl:sameAs
prov:wasDerivedFrom
foaf:isPrimaryTopicOf
is dbo:wikiPageRedirects of
is dbo:wikiPageWikiLink of
is foaf:primaryTopic of
Powered by OpenLink Virtuoso    This material is Open Knowledge     W3C Semantic Web Technology     This material is Open Knowledge    Valid XHTML + RDFa
This content was extracted from Wikipedia and is licensed under the Creative Commons Attribution-ShareAlike 3.0 Unported License