Katalysatoraktivität

aus Wikipedia, der freien Enzyklopädie
Dies ist eine alte Version dieser Seite, zuletzt bearbeitet am 24. Februar 2016 um 17:32 Uhr durch Nescimus (Diskussion | Beiträge) (Link Katalytisch perfektes Enzym). Sie kann sich erheblich von der aktuellen Version unterscheiden.
Zur Navigation springen Zur Suche springen

Die Aktivität a eines Katalysators (auch katalytische Aktivität genannt) ist ein Maß dafür, wie schnell ein Katalysator Edukte zu Produkten umsetzt.

Homogene Katalyse

Von einer homogenen Katalyse wird gesprochen, wenn bei einer chemischen Reaktion der Katalysator und die Reaktanten im selben Aggregatzustand vorliegen.

Heterogene Katalyse

Von einer heterogenen Katalyse wird gesprochen, wenn bei einer chemischen Reaktion der Katalysator und die reagierenden Stoffe in unterschiedlichen Aggregatzuständen vorliegen.

Beispiele:

  • Bei einer katalysierten Gasphasenreaktion liegt der Katalysator als feste Phase vor und das Reaktionsgemisch ist gasförmig.
  • Bei einer 3-Phasenreaktion werden die gasförmigen und flüssigen Edukte mit Hilfe eines festen Katalysators umgesetzt.

Biokatalyse

Die Größe als solche hängt von der Menge des Enzyms und von seiner Effizienz ab, so dass mit Vorteil normierte Größen verwendet werden; diese sollen hier eingeführt werden. Die Anwendbarkeit ist nicht auf Enzyme beschränkt, sondern sinngemäß auch für andere Katalysatoren möglich.

Die Enzymaktivität in Lösung oder in einem Gewebeextrakt kann über eine geeignete Umsetzungsreaktion bestimmt werden (Enzymkinetik). Diese Messung erfordert Kenntnis über:

  • die Stöchiometrie des Umsatzes
  • die Gleichgewichtslage der Reaktion
  • das Erfordernis von Kofaktoren (Metallionen, Coenzyme)
  • die Michaeliskonstanten (Km-Werte) zur Quantifizierung der Affinität des Enzyms zu Substrat(en) und Kofaktor(en). Der Km-Wert entspricht der Substratkonzentration, bei der die Hälfte der Enzyme Substrat gebunden haben, sodass ein niedriger Km-Wert eine hohe Affinität anzeigt. Liegt die Substratkonzentration weit über dem Km-Wert, haben fast alle Enzyme Substrat gebunden, man spricht von Sättigung.
  • das pH-Optimum
  • eine möglichst direkten Versuchsansatz, basierend auf dem Verschwinden des Substrates (S-Fall) oder Entstehen des Produktes (P-Fall)
  • die Stabilität des Enzyms unter den Bedingungen des Tests

Wann immer möglich, erfolgt der Test bei Substrat- und Kofaktorsättigung (Reaktionsordnung 0, bezogen auf Substrat), am optimalen pH-Wert und (definitionsgemäß) bei 25 °C. Unter diesen Bedingungen ist die Reaktions-Anfangsgeschwindigkeit ein Maß der Enzymkonzentration.

Die Anfangsgeschwindigkeit einer enzymatischen Umsetzung ergibt sich durch die Steigung der Tangente an den Ursprung (t = 0, [P] = 0), denn nur hier entspricht die Substratkonzentration noch dem eingesetzten Wert [S]0. Das korrekte Legen einer Tangente ist für den Experimentator die Hauptschwierigkeit bei enzymkinetischen Messungen und bestimmt häufig den Ausgang des Versuchs (siehe Fließgleichgewicht).

Zumeist ist die Messung der Produktentstehung (P-Fall) genauer durchzuführen als die des Substratumsatzes (S-Fall), denn bei Sättigung stellt sich letztere als kleine Differenz großer Werte dar. Reaktionsprodukte misst man durch Trennverfahren, chemische Nachweisverfahren, spektroskopische oder fluorimetrische Messungen. Die spektroskopischen Verfahren ermöglichen eine kontinuierliche Registrierung des Substratumsatzes und sind – wenn anwendbar – immer vorzuziehen.

Größen und Einheiten der Enzymaktivität

Zwei Maßeinheiten zur Angabe von Enzymaktivitäten sind gängig:

  • die klassische, 1961 eingeführte Enzymeinheit (Symbol U oder unit), definiert als ein Mikromol Substratumsatz pro Minute unter Standardbedingungen (sie hält sich bei Enzymologen hartnäckig: Reine Enzyme haben auf dieser Skala gut fassbare spezifische Aktivitäten, etwa zwischen 5 und 500 U/mg),
  • die 1972 definierte SI-Einheit Katal (Symbol kat), definiert als ein Mol Substratumsatz pro Sekunde.

Im Allgemeinen wird man zunächst die Enzymaktivität pro Volumen Lösung (d. h. die Volumenaktivität) bestimmen; diese kann wie oben beschrieben als Änderungsrate der Produkt- oder Substratkonzentration in einer Umsetzungsreaktion ermittelt werden. Die Volumenaktivität ist wegen v = kcat·c ein Maß für die Enzymkonzentration, weshalb Volumenaktivitäten in der klinischen Chemie regelmäßig bestimmt werden; die Umrechnung in Konzentrationen ist dabei nicht üblich.

