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Abstract 26 

Photosynthetic phenology has large effects on the land-atmosphere carbon exchange. 27 

Due to limited experimental assessments, a comprehensive understanding of the 28 

variations of photosynthetic phenology under future climate and its associated controlling 29 

factors is still missing, despite its high sensitivities to climate. Here we develop an 30 

approach that uses cities as natural laboratories, since plants in urban areas are often 31 

exposed to higher temperature and carbon dioxide (CO2) concentration, which reflect 32 

expected future environmental conditions. Using more than 880 urban–rural gradients 33 

across the Northern Hemisphere (≥30°), combined with concurrent satellite retrievals of 34 

sun-induced chlorophyll fluorescence (SIF) and atmospheric CO2, we investigated the 35 

combined impacts of elevated CO2 and temperature on photosynthetic phenology at large 36 

scale. Results show that in urban conditions of elevated CO2 and temperature, vegetation 37 

photosynthetic activity began earlier (−5.6 ± 0.7 days), peaked earlier (−4.9 ± 0.9 days) 38 

and ended later (4.6 ± 0.8 days) than in neighboring rural areas, with a striking two- to 39 

four-fold higher climate sensitivity than greenness phenology. The earlier start and peak 40 

of season were sensitive to both the enhancements of CO2 and temperature, whereas the 41 

delayed end of season was mainly attributed to CO2 enrichments. We used these 42 

sensitivities to project phenology shifts under four “Representative Concentration 43 

Pathway” (RCP) climate scenarios, predicting that vegetation will have prolonged 44 

photosynthetic seasons in the coming two decades. This observation-driven study 45 

indicates that realistic urban environments, together with SIF observations, provide a 46 
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promising way for vegetation physiological studies under future climate change. 47 

  48 
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Terrestrial ecosystems absorb approximately one quarter of the anthropogenic carbon 49 

dioxide (CO2) released into the atmosphere, which effectively mitigates climate warming1. 50 

The timing and duration of vegetation photosynthetic activity (i.e., photosynthetic 51 

phenology), play an important role in the carbon cycle of land ecosystems2,3 and are 52 

strongly affected by climate change4-7. Understanding the response of photosynthetic 53 

phenology to increasing atmospheric CO2 concentrations and global warming is, 54 

therefore, essential to better understand the future dynamics of the terrestrial carbon 55 

cycle8,9 and formulate land-based strategies to mitigate climate change10. Current 56 

experimental assessments of the effects of climate warming and CO2 fertilisation on plant 57 

phenology have generally been restricted to manipulated experiments11,12 with very 58 

limited spatial extent and species coverage, which may ultimately led to ambiguous and 59 

controversial findings13. In particular, the role of CO2 fertilisation on tree phenology 60 

remains largely unknown in real natural settings. Moreover, many field experiments have 61 

been recently terminated because of their high cost14, thus limiting consistent long-term 62 

observations and reinforcing the need for effective, low-cost alternative monitoring 63 

approaches. 64 

In this analysis, we make use of contrasting conditions in urban–rural environments, 65 

serving as “natural laboratories” to conduct a novel, and first time investigation on the 66 

combined effects of future global warming and CO2 fertilisation on vegetation phenology 67 

at a very large scale14. Because of the urban heat island effect15 and the larger CO2 68 

emissions from fossil-fuel combustion16, vegetation in urban areas is typically exposed to 69 
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higher temperatures and CO2 concentrations than in rural areas and are therefore 70 

experiencing growing conditions projected for the future17. Assuming that phenology 71 

responds similarly to altered temperature and atmospheric CO2 in urban and rural areas, 72 

the urban–rural gradients can be considered as “natural experiments” with similar 73 

photoperiod and weather, and at lower costs14 than manipulation experiments. Using the 74 

space-for-time substitution concept, we therefore used the physiological dynamics of 75 

vegetation across urban–rural gradients to investigate the effects of future global warming 76 

and CO2 fertilisation on photosynthetic phenology. Data were collected from 880 urban 77 

clusters and their adjacent rural areas at mid- to high-latitudes in the Northern 78 

Hemisphere (NH, ≥30°) (Supplementary Fig. 1). Photosynthetic phenology was extracted 79 

from the Orbiting Carbon Observatory-218 (OCO-2) sun-induced chlorophyll 80 

fluorescence (SIF, a proxy for photosynthesis) data, which are highly correlated with 81 

photosynthetic rates and can monitor actual photosynthetic dynamics19. We used the 82 

traditional, satellite greenness phenology for comparison, which was extracted from 83 

Moderate Resolution Imaging Spectroradiometer (MODIS) Enhanced Vegetation Index 84 

(EVI)20. The urban–rural surface CO2 gradients were obtained through a conversion 85 

approach with OCO-2 column-averaged CO2 mixing ratios (XCO2) data (see Methods). 86 

The primary objective of our analysis was to determine the differences in photosynthetic 87 

phenology across urban–rural gradients and explore the combined effect of atmospheric 88 

CO2 enrichment and warming on plant photosynthetic phenology at a very large scale. 89 

Phenological differences and environmental gradients were then used to quantify the 90 
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sensitivities of the processes and ultimately to project shifts in phenophases under 91 

contrasting climate scenarios. 92 

Results 93 

We found that vegetation showed a larger than expected anticipation and 94 

prolongation of the photosynthetic season within urban environments. On average, the 95 

SIF-based photosynthetic activity began 5.6 days earlier, peaked 4.9 days earlier, ended 96 

4.6 days later and lasted 10.2 days longer in urban than in rural areas (Fig. 1). These 97 

variations were two- to four-times larger than those in greenness phenology derived from 98 

