„Bayesscher Wahrscheinlichkeitsbegriff“ – Versionsunterschied

aus Wikipedia, der freien Enzyklopädie
Zur Navigation springen Zur Suche springen
[gesichtete Version][gesichtete Version]
Inhalt gelöscht Inhalt hinzugefügt
Als Lit sehr geeignet, als Einzelnachweis nur mit Seitenangabe
K Literatur: Link korrigiert
 
(38 dazwischenliegende Versionen von 36 Benutzern werden nicht angezeigt)
Zeile 1: Zeile 1:
Der nach dem englischen [[Mathematiker]] [[Thomas Bayes]] benannte '''bayessche Wahrscheinlichkeitsbegriff''' (engl. ''Bayesianism'') interpretiert [[Wahrscheinlichkeit]] als Grad persönlicher Überzeugung (engl. "''degree of belief''"). Er unterscheidet sich damit von den [[Objektivistischer Wahrscheinlichkeitsbegriff|objektivistischen Wahrscheinlichkeitsauffassungen]] wie dem [[frequentistischer Wahrscheinlichkeitsbegriff|frequentistischen Wahrscheinlichkeitsbegriff]], der Wahrscheinlichkeit als relative Häufigkeit interpretiert.
Der nach dem englischen [[Mathematiker]] [[Thomas Bayes]] ({{Audio|De-Thomas Bayes.ogg|anhören}}) benannte '''bayessche Wahrscheinlichkeitsbegriff''' (engl. ''Bayesianism'') interpretiert [[Wahrscheinlichkeit]] als Grad persönlicher Überzeugung ({{enS|''degree of belief''}}). Er unterscheidet sich damit von den [[Objektivistischer Wahrscheinlichkeitsbegriff|objektivistischen Wahrscheinlichkeitsauffassungen]] wie dem [[frequentistischer Wahrscheinlichkeitsbegriff|frequentistischen Wahrscheinlichkeitsbegriff]], der Wahrscheinlichkeit als relative Häufigkeit interpretiert.


Der bayessche Wahrscheinlichkeitsbegriff darf nicht mit dem gleichfalls auf Thomas Bayes zurückgehenden [[Bayestheorem]] verwechselt werden, welches in der [[Statistik]] reiche Anwendung findet.
Der bayessche Wahrscheinlichkeitsbegriff darf nicht mit dem gleichfalls auf Thomas Bayes zurückgehenden [[Satz von Bayes]] verwechselt werden, welcher in der [[Statistik]] reiche Anwendung findet.


== Entwicklung des bayesschen Wahrscheinlichkeitsbegriffs ==
== Entwicklung des bayesschen Wahrscheinlichkeitsbegriffs ==

Der bayessche Wahrscheinlichkeitsbegriff wird häufig verwendet, um die Plausibilität einer Aussage im Lichte neuer Erkenntnisse neu zu bemessen. [[Pierre-Simon Laplace]] (1812) entdeckte diesen Satz später unabhängig von Bayes und verwendete ihn, um Probleme in der Himmelsmechanik, in der medizinischen Statistik und, einigen Berichten zufolge, sogar in der Rechtsprechung zu lösen.
Der bayessche Wahrscheinlichkeitsbegriff wird häufig verwendet, um die Plausibilität einer Aussage im Lichte neuer Erkenntnisse neu zu bemessen. [[Pierre-Simon Laplace]] (1812) entdeckte diesen Satz später unabhängig von Bayes und verwendete ihn, um Probleme in der Himmelsmechanik, in der medizinischen Statistik und, einigen Berichten zufolge, sogar in der Rechtsprechung zu lösen.


