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We explore a sequential offers model of n-person coalitional bargaining with transferable
utility and with time discounting. Our focus is on the efficiency properties of stationary equilibria
of strictly superadditive games, when the discount factor & is sufficiently large; we do, however,
consider examples of other games where subgame perfectness alone is employed.

It is shown that delay and the formation of inefficient subcoalitions can occur in equilibrium,
the latter for some or all orders of proposer. However, efficient stationary equilibrium payoffs
converge to a point in the core, as § > 1. Strict convexity is a sufficient condition for there to
exist an efficient stationary equilibrium payoff vector for sufficiently high 8. This vector converges
as § -1 to the egalitarian allocation of Dutta and Ray (1989).

1. INTRODUCTION

We explore an extensive-form approach to modelling n-person coalitional bargaining
situations. Our formulation assumes transferable utility and perfect information, and
represents a natural generalization of Rubinstein (1982). Like his and other alternating-
offer models, our analysis implies a commitment to the offer by the proposer until all
respondents have accepted or rejected the offer. However, we preclude all other forward
commitments, whether by individuals or by coalitions.'

We limit our analysis to stationary perfect equilibria of the coalitional bargaining
game. The main justification for this restriction is a result proved in Chatterjee, Dutta,
Ray and Sengupta (1990) which showed that all efficient and individually rational
allocations can be supported as perfect equilibria for high enough discount factors, if
history-dependent strategies are permitted. In contrast, the predictions of the model are
drastically sharpened by invoking stationarity. It can also be argued that stationary
equilibria constitute a computationally simple class, and that, if ‘learning” or “‘teaching”
is important in a given economic context, the way to capture these phenomena is through
enriching the model, rather than through adjusting the solution concept. Moreover, like
Selten (1981), Gul (1989) and others, we find stationary equilibria analytically tractable.

1. Gul (1989) analyses an extensive form in which such commitments are implicitly possible. Selten
(1981) and Binmore (1985) contain alternative formulations of characteristic function bargaining. See also
Harsanyi (1963), Bennett (1988) and Selten and Wooders (1990).
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464 REVIEW OF ECONOMIC STUDIES

(We realise, of course, that it is dfficult to put forward a logically complete case for
excluding non-stationary equilibria in general.)

Our main focus is on the efficiency of bargaining outcomes, and on the limiting
properties of such outcomes as discounting vanishes. In strictly superadditive games,
efficiency is equivalent to the twin requirements of (a) no delay, and (b) formation of
the grand coalition. However, we present a set of examples (Examples 1-3) showing that
stationary equilibria may violate either of the two requirements of efficiency mentioned
above. These examples are remarkable given the environment of perfect information.’
They are a consequence of the intrinsic coalitional structure of our model.

Section 3 of the paper presents a characterization of stationary equilibria without
delay (Proposition 2). We also provide a sufficient condition that guarantees the existence
of stationary equilibria without delay. (Proposition 3).

Section 4 then examines the conditions under which a stationary equilibrium will be
efficient. Our main interest is in efficiency “in the limit” as discounting vanishes.

Our bargaining game is defined relative to a protocol, that is, an order of proposers
and respondents defined for each coalition. We first analyze the issue of efficiency for
all protocols. We show (Proposition 4) that such a feature is equivalent to the requirement
that the game (N, v) satisfies v(S)/|S|= v(N)/|N| for coalitions S. It is easy to see that
such games do not have an intrinsic coalitional nature since the grand coalition has higher
average worth than every subcoalition. In other words, games where subcoalitions
“matter”” must exhibit inefficiency for some protocol. In deed, the requirement of efficiency
for even one order of proposers is quite demanding, an observation implied by Proposition
5. It shows that any limit of efficient stationary equilibrium payoff vectors in a strictly
superadditive game must yield a payoff vector which is in the core of the characteristic
function game. This of course immediately implies that a stationary equilibrium can
never be efficient for high enough discount factors if the characteristic function game has
an empty core. Moreover, even if the game has a non-empty core, we show that a game
might exhibit inefficiency for every protocol (Example 2). Proposition 6 states a sufficient
condition for such a phenomenon to occur in general.

In Section 5, we turn to sufficient conditions ensuring efficiency for some protocol.
Proposition 7 shows that if a game is strictly convex, then for high enough discount factors,
every stationary equilibrium involves no delay, and there is some protocol under which
the stationary equilibrium is efficient.

Finally, we show (Proposition 8) that the (unique) limit payoff vector Lorenz-
dominates every other core allocation.> We view such a limit result as an additional
contribution to the well-known programme of ‘‘achieving” cooperative game-theoretic
concepts via the play of a strategic game.

2. THE EXTENSIVE FORM

Let (N, v) be a characteristic function game with |N|=n. & is the set of all coalitions.
A protocol is an ordering of players, one ordering for each coalition. A proposal is a pair
(S,y) with Se & and Y;.s y; = v(S).