MODIS EVI, due to the significantly higher urban–rural ∆SIF than ∆EVI during spring 99 

and autumn (Supplementary Fig. 2). The timing of each phenological indicator we 100 

examined (SOS, start of growing season; POS, peak of growing season; EOS, end of 101 

growing season; GSL, length of growing season) was generally highly correlated between 102 

urban areas and neighbouring rural counterparts, but with significant systematic 103 

deviations, as indicated by the slopes of the regression lines (Supplementary Fig. 3). The 104 

SOS and POS occurred earlier in urban areas as suggested by the slopes of larger than 105 

one (i.e., 1.01–1.03 and 1.00–1.02; p < 0.001) for the regression lines, whereas the EOS 106 

occurred later in urban areas as indicated by the slopes of lower than one (i.e., 0.98–0.99; 107 

p < 0.001). On average within cities, SOS and POS were therefore advanced, while EOS 108 

was delayed and GSL was extended for the phenology of SIF. Similar patterns were 109 

found for the phenology of EVI, but the magnitudes of these changes were substantially 110 

smaller than that of SIF (Supplementary Fig. 4) (about four-fold for ∆SOS and ∆POS, 111 
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two-fold for ∆EOS and three-fold for ∆GSL; Fig. 1). The larger differences of 112 

photosynthetic phenology in urban–rural gradients than the differences of greenness 113 

phenology were not affected by the mismatching in the spatial resolutions of SIF and EVI 114 

data, as also tested after resampling to the same resolution (Supplementary Fig. 5). These 115 

results suggest a remarkable shift in the response of photosynthetic phenology to urban 116 

environmental conditions in the mid- to high-latitudes of the NH. These variations cannot 117 

be completely explained by the variations in greenness phenology based on VIs or leaf 118 

area index (LAI) and probably involve physiological responses to environmental drivers. 119 

Vegetation in urban areas generally had earlier photosynthetic SOS and POS, later 120 

EOS and longer GSL in the NH across various latitudes and climatic backgrounds (Fig. 121 

2). On average, more than 70% of the urban clusters had longer photosynthetic seasons 122 

than rural buffers. ∆SOS and ∆POS were lower than zero days across the whole NH, 123 

while most of the ∆EOS were greater than zero days, suggesting that the trends of earlier 124 

start/peak and delayed end of photosynthesis in urban environments are common across 125 

northern latitudes. Nevertheless, some spatial patterns of phenological shifts along 126 

urban–rural gradients were also evident; ∆SOS tended to decrease slightly as latitude 127 

increased, ∆EOS and ∆GSL had the highest values at mid-latitudes, whereas ∆POS had 128 

no clear trend (second column in Fig. 2). The spatial patterns of SIF ∆SOS were not fully 129 

consistent with previous studies conducted with EVI, which showed an increasing trend 130 

of EVI ∆SOS with the latitude21 due to the larger urban heat island effects in 131 

high-latitudes15,22. This divergence possibly suggests that the spatial distributions of SIF 132 
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urban–rural phenological gradients cannot be explained by temperature alone. 133 

Importantly, urban–rural phenological differences were more significant in warm and dry 134 

regions (i.e. areas with high mean annual air temperature and low annual precipitation) 135 

than in other regions (third column in Fig. 2). Thus, the phenological differences in arid 136 

climate zones were significantly higher than that in temperate and boreal areas 137 

(Supplementary Fig. 6). These results suggest a general phenomenon that urban 138 

environmental conditions extend the photosynthetic seasons and that the impacts in warm 139 

and dry regions are greater than those in other climate regions. 140 

Urban–rural phenological difference is likely driven by several interacting factors 141 

including the enhancements of temperature and CO2, the geolocation of a city, the urban 142 

size and climatic background. Partial correlation analysis showed that SIF ∆SOS and 143 

∆POS were mainly controlled by the daytime urban heat island (∆LSTday) effects and 144 

urban–rural CO2 gradients (∆CO2), of which ∆LSTday was the most significant (Fig. 3). 145 

SIF ∆EOS was mainly attributed to the enhanced CO2 only, resulting in similarly 146 

significant effects of temperature and CO2 on ∆GSL (Fig. 3). In order to attribute the 147 

effects of environmental drivers on photosynthetic phenology, we further analysed the 148 

associations between elevated daytime temperature or atmospheric CO2 and urban–rural 149 

phenological differences (Fig. 4). The onset and peak time of photosynthesis were both 150 

advanced significantly as atmospheric CO2 concentration increased (p = 0.013 and 0.021, 151 

respectively) and as temperature increased (p = 0.019 and 0.006, respectively). The end 152 

of photosynthetic activity was significantly delayed as CO2 concentrations increased (p = 153 
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0.028), whereas its association with temperature was not significant (p = 0.259). Our 154 

analyses suggest that not only daytime temperature but also atmospheric CO2 have large 155 

impacts on photosynthetic phenology of urban plants and, therefore, may potentially 156 

inform on the future phenological shifts of natural vegetation under scenarios of warming 157 

and atmospheric CO2 enrichment. 158 

Finally, using observations along the urban–rural gradients as natural laboratories, 159 

we projected the shifts in photosynthetic phenology for the next two decades using the 160 

space-for-time substitution. Based on forward stepwise regression models (see Methods), 161 

the sensitivities of ∆SOS, ∆POS and ∆GSL to daytime temperature were –1.55 ± 0.60, 162 

–2.11 ± 0.78 and 3.31 ± 1.10 days·°C–1, respectively (Fig. 5a). The sensitivities of ∆SOS, 163 

∆POS, ∆EOS and ∆GSL to surface CO2 concentration were –0.15 ± 0.07, –0.18 ± 0.09, 164 

0.17 ± 0.07 and 0.32 ± 0.11 days·ppm–1, respectively (Fig. 5b). Given the observed 165 

sensitivities and four different “Representative Concentration Pathway” (RCP) scenarios 166 

of surface temperature and CO2 concentration10 (i.e., RCP 2.6, 4.5, 6.0 and 8.5, 167 