Zum Beispiel schätzte Laplace die Masse des [[Saturn (Planet)|Saturns]] auf Basis vorhandener [[Astronomie|astronomischer]] Beobachtungen seiner Umlaufbahn. Er erläuterte die Ergebnisse zusammen mit einem Hinweis seiner Unsicherheit: „''Ich wette 11.000 zu 1, dass der Fehler in diesem Ergebnis nicht größer ist als 1/100 seines Wertes.''“ (Laplace hätte die Wette gewonnen, denn 150 Jahre später musste sein Ergebnis auf Grundlage neuer Daten um lediglich 0,63 % korrigiert werden.)
Zum Beispiel schätzte Laplace die Masse des [[Saturn (Planet)|Saturns]] auf Basis vorhandener [[Astronomie|astronomischer]] Beobachtungen seiner Umlaufbahn. Er erläuterte die Ergebnisse zusammen mit einem Hinweis seiner Unsicherheit: „Ich wette 11.000 zu 1, dass der Fehler in diesem Ergebnis nicht größer ist als 1/100 seines Wertes.“ (Laplace hätte die Wette gewonnen, denn 150 Jahre später musste sein Ergebnis auf Grundlage neuer Daten um lediglich 0,37 % korrigiert werden.)


Die bayessche Interpretation von Wahrscheinlichkeit wurde vor allem in England früh ausgearbeitet. Führende Köpfe waren etwa [[Harold Jeffreys]] und [[Frank Plumpton Ramsey]]. Letzterer entwickelte einen Ansatz, den er aufgrund seines frühen Todes nicht weiter verfolgen konnte, der aber unabhängig davon von [[Bruno de Finetti]] in Italien aufgenommen wurde. Grundgedanke ist, „''vernünftige Einschätzungen''“ (engl. ''rational belief'') als eine Verallgemeinerung von Wettstrategien aufzufassen: Gegeben sei eine Menge von Information/Messungen/Datenpunkten, und gesucht wird eine Antwort auf die Frage, wie hoch man auf die Korrektheit seiner Einschätzung wetten oder welche ''[[Odds]]'' man geben würde. (Der Hintergrund ist, dass man gerade dann viel Geld wettet, wenn man sich seiner Einschätzung sicher ist. Diese Idee hatte großen Einfluss auf die [[Spieltheorie]]). Eine Reihe von Streitschriften gegen (frequentistische) statistische Methoden ging von diesem Grundgedanken aus, über den seit den 1950ern zwischen Bayesianern und Frequentisten debattiert wird.
Die bayessche Interpretation von Wahrscheinlichkeit wurde zunächst Anfang des 20. Jahrhunderts vor allem in England ausgearbeitet. Führende Köpfe waren etwa [[Harold Jeffreys]] (1891–1989) und [[Frank Plumpton Ramsey]] (1903–1930). Letzterer entwickelte einen Ansatz, den er aufgrund seines frühen Todes nicht weiter verfolgen konnte, der aber unabhängig davon von [[Bruno de Finetti]] (1906–1985) in Italien aufgenommen wurde. Grundgedanke ist, „vernünftige Einschätzungen“ (engl. ''rational belief'') als eine Verallgemeinerung von Wettstrategien aufzufassen: Gegeben sei eine Menge von Information/Messungen/Datenpunkten, und gesucht wird eine Antwort auf die Frage, wie hoch man auf die Korrektheit seiner Einschätzung wetten oder welche ''[[Odds]]'' man geben würde. (Der Hintergrund ist, dass man gerade dann viel Geld wettet, wenn man sich seiner Einschätzung sicher ist. Diese Idee hatte großen Einfluss auf die [[Spieltheorie]]). Eine Reihe von Streitschriften gegen (frequentistische) statistische Methoden ging von diesem Grundgedanken aus, über den seit den 1950ern zwischen Bayesianern und [[Frequentist]]en debattiert wird.