2. Of course, in incomplete information models, one can have efficiency failure (see Chatterjee and W.
Samuelson (1983), Myerson and Satterthwaite (1988), Admati and Perry (1987)). In complete information
models that admit multiple subgame perfect equilibrium paths, delay can be generated by using the multiplicity
of paths to “punish” deviators. In our paper, however, it may arise even in an essentially unique equilibrium
(given the order of proposers), since the reasons for its occurrence have to do with the coalitional structure
and not with the multiplicity of equilibria.

3. In fact, this limit allocation is the egalitarian allocation of Dutta and Ray (1989).
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The game proceeds as follows. The first player in N under the protocol makes a
proposal (S, y). Players in S respond sequentially according to the protocol by saying
“Yes” or “No”. The first “rejector” becomes the new proposer. If no member of S rejects
the proposal, then they leave the game (with allocation y) and the game continues with
no lapse in time, with player set N —S.

We assume that the formulation of a counterproposal takes one unit of time. Let
6 <1 be the common discount factor applied to this time period.

Each proposal, all acceptances of the proposal and a rejection (if any) count as separate
stages of the game. A k-history h, for k=2, is a complete listing of the previous k—1
stages. A (pure) strategy for player i assigns proposals at every h, at which i is a proposer
and responses to ongoing proposals at every h, at which i is a responder. Noting that
player i’s payoff is 8’ 'x if i receives x in period t, we have a full game-theoretic
formulation. One may define in the standard way the notion of a (subgame) perfect
(Nash) equilibrium for this game.

A strategy for player i is stationary if the decisions assigned to player i are independent
of all features of h, except possibly the set of players remaining in the game and the
ongoing proposal (if any). A stationary equilibrium is a perfect equilibrium with each
player employing a stationary strategy.

Throughout this paper, we consider only stationary equilibria. The main reason for
this is the following proposition, which is a generalization of a result due to Herrero
(1985) and Shaked (1986).

Say that a bargaining game (N, v) is strictly superadditive if for any S, Te ¥ with
SNT=0, v(SuT)>v(S)+ov(T).

Proposition 0. Let (N, v) be a strictly superadditive bargaining game with |N|=3.
Then there exists * € (0, 1) such that for each allocation x with x, = v(i) for all i and each
8 €(8*,1), there exists a perfect equilibrium with the outcome x.

Proof. See Chatterjee, Dutta, Ray and Sengupta (1990). ||

This proposition reflects a problem common to much of dynamic game theory. With
history-dependent strategies, one can support a plethora of outcomes. It is difficult,
moreover, to make a logically convincing argument to rule out such equilibria.

3. STATIONARY EQUILIBRIUM AND DELAY

Fix any stationary equilibrium. Consider a history such that i has to propose at player
set S. By stationarity, i, and everyone else who may move after him on the equilibrium
of this subgame, behave the same way, irrespective of the history of arrival at player set
S. Consequently, we may write x;(S, §) as the subgame equilibrium payoff to i when i is
the proposer with S being the player set remaining. For each i, define y;(S, §) = 6x;(S, 8).
Then it should be clear that if some individual j were to receive a proposal (T,z) at
player set S, with the property that z, = y,(S, 8) for all ke T that are yet to respond to
this proposal (including j, of course), the equilibrium response of j must be to accept.
On the other hand, if the above inequality holds for all kK who are to respond after j, but
not for j, then his response will be to reject the proposal.* We will therefore refer to
¥(S, 8)=(y:(S, 8)) as the equilibrium response vector at the player set S.
We start with a lemma that holds for any equilibrium response vector.

4. More than this cannot be asserted at this stage. In particular, it is not true that j will accept any
proposal that yields him more than y;(S, 8). We will return to this issue below.
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Lemma 1. Fix a stationary equilibrium and a history that ends with the player set S.
Let y(S, 8) be the equilibrium response vector. Then, for all i € S, we have

yi(S, 8) = 6 max;cres [U(T)_ZjeT—-i ,Vj(S, 8)1. (1)

with the property that (1) holds with equality for all i whose equilibrium strategy as a proposer
is to make an acceptable proposal at the player set S.

Proof. Using the discussion above, it is clear that if i has to propose, he can guarantee
acceptance by choosing any coalition T such that i€ T and by offering y;(S, §) to every
Jj#iin T This implies that x;(S, §) Zmax;cres [0(T) -}, 1, (S, §)], and using the
definition of y;(S, &), we obtain (1).

If (1) holds with strict inequality, this means that i has made a proposal (T, z) such
that z; < y;(S, 8) for some je S. Consider the protocol restricted to T and look at the last
player in the order for which this inequality holds. This player must reject the proposal,
by the discussion above. Consequently, i must make an equilibrium proposal that is
unacceptable, and this completes the proof of the lemma. ||

From Lemma 1, it follows that at the player set N, if for some i, y;(N, §)>
8[v(T)—Ycr-:i ¥i(T, 8)] for all T< N, then player i must make an unacceptable offer
causing delay along the equilibrium path. The following example demonstrates that there
are bargaining games where it pays a player to make such an unacceptable offer in
equilibrium.