Supplementary Fig. 7), we projected the possible shifts of photosynthetic SOS, POS, 168 

EOS and GSL from 2015 to 2035 (Fig. 5c-f). Results show that the phenophase shifts 169 

were lowest in the RCP 2.6 scenario and highest in the RCP 8.5 scenario. Assuming 170 

constant sensitivities for the next two decades, under the range of climate pathways 171 

foreseen by RCP scenarios during 2015–2035, the photosynthetic SOS and POS would 172 

advance at a rate of 2.8–5.7 and 3.3–6.9 days·decade–1, respectively; and the EOS would 173 

delay at a rate of 3.1–5.7 days·decade–1, prolonging the growing season by a rate of 174 
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5.9–11.4 days·decade–1 (Fig. 5g). It should be noted that the responses of vegetation 175 

phenology to temperature are not stationary23 and are likely to decline in the near 176 

decades9,24. Besides, the sensitivity of vegetation phenology to CO2 may not be static 177 

either in the coming decades, since the projected future concentrations of CO2 could 178 

exceed the range currently experienced by the urban vegetation (Fig. 4 & Supplementary 179 

Fig. 7b). Therefore, our analysis of the projected photosynthetic phenology based on the 180 

static sensitivity may overestimate the future shifts of vegetation phenophases. This 181 

caveat, however, can be solved in the future by the same procedure introduced in this 182 

study and continued satellite SIF observations. 183 

Discussion 184 

We found systematic differences between urban–rural gradients of photosynthetic 185 

and greenness phenology (Fig. 1). The urbanization effects on vegetation photosynthetic 186 

phenology were more than twofold higher than those on greenness. This phenomenon 187 

could be explained by the significant differences between season cycle of EVI and SIF, 188 

namely EVI shows an earlier spring increase and a later autumn falling than SIF 189 

(Supplementary Fig. 2a). This difference has also been demonstrated by a recent study25. 190 

The timing of carbon assimilation in spring lags behind the leaf burst, which varies with 191 

foliar structure and longevity26. The photosynthetic activity shuts down before the 192 

reduction of leaf chlorophyll and leaf abscission because of the limitation of light 193 

availability27-29. Another possible reason is that urban phenology indicators from VIs are 194 
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suffering from mixed-pixel effects30, which can bias the gradients of urban–rural 195 

greenness phenology. Besides, VIs may have noisy signals from soil background, such as 196 

soil color, artificial green building and other non-photosynthetic active materials, 197 

especially in urban areas31-33. On the other hand, originating from the vegetation 198 

photosynthetic pigments, SIF is less sensitive to the soil background34-36. 199 

Our analyses suggest that the urban–rural photosynthetic phenological differences 200 

are mainly controlled by elevated atmospheric CO2 concentration and daytime 201 

temperature, while the differences of greenness phenology are mostly depending on the 202 

urban size (Fig. 3). Previous studies using dozens of cities at regional scale suggest a 203 

positive correlation between earlier greenup and surface temperature enhancement of 204 

urban areas, such as in eastern North America37,38 and China21,39,40. However, our analysis 205 

show that the urban–rural greenness phenological differences are mainly correlated to the 206 

urban size in the Northern Hemisphere, which is in line with a recent study conducted 207 

with thousands of cities in the conterminous United States41. The positive relationship 208 

between urban–rural greenness phenological gradients and urban size (an indicator of 209 

urbanization), may result from the shifts of vegetation percentages and regional climate 210 

conditions induced by urban expansion41. On the contrary, the earlier start and peak of 211 

photosynthesis activity inferred from SIF observations have a significant correlation with 212 

elevated temperature in urban areas (Fig. 4a&b). This discrepancy might partly relate to 213 

the different sensitivity of VIs and SIF to temperature increases, either from satellite 214 

data25 or previous site-level study42. More importantly, SIF has a positive correlation with 215 
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GPP both in leaf-level and site-level19,43,44, which is a more direct indicator of vegetation 216 

physiological status than VIs45. Seasonality of SIF from ground-based measurements46, 217 

tower-based observations47 and satellite-based data25 generally has high correlations with 218 

that of GPP. Therefore SIF-based photosynthetic phenology in studies of “urban 219 

laboratories” could provide a better proxy of the actual vegetation photosynthetic changes 220 

in response to the climate change than VIs, which provide proxies of vegetation 221 

greenness. 222 

Using 880 cities, our results confirm that vegetation photosynthesis activities in 223 

spring are triggered by daytime temperature, not by nighttime temperature8 (Fig. 3). 224 

However, the sensitivity of SOS to daytime temperature in this study (1.55±0.60 days 225 

per °C) is lower than previous studies for boreal and temperate forests based on longtime 226 

satellite VIs or ground observations8,9,48-52. This may reflect the declining warming effects 227 

on spring leaf unfolding9 and weakening temperature control on the interannual 228 

variations of vegetation spring carbon uptake53. The reduced sensitivity of spring leaf 229 

unfolding to temperature may partly result from the reduced chilling accumulation in 230 

urban areas9, in which the winter temperatures may become insufficiently low to meet the 231 

requirement of chilling due to the urban heat island effects. Photoperiod may also 232 

influence the warming effects on spring phenology, although its impact remains unclear 233 

and is under debate5,23,54,55. We also found that the photosynthetic POS have an earlier 234 

trend (about 3.3–6.9 days per decade) in the near decades, which is consistent with the 235 