== Formalisierung des Wahrscheinlichkeitsbegriffes ==
== Formalisierung des Wahrscheinlichkeitsbegriffes ==
Ist man bereit, Wahrscheinlichkeit als „Sicherheit in der persönlichen Einschätzung eines Sachverhaltes“ zu interpretieren (s. o.), so stellt sich die Frage, welche [[Logik|logischen]] Eigenschaften diese Wahrscheinlichkeit haben muss, um nicht widersprüchlich zu sein. Wesentliche Beiträge wurden hierzu von [[Richard Threlkeld Cox]] (1946) geleistet. Er fordert die Gültigkeit der folgenden Prinzipien:


# [[Transitive Relation|Transitivität]]: Wenn Wahrscheinlichkeit A größer ist als Wahrscheinlichkeit B, und Wahrscheinlichkeit B größer als Wahrscheinlichkeit C, dann muss Wahrscheinlichkeit A auch größer als Wahrscheinlichkeit C sein. Ohne diese Eigenschaft wäre es nicht möglich, Wahrscheinlichkeiten in reellen Zahlen auszudrücken, denn reelle Zahlen sind eben transitiv angeordnet. Außerdem würden [[Paradoxon|Paradoxien]] wie die folgende auftreten: Ein Mann, der die Transitivität der Wahrscheinlichkeit nicht versteht, hat in einem Rennen auf Pferd A gesetzt. Er glaubt jetzt aber, Pferd B sei besser, und tauscht seine Karte um. Er muss etwas dazuzahlen, aber das macht ihm nichts aus, weil er jetzt eine bessere Karte hat. Dann glaubt er, Pferd C sei besser als Pferd B. Wieder tauscht er um und muss etwas dazuzahlen. Jetzt glaubt er aber, Pferd A sei besser als Pferd C. Wieder tauscht er um und muss etwas dazuzahlen. Immer glaubt er, er bekäme eine bessere Karte, aber jetzt ist alles wieder wie vorher, nur ist er ärmer geworden.
Ist man bereit, Wahrscheinlichkeit als „Sicherheit in der persönlichen Einschätzung eines Sachverhaltes“ zu interpretieren (s.o.), so stellt sich die Frage, welche [[Logik|logischen]] Eigenschaften diese Wahrscheinlichkeit haben muss, um nicht widersprüchlich zu sein. Wesentliche Beiträge wurden hierzu von [[Richard Threlkeld Cox]] (1946) geleistet. Er fordert die Gültigkeit der folgenden Prinzipien:

# [[Transitivität (Mathematik)|Transitivität]]: Wenn Wahrscheinlichkeit A größer ist als Wahrscheinlichkeit B, und Wahrscheinlichkeit B größer als Wahrscheinlichkeit C, dann muss Wahrscheinlichkeit A auch größer als Wahrscheinlichkeit C sein. Ohne diese Eigenschaft wäre es nicht möglich, Wahrscheinlichkeiten in reellen Zahlen auszudrücken, denn reelle Zahlen sind eben transitiv angeordnet. Außerdem würden [[Paradoxon|Paradoxien]] wie die folgende auftreten: Ein Mann, der die Transitivität der Wahrscheinlichkeit nicht versteht, hat in einem Rennen auf Pferd A gesetzt. Er glaubt jetzt aber, Pferd B sei besser, und tauscht seine Karte um. Er muss etwas dazuzahlen, aber das macht ihm nichts aus, weil er jetzt eine bessere Karte hat. Dann glaubt er, Pferd C sei besser als Pferd B. Wieder tauscht er um und muss etwas dazuzahlen. Jetzt glaubt er aber, Pferd A sei besser als Pferd C. Wieder tauscht er um und muss etwas dazuzahlen. Immer glaubt er, er bekäme eine bessere Karte, aber jetzt ist alles wieder wie vorher, nur ist er ärmer geworden.
# [[Negation]]: Wenn wir über die Wahrheit von etwas eine Erwartung haben, dann haben wir implizit auch eine Erwartung über dessen Unwahrheit.
# [[Negation]]: Wenn wir über die Wahrheit von etwas eine Erwartung haben, dann haben wir implizit auch eine Erwartung über dessen Unwahrheit.
# Konditionierung: Wenn wir eine Erwartung haben über die Wahrheit von H, und auch eine Erwartung über die Wahrheit von D im Falle, dass H wahr wäre, dann haben wir implizit auch eine Erwartung über die gleichzeitige Wahrheit von H und D.
# Konditionierung: Wenn wir eine Erwartung haben über die Wahrheit von H, und auch eine Erwartung über die Wahrheit von D im Falle, dass H wahr wäre, dann haben wir implizit auch eine Erwartung über die gleichzeitige Wahrheit von H und D.
Zeile 21: Zeile 19:


=== Wahrscheinlichkeitswerte ===
=== Wahrscheinlichkeitswerte ===

Es stellt sich heraus, dass die folgenden Regeln für Wahrscheinlichkeitswerte W(H) gelten müssen:
Es stellt sich heraus, dass die folgenden Regeln für Wahrscheinlichkeitswerte W(H) gelten müssen:
# <math>0 \le W(H) \le c </math> &nbsp; &nbsp; &nbsp; &nbsp; wir wählen <math>c=1</math>.

# <math>0 \le W(H) \le c </math> Wir wählen <math>c=1</math>.
# <math>\!\,W(H) + W(!H) = c = 1 </math> &nbsp; &nbsp; &nbsp; 'Summenregel'
# <math>\!\,W(H) + W(!H) = c = 1 </math> 'Summenregel'
# <math>\!\,W(H,D) = W(D| H) W(H) </math> &nbsp; &nbsp; 'Produktregel'
# <math>\!\,W(H,D) = W(D| H) W(H) </math> 'Produktregel'


Hier bedeutet:
Hier bedeutet:
* ''H oder D'': Die [[Hypothese]] H ist wahr (das Ereignis H tritt ein) oder die Hypothese D ist wahr (das Ereignis D tritt ein)

* ''H oder D'': Die [[Hypothese]] H ist wahr (oder das Ereignis H tritt ein) oder das Ereignis D ist eingetreten.
* ''W(H)'': Die Wahrscheinlichkeit, dass Hypothese H wahr ist (das Ereignis H eintritt)
* ''W(H)'': Die Wahrscheinlichkeit, dass Hypothese H wahr ist oder Ereignis H eintreten wird.
* ''!H'': Nicht H: die Hypothese H ist nicht wahr (das Ereignis H tritt nicht ein)
* ''!H'': Nicht H: die Hypothese H ist nicht wahr oder das Ereignis H tritt nicht ein.
* ''H,D'': H und D sind beide wahr (treten beide ein) oder eins ist wahr und das andere tritt ein.
* ''H,D'': H und D sind beide wahr oder treten beide ein oder eins ist wahr und der andere tritt ein.
* ''W(D | H)'': Die Wahrscheinlichkeit, dass Hypothese D wahr ist (oder Ereignis D eintreten wird) im Fall, dass H wahr wäre (oder eintreten würde)
* ''W(D | H)'': Die Wahrscheinlichkeit, dass Hypothese D wahr ist oder Ereignis D eintreten wird im Fall, dass H wahr wäre oder eintreten würde.

Man kann leicht einsehen, dass die Wahrscheinlichkeitswerte bei 0 anfangen müssen; sonst würde so etwas wie eine 'doppelt so große Wahrscheinlichkeit' keine Bedeutung haben.
::Beispiel: Bei einem Wurf mit einem Würfel mit 6 gleichen Flächen ist die Wahrscheinlichkeit, eine 1 oder eine 3 zu werfen, doppelt so groß wie die Wahrscheinlichkeit, eine 4 zu werfen, weil es sich dabei eben um zwei Flächen handelt im Vergleich zu nur einer solchen Fläche.


Aus den obigen Regeln der Wahrscheinlichkeitswerte lassen sich andere ableiten.
Aus den obigen Regeln der Wahrscheinlichkeitswerte lassen sich andere ableiten.