Ist die Massenkonzentration β des Enzyms in der Lösung bekannt (diese lässt sich in einer unbekannten Lösung am ehesten dann bestimmen, wenn die Lösung frei von anderen Proteinen ist), so lässt sich aus der Volumenaktivität die Aktivität pro Masse Enzym (d. h. die spezifische Aktivität) errechnen. Der aussagekräftigste Parameter, die molare Aktivität, auch Wechselzahl (engl. turnover number) genannt, erfordert darüber hinaus Kenntnisse über die molare Masse M des Enzyms. Die Wechselzahl bezeichnet die Zahl der Substratmoleküle, die durch ein Enzym je Sekunde umgeschlagen werden und bewegt sich zwischen etwa 0,5 (Lysozym) und mehreren Millionen (Katalase).

Definition Zusammenhänge alte Einheiten neue Einheiten
Aktivität a Δnt v·V s·m kcat·n U = µmol/min kat = mol/s
Volumenaktivität v Δn/(Δt·V) a/V s·β kcat·c U/ml kat/l
spezifische Aktivität s Δn/(Δt·m) a/m v/β kcat/M U/mg kat/g
Wechselzahl kcat Δn/(Δt·n) a/n v/c s·M U/mmol kat/mol = s−1

Katalytische Effizienz: Das Wechselspiel aus Aktivität und Affinität

Die Michaelis-Menten-Theorie beschreibt die Enzymkatalyse in zwei Schritten: 1. Bildung des Enzym-Substrat-Komplexes, 2. chemische Reaktion. Die Reaktionsgeschwindigkeit beträgt in diesem Modell v = kcat×[ES].

[E]ges bezeichnet die Gesamtkonzentration des Enzyms, [ES] die Konzentration des Anteils, der Substrat gebunden hat, und [E] die Konzentration des Anteils, der kein Substrat gebunden hat. Bei einer Messung der Enzymaktivität unter Sättigungsbedingungen ist so viel Substrat vorhanden, dass praktische alle Enzyme im ES-Komplex vorliegen: [ES] = [E]ges. Die Reaktionsgeschwindigkeit ist in diesem Fall maximal, sie beträgt vmax = kcat×[E]ges und hängt damit (neben der Gesamtenzymkonzentration) nur von der Wechselzahl ab.

Unter physiologischen Bedingungen sind allerdings die wenigsten Enzyme mit Substrat gesättigt, sodass die Reaktionsgeschwindigkeit nicht nur davon abhängt, wie schnell die Enzyme im ES-Komplex ihr Substrat umsetzten (ausgedrückt durch die Wechselzahl), sondern auch davon, wie groß der Anteil der Enzyme ist, die überhaupt im ES-Komplex vorliegen. Letzteres ist abhängig von der Affinität des Enzyms für sein Substrat, die durch den Km-Wert beschrieben wird. Die Reaktionsgeschwindigkeit lässt sich damit durch die Michaelis-Menten-Gleichung angeben:

Ersetzt man vmax durch kcat×[E]ges und nimmt an, dass [S] sehr viel kleiner ist als Km, sodass [S] im Nenner vernachlässigt werden kann, vereinfacht sich die Gleichung zu:

Bei Substratkonzentrationen weit unter dem Km-Wert hängt die enzymatische Umsatzgeschwindigkeit also vom Quotienten kcat/Km ab: Je höher die Wechselzahl und je höher die Affinität (d. h. je kleiner der Km-Wert) eines Enzyms für sein Substrat ist, desto größer ist seine katalytische Effizienz. Eine graphische Abschätzung dieses Parameters ergibt sich durch Anlegen einer Tangente an den Ursprung einer Sättigungshyperbel, denn deren Steigung entspricht vmax/Km, oder, bei entsprechender Skalierung, kcat/Km.

Obere Grenze für kcat/Km

Ersetzt man Km durch (k−1+kcat)/k1, zeigt sich, dass kcat/Km niemals größer als k1 werden kann:

k1 ist die Geschwindigkeitskonstante für die Entstehung des ES-Komplexes. Ein ES-Komples kann nur entstehen, wenn Enzym und Substrat in der Lösung durch Diffusion zufällig aufeinandertreffen. Die Diffusionsgeschwindigkeit begrenzt k1 (und damit auch kcat/Km) auf 108–109 mol−1·l·s−1. Enzyme, die diese katalytische Effizienz erreichen, heißen kinetisch perfekt; jeder zufällige Substratkontakt führt bei ihnen zur Reaktion. Die Existenz solcher Enzyme ist insofern bemerkenswert, als das aktive Zentrum nur einen kleinen Teil eines Enzyms ausmacht. Um die Effizienz darüber hinaus steigern zu können, entstanden im Verlaufe der Evolution multifunktionelle Enzyme sowie Multienzymkomplexe, wodurch Substrate und Produkte auf das begrenzte Volumen eines einzigen Proteins beschränkt werden.

Beispiele

Die höchste katalytische Effizienz haben Katalase (Zerlegung des Zellgiftes Wasserstoffperoxid), Acetylcholinesterase (schnelle Nervenleitung) und Carboanhydrase (Freisetzen von Kohlenstoffdioxid in der Lunge). Einige Zahlenangaben finden sich unter Wechselzahl.

Einzelnachweise