POS trend of δ13C data (about 4.3 ± 2.9 days per decade)56, and are larger than the POS 236 
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trends from NDVI data or ground phenology measurements48,56,57. This phenomenon 237 

highlights the advantages of SIF for tracking vegetation seasonal photosynthetic activities 238 

and carbon uptake. Our analysis also reveals a delayed end of vegetation photosynthesis 239 

in urban areas (Fig. 1). Other than the earlier start of SOS and its response to global 240 

warming, our understanding of the drivers for delayed EOS is still limited. 241 

Temperature12,58, photoperiod59, elevated atmospheric CO2
60 and spring phenology61 were 242 

claimed to be associated to this delayed vegetation senescence. Nevertheless, our analysis 243 

suggests a pronounced delay in the end of vegetation photosynthesis in urban 244 

environments and these delays are highly correlated to the elevated atmospheric CO2 245 

concentration. 246 

Current studies generally focus on the responses of phenophases to warming9,13, 247 

ignoring the importance of additional environmental drivers. From this point of view our 248 

analysis highlights that photosynthetic phenological shifts are not only controlled by 249 

daytime temperature but also by atmospheric CO2. CO2 fertilisation seems to have a large 250 

effect on the advancement of photosynthetic activity, particularly under warm and dry 251 

conditions; and the delayed end of photosynthesis is mainly attributed to the elevated 252 

atmospheric CO2 rather than temperature, which is consistent with field experiments62-64. 253 

The delayed EOS may be because photosynthesis could be sustained for longer period in 254 

the absence of sink limitations under elevated atmospheric CO2 concentrations64. Direct 255 

evaluations of the future projected phenophase shifts are difficult, however, given a 256 

global increase in CO2 concentration of 16.5 ppm·decade−1 and temperature of 257 



14 
 

0.16 °C·decade−1 in the past three decades65 (1982–2011), our estimates of the prolonged 258 

photosynthetic growing seasons (5.5 ± 2.1 days·decade−1) are significantly higher than 259 

current estimates (2.2 to 3.9 days·decade−1) based on long-term satellite vegetation 260 

indices66,67 and the in situ experimental results based on greenness observations from a 261 

recent study5. Our results suggest that the sensitivity of photosynthetic phenology to 262 

climate is strikingly higher than that of traditional greenness phenology, and therefore, 263 

that the current methods based on satellite VIs and in situ greenness observations are 264 

likely to underestimate the extension of carbon sink period under climate change. 265 

Crucially, our results show that, with increasing atmospheric CO2, the growing seasons 266 

are likely to expand in the next two decades, which in turn might contribute to an 267 

increasing trend of the terrestrial carbon sink and generate an important negative 268 

feedback in the climate system. 269 

Yet it should be noted that some limitations still remain in our analysis. Landscape 270 

configuration, species composition68, atmospheric deposition (e.g., nitrogen and 271 

phosphorus), air pollutants (e.g., ozone), management practices and hydrological regimes 272 

may also affect urban–rural phenological differences. These factors may have complex 273 

and to some extent counterbalanced impacts on vegetation photosynthesis in urban 274 

environments. For example, urban areas generally receive higher rates of atmospheric 275 

nitrogen and phosphorus deposition69, which may positively contribute to urban–rural 276 

phenological differences (Supplementary Fig. 8b). On the other hand, urban areas 277 

typically show higher daytime ozone concentrations that can be detrimental to 278 
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photosynthesis70, and these urban–rural ozone differences may negatively contribute to 279 

the urban–rural phenological differences (Supplementary Fig. 8c). Besides, vegetation 280 

species and human management practices may vary between urban and rural areas; and 281 

apart from the temperature and CO2, water stress indices such as precipitation, vapour 282 

pressure deficit (VPD) and soil moisture, may also have influences on the vegetation 283 

phenology71-73. Urban–rural phenological gradients in areas with low precipitation are 284 

generally more pronounced (Supplementary Fig. 8a), because vegetation in urban areas is 285 

likely to be affected by irrigation and thus not limited by water supply. To test whether 286 

our results were affected by the irrigation of urban vegetation, we repeated the analysis 287 

after excluding the cities in the arid climate zones, assuming that the irrigation effect on 288 

urban–rural phenology gradients could be more significant in these areas. Results also 289 

showed that the extended photosynthetic seasons in urban areas were both controlled by 290 

the elevated temperature and CO2 (Supplementary Fig. 9a), but with slightly lower 291 

sensitivities. Therefore, our predictions of the GSL shifts based on all of the 880 cities 292 

may be slightly overestimated with a rate of about 0.8–1.2 days·decade–1 (Supplementary 293 

Fig. 9b). Moreover, to verify the robustness of our analysis, we further calculated the 294 

phenological differences between the 10-km and 30-km rural buffers and related them 295 

with temperature and CO2 gradients. Results from the gradients between 10-km and 296 

30-km rural buffers showed higher correlations with temperature and CO2 gradients than 297 

those from the original urban–rural gradients (Supplementary Fig. 10). These higher 298 

correlations not only confirm the robustness of our analysis, but also suggest that the 299 
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confounding factors (e.g., vegetation species, irrigation and nutrient supply) do not affect 300 

the controlling role of temperature and CO2 in vegetation photosynthetic phenology, 301 

given that the vegetation phenology in 10-km rural buffers are less influenced by these 302 

factors than urban areas. However, these confounding factors can hardly be included in 303 

our analysis due to the lack of high-resolution data at global scale. 304 

The novel insights of this study are derived at large scale from the contrasting 305 

behaviour of plants along the urban–rural gradients. The sharp differences in 306 

environmental conditions along these gradients can represent a unique “natural laboratory” 307 

with different atmospheric CO2 concentration and temperature that may ultimately inform 308 

on plant behaviours under future climates and atmospheric composition. The 309 

macro-environmental conditions of open urban laboratories are widely reachable in the 310 

globe and can therefore lead to more general and robust assessments of vegetation 311 

responses to key environmental drivers across different environmental conditions in a 312 

global change perspective. Ultimately, our findings shed new light on the behaviour of 313 

plants under global change, help to reduce the uncertainties of terrestrial ecosystems 314 

models74, and increase our understanding of climate–vegetation interactions. 315 

  316 
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Methods 317 

Urban–rural gradients 318 

We focused our study on urban clusters and their adjacent rural buffers at mid- to 319 

high-latitudes in the Northern Hemisphere (NH, ≥30°) from 2015 to 2017 320 

(Supplementary Fig. 1), where vegetation is highly seasonal and sensitive to climate61,66. 321 