== Praktische Bedeutung in der Statistik ==
== Praktische Bedeutung in der Statistik ==
Um solche Probleme trotzdem im Rahmen der frequentistischen Interpretation angehen zu können, wird die Unsicherheit dort mittels einer eigens dazu erfundenen variablen Zufallsgröße beschrieben. Die Bayessche Wahrscheinlichkeitstheorie benötigt solch eine Hilfsgröße nicht. Stattdessen führt sie das Konzept der [[A-priori-Wahrscheinlichkeit]] ein, die ''Vorwissen'' und Grundannahmen des Beobachters in einer [[Wahrscheinlichkeitsverteilung]] zusammenfasst. Vertreter des Bayes-Ansatzes sehen es als großen Vorteil, Vorwissen und A-Priori-Annahmen explizit im Modell auszudrücken.
Um solche Probleme trotzdem im Rahmen der frequentistischen Interpretation angehen zu können, wird die Unsicherheit dort mittels einer eigens dazu erfundenen variablen Zufallsgröße beschrieben. Die Bayessche Wahrscheinlichkeitstheorie benötigt solch eine Hilfsgröße nicht. Stattdessen führt sie das Konzept der [[A-priori-Wahrscheinlichkeit]] ein, die ''Vorwissen'' und Grundannahmen des Beobachters in einer [[Wahrscheinlichkeitsverteilung]] zusammenfasst. Vertreter des Bayes-Ansatzes sehen es als großen Vorteil, Vorwissen und A-priori-Annahmen explizit im Modell auszudrücken.


== Siehe auch ==
==Wissenschaftliche Methode==
* [[Bayesianische Erkenntnistheorie]]
In seinem Buch ''Probability Theory: The Logic of Science'' argumentiert [[Edwin Thompson Jaynes|Jaynes]], dass die [[Wissenschaftstheorie|wissenschaftliche Methode]] eine Form der Bayesschen Wahrscheinlichkeitsinferenz ist.
Gleichwohl gibt es immer wieder Einwände gegen eine solche Sichtweise, da Urteile gemäß der Bayesschen Wahrscheinlichkeit dazu führen können, dass vorherrschende Sichtweisen bestätigt und kontroverse Ergebnisse unterdrückt werden.<ref>{{Literatur
|Autor=Jonathan J. Koehler
|Titel=The influence of prior beliefs on scientific judgments of evidence quality
|Sammelwerk=Organizational Behavior and Human Decision Processes
|Band=56
|Jahr=1993
|Seiten=17–67}}</ref>