The extents of the urban areas were mapped using a cluster-based method that estimates 322 

optimal thresholds using nighttime stable-light data from the Defense Meteorological 323 

Satellite Program/Operational Linescan System (DMSP/OLS)75. Sensitivity analyses and 324 

comparisons with other global urban-area products indicated that this product is reliable 325 

and highly accurate76. We used this data product (for 2013) instead of extracting urban 326 

areas from land-cover data sets, because these cluster-based urban extents clearly define 327 

the boundaries between urban and rural areas, regardless of the internal spatial 328 

heterogeneity, which is more similar to the real environment that the vegetation 329 

experiences. Although the static urban clusters (2013) and our study period (2015–2017) 330 

differed by approximately three years, the overall results should not be affected due to 331 

almost stable urban clusters in North America and Europe41 and the slightly increasing 332 

urban areas in Asia77. 333 

We created a series of buffers extending 10, 20, 30 and 40 km outward from each 334 

urban cluster perimeter to select an appropriate threshold for SIF data. Because of the 335 

limited spatial coverage of the OCO-2 SIF data, we used an interval of 10 km to ensure 336 

that each buffer had a sufficient number of observations. An example of the urban cluster 337 
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and its corresponding rural buffers was shown in Supplementary Fig. 11. Pixels that were 338 

water body or crops were excluded from this analysis (Supplementary Fig. 11a). 339 

Croplands were excluded because their photosynthetic dynamics are strongly affected by 340 

human management. We also excluded the pixels in the rural areas which had elevations 341 

greater than ±50 m of the average elevation of urban pixels (for both SIF and EVI data, 342 

Supplementary Fig. 11b)21. Given that the number of OCO-2 SIF observations per year 343 

was low, we opted for the use of SIF data in each urban cluster and its corresponding 344 

rural buffers from 2015 to 2017 as one completed phenological cycle. OCO-2 Footprints 345 

with viewing zenith angles (VZA) less than 20° in glint and target modes are used78. We 346 

selected urban clusters with at least eight SIF observations in both the urban cluster and 347 

each corresponding buffer to ensure a successful calculation of phenology. This resulted 348 

in a total of 880 urban clusters (Supplementary Fig. 1). 349 

Data 350 

We used the OCO-2 SIF Lite product (B8100) at 757 nm for 2015–2017. OCO-2 is a 351 

sun-synchronous polar-orbit satellite launched in July 2014, with an altitude of 705 km 352 

and a descending node at approximately 13:30 local time18. OCO-2 leads the “A-Train” 353 

satellite constellation with a repeating cycle of approximately 16 days. The instrument 354 

collects high-resolution radiance spectra in the O2-A band (757–775 nm), which can be 355 

used to retrieve fluorescence signals from vegetation. Retrievals based on the in-filling of 356 

solar Fraunhofer lines in narrow spectral windows around 757 and 771 nm were 357 

conducted using the singular vector decomposition method. The accuracy of single 358 
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measurements at 757 nm after a series of bias-correction and quality-control steps is 359 

approximately 15-25% of the typical peak values of SIF18. However, because there are 360 

dozens of single measurements in each urban cluster and the corresponding rural buffer, 361 

most of the noise in the retrieved SIF has been reduced following the 1/√n law, which 362 

means the precision errors in the average of n samples will get reduced by a factor of 363 

1/√n79. Moreover, the relative uncertainties of single measurement in the urban clusters 364 

and rural buffers are almost the identical (Supplementary Fig. 12); therefore, the retrieval 365 

errors of SIF should have not large impacts on the urban–rural phenological patterns. We 366 

chose the SIF data at 757 nm because the signals are approximately 1.5-fold greater at 367 

757 than those at 771 nm. 368 

The data for Aqua MODIS EVI collection-6 (MYD13A2; 16-day composite) with a 369 

spatial resolution of 1 km for 2015–2017 were used to extract greenness phenology 370 

information. The EVI data partially eliminate the effects of canopy background and 371 

remain sensitive to small changes in vegetation activity compared to NDVI (normalized 372 

vegetation index) data20. Thus, the EVI data are considered to be more appropriate for use 373 

in areas with sparse vegetation coverage, such as urban clusters21,38. We used the Aqua 374 

EVI data to maintain consistency with the OCO-2 overpass time (both occur at 375 

approximately 13:30 local time). To make a comparison, the MODIS EVI data are 376 

selected according to the same OCO-2 overpasses. To test whether the observed 377 

urban–rural phenological patterns is an artefact of the difference in spatial resolutions 378 

between OCO-2 SIF and MODIS EVI, we firstly resampled both SIF and EVI data to a 379 
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spatial resolution of 5 km and reproduced the urban–rural phenological differences. The 380 

results also demonstrated larger differences of photosynthetic phenology in urban–rural 381 

gradients than the differences of greenness phenology (Supplementary Fig. 5) and thus 382 

demonstrated the robustness of our analysis. 383 

We obtained the urban–rural XCO2 gradients using reprocessed Lite files from the 384 

OCO-2 product (version 8r) for 2015–2017. The data were bias-corrected using 385 

observations from the Total Carbon Column Observing Network (TCCON). OCO-2 also 386 

collects high-resolution radiance spectra at the 1.61 and 2.06 μm bands, except for the 387 

O2-A band, which can be used to retrieve XCO2
80 based on the Atmospheric CO2 388 

Observations from Space algorithm. Comparisons with the measurements at TCCON 389 

sites demonstrated that the precision of the Lite products was approximately 1.5 ppm81. 390 

We used the Aqua MODIS collection-6 land-surface temperature (LST) data set 391 

(MYD11A2; 8-day composite), with a spatial resolution of 1 km for 2015–2017 to 392 

calculate the urban–rural LST gradient. We chose LST data from the Aqua satellite 393 

because its data were acquired at 13:30 and 01:30 local time each day, approximately 394 

representing the diurnal and nocturnal temperatures, respectively (i.e., maximum and 395 

minimum temperatures). We also used the air surface temperature (AST) data from 396 

TerraClimate dataset82, with a spatial resolution of 4 km to calculate the urban–rural AST 397 

gradient. 398 

We also extracted the mean annual air temperature (2 m above the surface) for each 399 

urban cluster from the analytical data set based on both the Global Historical Climatology 400 
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Network (version 2) and the Climate Anomaly Monitoring System (GHCN-CAMS), with 401 

a spatial resolution of 0.5°. The annual precipitation of each urban area was calculated 402 

based on the monthly Integrated Multi-satellite Retrievals (IMERG) data set from global 403 

precipitation measurements (GPMs), with a spatial resolution of 0.1°. Digital elevation 404 

models (DEMs) at a spatial resolution of 30 arc seconds from the GTOPO30 data set and 405 

the land-cover data set for 2015 from the European Space Agency (ESA) Climate Change 406 

Initiative were also used in this study. We also used the global gridded nitrogen dioxide 407 

(NO2) and ozone (O3) observations from Ozone Monitoring Instrument (OMI). We 408 

calculated the mean LST changes for 2015–2035 at mid- to high-latitudes in the NH 409 

(≥30°) from four Earth system models (CSIRO-Mk3.6.083, GFDL-CM384, GISS-E2-H85 410 

and NorESM1-M86) within CMIP5. Projected CO2 concentration changes from 2015 411 

were obtained from the RCP Database. Detailed information on the data sets is presented 412 

in Supplementary Table 1. 413 

Extraction of phenological data 414 

We used a double-sigmoidal function to fit the annual cycles of the SIF and EVI 415 

observations87. Choosing an appropriate method to fit noisy SIF data is important because 416 

of the wide variation in phenology when estimated with different methods. We chose the 417 

double-sigmoidal method for three reasons. First, the speeds of spring leaf out and 418 

autumn senescence are not always the same: leaf out is generally faster than senescence88. 419 

The double-sigmoidal method can identify the actual biophysical dynamics of vegetation 420 

by setting two amplitudes for spring and autumn87. Second, functional fitting methods 421 



22 
 

have advantages for estimating phenology with noisy data89. The OCO-2 data are 422 

acquired at different time intervals and are relatively noisy, and the number of 423 

observations is small. Thus some fitting approaches, such as polynomial fitting, logistic 424 

fitting and harmonic analysis, cannot be used or cannot converge to the global optimum. 425 

Third, the double-sigmoidal method has been successfully applied to SIF data in a 426 

previous study33. The fitting equation is56,87: 427 
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428 

where y(t) represents the observed SIF or EVI for a given day of year (DOY; t); ɑ1 429 

represents the value in the winter dormant period; ɑ2 represents the value at the spring 430 

and early summer plateau; ɑ3 represents the value at the late summer and autumn plateau; 431 

b1 and b2 are the DOY mid-points of transitions for spring leaf out and autumn 432 

senescence, respectively; and d1 and d2 are the corresponding slope coefficients of these 433 

transitions. 434 

The fitting equation was adapted to our SIF and EVI time series, and the coefficients 435 

were optimized using genetic algorithms. A simple weighting scheme was applied to the 436 

noisy data. We assigned a weight of two if a central point was within ±50% of the median 437 

for a moving window of three points33. A maximum of 20 fitting attempts with different 438 

initial values were made until the fitting procedure converged to the global optimum. 439 

Each attempt had a maximum of 2000 iterations. The R2 values of SIF fitting were lower 440 

than those of EVI, but most were larger than 0.8 (Supplementary Fig. 13). The R2 values 441 

were generally high for the EVI data. The phenological indicators were then determined 442 
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using56: 443 
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444 

where SOS, POS, EOS and GSL represent the start, peak, end and length of the growing 445 

season, respectively. An example of the fitting method and the estimation of phenological 446 

indicators is shown in Supplementary Fig. S14a. We excluded some extreme values using 447 

a loose threshold to reduce uncertainties and slightly adjusted the thresholds based on 448 

previous studies 21,38,41 due to the differences between the data and methods. SOSs earlier 449 

than the 30th or later than the 180th DOY, and EOSs earlier than the 240th or later than the 450 

350th DOY, were thus excluded from our analysis. To test whether our results were 451 

affected by the weighting scheme, we also calculated the phenological indicators after 452 

changing the moving-window and without using the weighting scheme. Results showed 453 

no significant differences compared to the original method (Supplementary Fig. S14 b-c). 454 

The urban–rural phenological gradients were also evident using these different weighting 455 

schemes (Supplementary Fig. S14 d-e). 456 

Conversion of urban–rural XCO2 gradients to surface CO2 gradients 457 

The XCO2 data are column-averaged CO2 mixed ratios and differ in magnitude from 458 