== Literatur ==
== Literatur ==

* David MacKay: ''[http://www.inference.phy.cam.ac.uk/mackay/itila/book.html Information Theory, Inference, and Learning Algorithms]'', Cambridge, 2003, ISBN 0-521-64298-1, insb. Kapitel 37: ''Bayesian Inference and Sampling Theory''.
* Jonathan Weisberg: [http://www.utm.utoronto.ca/~weisber3/docs/Varieties.pdf Varieties of Bayesianism], S. 477ff in: Dov Gabbay, Stephan Hartmann, John Woods (Hgg): ''Handbook of the History of Logic'', Bd. 10, ''Inductive Logic'', North Holland, 2011, ISBN 978-0-444-52936-7.
* David Howie: ''Interpreting Probability, Controversies and Developments in the Early Twentieth Century'', Cambridge University Press, 2002, ISBN 0-521-81251-8
* David Howie: ''Interpreting Probability, Controversies and Developments in the Early Twentieth Century'', Cambridge University Press, 2002, ISBN 0-521-81251-8
* Edwin T. Jaynes, G. Larry Bretthorst: ''Probability Theory: The Logic of Science: Principles and Elementary Applications'', Cambridge Univ. Press, 2003, ISBN 0-521-59271-2, [http://www2.geog.ucl.ac.uk/~mdisney/teaching/GEOGG121/bayes/jaynes/ online].
* Edwin T. Jaynes, G. Larry Bretthorst: ''Probability Theory: The Logic of Science: Principles and Elementary Applications'', Cambridge Univ. Press, 2003, ISBN 0-521-59271-2, [http://www2.geog.ucl.ac.uk/~mdisney/teaching/GEOGG121/bayes/jaynes/ online].
* David MacKay: ''[http://www.inference.phy.cam.ac.uk/mackay/itila/book.html Information Theory, Inference, and Learning Algorithms]'', Cambridge, 2003, ISBN 0-521-64298-1, insb. Kapitel 37: ''Bayesian Inference and Sampling Theory''.
* D.S. Sivia: ''Data Analysis: A Bayesian Tutorial'', Oxford Science Publications, 2006, ISBN 0-19-856831-2, besonders für Probleme aus der Physik zu empfehlen.
* D.S. Sivia: ''Data Analysis: A Bayesian Tutorial'', Oxford Science Publications, 2006, ISBN 0-19-856831-2, besonders für Probleme aus der Physik zu empfehlen.
* Jonathan Weisberg: [http://jonathanweisberg.org/pdf/VarietiesvF.pdf Varieties of Bayesianism] (PDF; 562&nbsp;kB), S. 477ff in: Dov Gabbay, Stephan Hartmann, John Woods (Hgg): ''Handbook of the History of Logic'', Bd. 10, ''Inductive Logic'', North Holland, 2011, ISBN 978-0-444-52936-7.
* Dieter Wickmann: ''Bayes-Statistik. Einsicht gewinnen und entscheiden bei Unsicherheit'' [= Mathematische Texte Band 4]. Bibliographisches Institut Wissenschaftsverlag, Mannheim/Wien/Zürich 1991, ISBN 978-3-411-14671-0.


== Einzelnachweise ==
<!-- == Einzelnachweise ==
<references/>
<references />
-->

[[Kategorie:Wahrscheinlichkeitsrechnung]]
[[Kategorie:Wahrscheinlichkeitsrechnung]]
[[Kategorie:Bayessche Statistik]]
[[Kategorie:Bayessche Statistik]]

[[en:Bayesian probability]]
[[et:Bayesiaanlus]]
[[ja:ベイズ確率]]
[[ko:베이지안 확률]]
[[pl:Prawdopodobieństwo subiektywne]]
[[pt:Probabilidade epistemológica]]
[[ru:Байесовская вероятность]]
[[th:ทฤษฎีความน่าจะเป็นแบบเบย์]]
[[zh:贝叶斯概率]]

Aktuelle Version vom 22. August 2024, 19:44 Uhr

Der nach dem englischen Mathematiker Thomas Bayes (anhören/?) benannte bayessche Wahrscheinlichkeitsbegriff (engl. Bayesianism) interpretiert Wahrscheinlichkeit als Grad persönlicher Überzeugung (englisch degree of belief). Er unterscheidet sich damit von den objektivistischen Wahrscheinlichkeitsauffassungen wie dem frequentistischen Wahrscheinlichkeitsbegriff, der Wahrscheinlichkeit als relative Häufigkeit interpretiert.

Der bayessche Wahrscheinlichkeitsbegriff darf nicht mit dem gleichfalls auf Thomas Bayes zurückgehenden Satz von Bayes verwechselt werden, welcher in der Statistik reiche Anwendung findet.

Entwicklung des bayesschen Wahrscheinlichkeitsbegriffs

[Bearbeiten | Quelltext bearbeiten]

Der bayessche Wahrscheinlichkeitsbegriff wird häufig verwendet, um die Plausibilität einer Aussage im Lichte neuer Erkenntnisse neu zu bemessen. Pierre-Simon Laplace (1812) entdeckte diesen Satz später unabhängig von Bayes und verwendete ihn, um Probleme in der Himmelsmechanik, in der medizinischen Statistik und, einigen Berichten zufolge, sogar in der Rechtsprechung zu lösen.