CO2 concentrations near the surface. Therefore, in order to investigate the effect of CO2 459 
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fertilization on vegetation phenology, we need to convert the urban–rural XCO2 gradients 460 

to surface CO2 gradients. Although atmospheric transport models would be the ideal 461 

approach to fulfill this purpose, there are still many precluding issues. Firstly, high-spatial 462 

resolution prior fluxes of CO2, including the anthropogenic emissions and terrestrial 463 

carbon uptake, as well as the high-resolution meteorological data (wind speed and wind 464 

direction), still have large uncertainties, especially in urban areas with high-variable 465 

emission sources (such as traffic pollution) and high degrees of surface heterogeneity90,91. 466 

Secondly, as one of the main factors that affect the variations of surface CO2 467 

concentration in finer scales, the heterogeneity of vertical profile in urban areas induced 468 

by buildings can hardly be accurately estimated and illustrated92. Thirdly, continuous 469 

high-spatiotemporal ground and satellite CO2 measurements are still insufficient to 470 

provide accurate constraints and evaluations for atmospheric transport models to simulate 471 

the high-spatial resolution surface CO2 concentrations at large scales93. Therefore, global 472 

near-surface CO2 concentrations from atmospheric transport models or flux-inversion 473 

systems generally have relatively low spatial resolutions94, which cannot meet our needs 474 

for deriving urban–rural gradients at large scales. Statistical methods are therefore more 475 

appropriate for converting XCO2 gradients to surface CO2 gradients. 476 

We used two approaches to determine the conversion factors. First, we used a 477 

near-surface CO2 data set with a comprehensive spatial coverage. The data were obtained 478 

in Shanghai during April and May of 2014 and covered the entire urban area, with a total 479 

of 172 sample points95 (Supplementary Fig. 15). The slopes of the near-surface CO2 480 
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measurements and OCO-2 XCO2 observations in the same city were calculated 481 

(Supplementary Fig. 16a-b). The conversion factor could then be obtained (K = 21.2). 482 

Second, we collected a number of urban–rural surface CO2 gradients from previous 483 

studies (Supplementary Table 2) and then calculated the XCO2 gradients of these urban 484 

clusters and compared them via linear regression (Supplementary Fig. 16c), which 485 

indicated that the conversion factor was approximately 28.5. These data from previous 486 

literatures have an average of seven years gap with the satellite observations, and thus the 487 

observations of urban–rural surface CO2 gradients may be lower than those of present, 488 

which possibly leads to a higher estimation of the K factor. Therefore, we used a K factor 489 

of 25, which is the average value of these two approaches. Then we converted the 490 

urban–rural XCO2 gradients to surface CO2 gradients through this conversion factor. This 491 

conversion factor was derived via statistical methods that may have some uncertainties. 492 

For example, the K factor derived from the first approach was 21.2 ± 8.3; while that from 493 

the second approach was 28.5 ± 9.5 (mean ± standard error). To test the robustness of our 494 

results according to different K values, we repeated our analysis using a wide range of K 495 

factors (from 19 to 30), which was the intersection of ranges of the K factors estimated 496 

from these two approaches. Results showed that the partial correlations between 497 

urban–rural phenological gradients and CO2 gradients were not affected by K values, 498 

given that this conversion factor was linear (Supplement Fig. 17a). Although the 499 

predicted GSL had a declining trend when the K was increasing (Supplement Fig. 17b), 500 

our predicted GSL shifts (5.9–11.4 days·decade–1) based on a K factor of 25 were 501 
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comparable to the average value of these shifts. These results suggested that the joint 502 

control of elevated CO2 and temperature on urban–rural photosynthetic phenological 503 

gradients was robust across different K values. 504 

Analysis 505 

The phenological differences, LST gradients and CO2 gradients between urban and 506 

rural areas for each city were first calculated as: 507 

 r= PΔ −urban uralP P  (3) 508 

where ∆P represents the urban–rural gradients for the phenological indicators (SOS, POS, 509 

EOS and GSL), LST and CO2 concentration; and Purban and Prural represent these values in 510 

urban clusters and their corresponding rural buffers, respectively. The LST differences 511 

included the mean spring LST (January to May, corresponding to SOS), mean summer 512 

LST (June to August, corresponding to POS), mean autumn and winter LST (September 513 

to December, corresponding to EOS) and mean annual LST (corresponding to GSL)38. 514 

Due to the limited OCO-2 observations, we used the whole year XCO2 observations and 515 

the conversion factor (K) to derive the urban–rural CO2 gradients. The differences in 516 

photosynthetic (SIF) and greenness (EVI) phenology along the urban–rural gradients for 517 

different rural buffers (i.e., 10, 20, 30 and 40 km) were calculated (Supplementary Fig. 4). 518 

Previous studies have shown that the mean footprint of urban areas on phenology was 519 

about 20–25 km, which should be able to reflect the background vegetation 520 

phenology21,38,96. In this analysis, we found that the largest urban–rural phenological 521 

differences occurred between urban clusters and 30-km rural buffers. Therefore, we 522 
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therefore used the 30-km rural buffers as representatives in the subsequent analyses. 523 

The spatial distribution of photosynthetic phenology differences based on latitude, 524 

mean annual air temperature and precipitation were then analysed. We also analysed the 525 

phenological differences in different climate zones based on the Köppen–Geiger climate 526 

zones classification (http://people.eng.unimelb.edu.au/mpeel/koppen.html). To determine 527 

the main controlling drivers of urban–rural phenological gradients, we determined the 528 

partial correlations of ∆P with latitude, longitude, urban size, mean annual air 529 

temperature, annual precipitation, CO2 gradient (∆CO2) and LST gradient (∆LST). The 530 

partial correlation (two-tailed) of each factor was determined while controlling the other 531 

factors. In order to reduce the stochastic error, the LST and CO2 gradients are binned 532 

every 0.15°C and 1.5 ppm, respectively. Then we determined the main factors controlling 533 

each phenological indicator by analysing the associations between urban–rural 534 

phenological gradients with temperature and CO2 enhancements. Furthermore, we 535 

derived their sensitivities with a forward stepwise regression model (Supplementary 536 

Table 3). This method automatically repeats the procedures of forward selection and 537 

backward elimination. In each step, an explanatory variable is considered to either add or 538 

subtract from the set of variables based on a sequence of F tests. Finally, we estimated the 539 

near-term projected shifts in photosynthetic phenology by multiplying the sensitivities 540 

with LST and CO2 concentration predictions during 2015–2035 based on four RCP 541 

scenarios (RCP 2.6, 4.5, 6.0 and 8.5). 542 

Finally, we analysed the uncertainty of projected phenophase shifts as a consequence 543 
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of using LST other than air surface temperature (AST) to characterise the urban–rural 544 

temperature gradients. Vegetation phenology theoretically should respond to AST more 545 

than to LST. As shown in previous studies on the impact of land cover on temperature97, 546 

the spatial gradients of AST are likely smaller than that of LST (Supplementary Fig. 18a), 547 

which may translate in a higher sensitivity of GSL to AST than to LST (Supplementary 548 

Fig. 18b). Therefore, projected shifts of GSL based on urban–rural AST gradients might 549 

be larger than that based on LST gradients (Supplementary Fig. 18c; approximately 550 

0.5–0.8 days·decade–1). However, current high-resolution AST datasets are generally 551 

based on observations from weather stations, which cannot fully capture the small scale 552 

urban–rural heterogeneity because of the low density of stations. Due to the limitation in 553 

the current AST datasets, analysis based on this latter variable may actually have larger 554 

uncertainties than those based on LST and will need more investigations in the future. 555 

Code availability 556 

The codes used to estimate the phenological indicators in this study are available at 557 

https://drive.google.com/drive/folders/1yzcoRAjjubiLDqlg6zbLUCfE_m1mHAsL?usp=s558 

haring. 559 

Data availability 560 

OCO-2 SIF and XCO2 data are available at https://disc.gsfc.nasa.gov/. MODIS EVI 561 

and LST data are available at https://ladsweb.modaps.eosdis.nasa.gov/. Precipitation data 562 

can be obtained from https://pmm.nasa.gov. GHCN-CAMS air temperature data are 563 

available at https://www.esrl.noaa.gov. CCI Land cover data are available at 564 
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http://maps.elie.ucl.ac.be/CCI/viewer/download.php. GTOPO30 DEM data are available 565 

at https://earthexplorer.usgs.gov/. NO2 and O3 data are available at 566 

http://www.temis.nl/index.php. Projected CO2 concentrations can be obtained from the 567 

RCP Database (http://www.iiasa.ac.at/web-apps/tnt/RcpDb). Model results and the urban 568 

clusters are available at 569 

https://drive.google.com/drive/folders/1yzcoRAjjubiLDqlg6zbLUCfE_m1mHAsL?usp=s570 

haring. 571 
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Fig. 1. Mean urban–rural phenological differences based on SIF and EVI. SOS, start of 862 

growing season; POS, peak of growing season; EOS, end of growing season; GSL, length 863 

of growing season. The operator ∆ represents the differences in phenological indicators 864 

between urban areas and rural buffers (e.g., ∆SOS = SOSurban − SOSrural). The error bars 865 

represent standard errors of the mean (n = 880). 866 

Fig. 2. Spatial distributions of ∆SOS (a), ∆POS (b), ∆EOS (c) and ∆GSL (d) for SIF (n = 867 

880). The first column represents the urban effects on phenological metrics for various 868 

urban clusters. The second column represents phenological differences based on 869 

latitudinal profiles (the shaded areas represent the standard errors of the mean); whereas 870 

the third column shows the average metrics for various climatic backgrounds (mean 871 

annual air temperature and annual precipitation). 872 

Fig. 3. Partial correlations of SIF (a) and EVI (b) urban–rural phenological differences 873 

(∆SOS, ∆POS, ∆EOS and ∆GSL) with explanatory variables. Lat: latitude; Lon: longitude; 874 

Size: log 10 of the urban size; Air T: mean annual air temperature; Pre: mean annual 875 

precipitation; ∆CO2: urban–rural CO2 difference; ∆Tday: daytime urban–rural land surface 876 

temperature difference; ∆Tnight: night-time urban–rural land surface temperature difference; 877 

SOS: start of growing season; POS: peak of growing season; EOS: end of growing season; 878 

GSL: length of growing season. *: p < 0.05; **: p < 0.01 (n = 880). 879 

Fig. 4. Associations between elevated temperature (a–d), CO2 (e–h) and urban–rural 880 

photosynthetic phenological gradients. ∆CO2, urban–rural CO2 gradient; ∆LSTday, 881 

urban–rural gradient of daytime LST. The LST and CO2 gradients are binned every 882 
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0.15°C and 1.5 ppm, respectively; each dot represents a bin. The solid lines indicate 883 

significant trends and the shaded areas represent the 95% confidence intervals, and p 884 

values represent the significance (Student’s t-tests, n = 880). 885 

Fig. 5. Projected shifts in photosynthetic phenology during the next two decades. 886 

Sensitivities of photosynthetic phenology to temperature (a) and CO2 (b). The error bars 887 

represent standard errors of the mean. c–f, Shifts of photosynthetic SOS, POS, EOS and 888 

GSL from 2015 to 2035, as calculated from the sensitivities shown in a–b and LST and 889 

CO2 concentration predictions during 2015–2035 from four “Representative 890 

Concentration Pathway” (RCP) scenarios. The shaded areas represent the standard errors. 891 

g, Projected shifts of photosynthetic phenology during the next two decades in per decade 892 

(days·decade–1). The negative values represent the advances of SOS and POS, and 893 

positive values represent a delayed EOS and a prolonged GSL. The error bars represent 894 

standard errors of the mean. 895 