Zum Beispiel schätzte Laplace die Masse des Saturns auf Basis vorhandener astronomischer Beobachtungen seiner Umlaufbahn. Er erläuterte die Ergebnisse zusammen mit einem Hinweis seiner Unsicherheit: „Ich wette 11.000 zu 1, dass der Fehler in diesem Ergebnis nicht größer ist als 1/100 seines Wertes.“ (Laplace hätte die Wette gewonnen, denn 150 Jahre später musste sein Ergebnis auf Grundlage neuer Daten um lediglich 0,37 % korrigiert werden.)

Die bayessche Interpretation von Wahrscheinlichkeit wurde zunächst Anfang des 20. Jahrhunderts vor allem in England ausgearbeitet. Führende Köpfe waren etwa Harold Jeffreys (1891–1989) und Frank Plumpton Ramsey (1903–1930). Letzterer entwickelte einen Ansatz, den er aufgrund seines frühen Todes nicht weiter verfolgen konnte, der aber unabhängig davon von Bruno de Finetti (1906–1985) in Italien aufgenommen wurde. Grundgedanke ist, „vernünftige Einschätzungen“ (engl. rational belief) als eine Verallgemeinerung von Wettstrategien aufzufassen: Gegeben sei eine Menge von Information/Messungen/Datenpunkten, und gesucht wird eine Antwort auf die Frage, wie hoch man auf die Korrektheit seiner Einschätzung wetten oder welche Odds man geben würde. (Der Hintergrund ist, dass man gerade dann viel Geld wettet, wenn man sich seiner Einschätzung sicher ist. Diese Idee hatte großen Einfluss auf die Spieltheorie). Eine Reihe von Streitschriften gegen (frequentistische) statistische Methoden ging von diesem Grundgedanken aus, über den seit den 1950ern zwischen Bayesianern und Frequentisten debattiert wird.

Formalisierung des Wahrscheinlichkeitsbegriffes

[Bearbeiten | Quelltext bearbeiten]

Ist man bereit, Wahrscheinlichkeit als „Sicherheit in der persönlichen Einschätzung eines Sachverhaltes“ zu interpretieren (s. o.), so stellt sich die Frage, welche logischen Eigenschaften diese Wahrscheinlichkeit haben muss, um nicht widersprüchlich zu sein. Wesentliche Beiträge wurden hierzu von Richard Threlkeld Cox (1946) geleistet. Er fordert die Gültigkeit der folgenden Prinzipien:

  1. Transitivität: Wenn Wahrscheinlichkeit A größer ist als Wahrscheinlichkeit B, und Wahrscheinlichkeit B größer als Wahrscheinlichkeit C, dann muss Wahrscheinlichkeit A auch größer als Wahrscheinlichkeit C sein. Ohne diese Eigenschaft wäre es nicht möglich, Wahrscheinlichkeiten in reellen Zahlen auszudrücken, denn reelle Zahlen sind eben transitiv angeordnet. Außerdem würden Paradoxien wie die folgende auftreten: Ein Mann, der die Transitivität der Wahrscheinlichkeit nicht versteht, hat in einem Rennen auf Pferd A gesetzt. Er glaubt jetzt aber, Pferd B sei besser, und tauscht seine Karte um. Er muss etwas dazuzahlen, aber das macht ihm nichts aus, weil er jetzt eine bessere Karte hat. Dann glaubt er, Pferd C sei besser als Pferd B. Wieder tauscht er um und muss etwas dazuzahlen. Jetzt glaubt er aber, Pferd A sei besser als Pferd C. Wieder tauscht er um und muss etwas dazuzahlen. Immer glaubt er, er bekäme eine bessere Karte, aber jetzt ist alles wieder wie vorher, nur ist er ärmer geworden.
  2. Negation: Wenn wir über die Wahrheit von etwas eine Erwartung haben, dann haben wir implizit auch eine Erwartung über dessen Unwahrheit.
  3. Konditionierung: Wenn wir eine Erwartung haben über die Wahrheit von H, und auch eine Erwartung über die Wahrheit von D im Falle, dass H wahr wäre, dann haben wir implizit auch eine Erwartung über die gleichzeitige Wahrheit von H und D.
  4. Schlüssigkeit (soundness): Wenn es mehrere Methoden gibt, bestimmte Informationen zu benutzen, dann muss die Schlussfolgerung immer dieselbe sein.

Wahrscheinlichkeitswerte

[Bearbeiten | Quelltext bearbeiten]

Es stellt sich heraus, dass die folgenden Regeln für Wahrscheinlichkeitswerte W(H) gelten müssen:

  1.         wir wählen .
  2.       'Summenregel'
  3.     'Produktregel'

Hier bedeutet:

  • H oder D: Die Hypothese H ist wahr (das Ereignis H tritt ein) oder die Hypothese D ist wahr (das Ereignis D tritt ein)
  • W(H): Die Wahrscheinlichkeit, dass Hypothese H wahr ist (das Ereignis H eintritt)
  • !H: Nicht H: die Hypothese H ist nicht wahr (das Ereignis H tritt nicht ein)
  • H,D: H und D sind beide wahr (treten beide ein) oder eins ist wahr und das andere tritt ein.
  • W(D | H): Die Wahrscheinlichkeit, dass Hypothese D wahr ist (oder Ereignis D eintreten wird) im Fall, dass H wahr wäre (oder eintreten würde)

Aus den obigen Regeln der Wahrscheinlichkeitswerte lassen sich andere ableiten.

Praktische Bedeutung in der Statistik

[Bearbeiten | Quelltext bearbeiten]

Um solche Probleme trotzdem im Rahmen der frequentistischen Interpretation angehen zu können, wird die Unsicherheit dort mittels einer eigens dazu erfundenen variablen Zufallsgröße beschrieben. Die Bayessche Wahrscheinlichkeitstheorie benötigt solch eine Hilfsgröße nicht. Stattdessen führt sie das Konzept der A-priori-Wahrscheinlichkeit ein, die Vorwissen und Grundannahmen des Beobachters in einer Wahrscheinlichkeitsverteilung zusammenfasst. Vertreter des Bayes-Ansatzes sehen es als großen Vorteil, Vorwissen und A-priori-Annahmen explizit im Modell auszudrücken.

  • David Howie: Interpreting Probability, Controversies and Developments in the Early Twentieth Century, Cambridge University Press, 2002, ISBN 0-521-81251-8
  • Edwin T. Jaynes, G. Larry Bretthorst: Probability Theory: The Logic of Science: Principles and Elementary Applications, Cambridge Univ. Press, 2003, ISBN 0-521-59271-2, online.
  • David MacKay: Information Theory, Inference, and Learning Algorithms, Cambridge, 2003, ISBN 0-521-64298-1, insb. Kapitel 37: Bayesian Inference and Sampling Theory.
  • D.S. Sivia: Data Analysis: A Bayesian Tutorial, Oxford Science Publications, 2006, ISBN 0-19-856831-2, besonders für Probleme aus der Physik zu empfehlen.
  • Jonathan Weisberg: Varieties of Bayesianism (PDF; 562 kB), S. 477ff in: Dov Gabbay, Stephan Hartmann, John Woods (Hgg): Handbook of the History of Logic, Bd. 10, Inductive Logic, North Holland, 2011, ISBN 978-0-444-52936-7.
  • Dieter Wickmann: Bayes-Statistik. Einsicht gewinnen und entscheiden bei Unsicherheit [= Mathematische Texte Band 4]. Bibliographisches Institut Wissenschaftsverlag, Mannheim/Wien/Zürich 1991, ISBN 978-3-411-14671-0.