Example 1 (Delay). This example is due to Bennett and van Damme (1988). N =
{1,2,3,4}, v({1,j})=50,j=2,3,4; v({i,j}) =100, i, j=2, 3, 4 and v(S) =0 for all other
Sed.

We claim that for some player starting the game, this example will yield equilibrium
delay for all discount factors sufficiently close to unity. We prove this by contradiction.
Suppose not. Then for all i, (1) holds with equality. Imposing this, we see that y;(N, §) =
8100/(1+8) for i #1 and y,(N, 8) = 8[50—(1005/(1+ 8)].

So if player 1 starts, he gets y,(N, 6)/6, which dwindles to zero as 6 > 1.

Consider, now, that 1 deviates by picking the coalition {1, 2} and offering 0 to player
2. 2 will certainly reject the offer. For in the next period, 2 can obtain y,(N, §)/8 by
proposing, say, the coalition {2, 3} and offering 3 y;(N, 8). This coalition then leaves the
game.

Player 4 thus has no option but to share a payoff of 50 with Player 1, whose payoff
now approaches 25 as 6 goes to 1. So for large 8, player 1 has a worthwhile deviation,
a contradiction.’

We will be interested in bargaining games for which stationary equilibria do not
exhibit delay. This is our task in the next section.

We will be interested in bargaining games for which stationary equilibria do not
exhibit delay. This is our task in the next section.

5. One can check that for this particular example, delay occurs in any perfect equilibrium (not necessarily
stationary) for a range of discount factors, whenever 1 starts the game.
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3.1. No-delay stationary equilibrium

An interesting class of stationary equilibria that will play an important role in our analysis
has the property that after every history, the player who has to make a proposal makes
an acceptable proposal. We will call such an equilibrium a no-delay stationary equilibrium.®

By Lemma 1, characterizing a no-delay stationary equilibrium is then equivalent to
obtaining a solution to the following class of simultaneous equations. For any coalition
S € & and discount factor € (0, 1), let m(S, 8) =(m;(S, 8));cs be the solution to

yi(S, 8) =6 maxrcs U(T)_ZjeTfi y,-(S, &)1 (2)
One can prove the following.

Proposition 1. For each S€ & and 6 € (0, 1), m(S, 8) exists and is unique.

Proof. We first establish existence. Let B=[0, maxgs.y v(S)]". Define ¢: B-> B by
¢i(m)=86 maxrcs {v(T)—Y;cr_; m;}, for me B.

Note that ¢ (m) € B. By the maximum theorem, ¢ is continuous. By Brouwer’s fixed
point theorem, the result follows.

To prove uniqueness, we will use the following lemma.

Lemma 2. For any player set S, consider a vector y(S, 8) (not necessarily an equilibrium
response vector) such that for all j € S, (1) holds. Moreover, for some i € S, suppose that (1)
holds with equality. Then for any T that attains the maximum in (1) and for all je T, we
have y;(S, 8) = y:(S, 8).

Proof. For player i, we have

y:i(S, 5):5[U(T)‘Zjer—iyj(sa 8)] 3)
and for je T —{i}, we have by supposition,
(8, 8) = 8[v(T) — Lker—; ¥i(S, 8)]. (4)

Adding —8y;(S, 6) on both sides of (4) and using (3), one has
(1-8)y;(8, 8) = 8[v(T) — Lier—; yi(S, 8)1—8y;(S, 8) =(1-8)yi(S, )
Since & €(0, 1), the result follows. ||
We now return to the main proof. Suppose, on the contrary, that there are two distinct

solutions m and m’ to (1). Let K ={i € S\m; # m}} and w.l.o.g choose k € K with m, such
that

m,=max {z\z=m; or m! for ie K} (5)

Of course, m;, > mj.. Let T < S satisfy

my. = 8[v(T) _Zje T—k mj] (6)
Then from the definition of mj,
miZ8[v(T)—Y;cr-r mj] (7

6. One could use a weaker definition: that there must be no delay along the equilibrium path alone, but
general results regarding such equilibria appear to be considerably more difficult to obtain.



468 REVIEW OF ECONOMIC STUDIES

Now by applying Lemma 2, we have for all je T — k, m; = m,. So, if m;> m; for any such
J, the definition of k in (5) is contradicted. Thus for all je T—k, we have mj=m,;.
Combining (6) and (7), we therefore obtain mj = m,, contradicting (5). ||

Let 2 be the collection of all stationary strategies for Player i, of the following kind:
(A) If i proposes after a history with player set S, he chooses a coalition T where
m;(S, 8) is attained and proposes the allocation

{mi(S, 8)

6 ,(mj(S; 5))jeT—i}

for the coalition.’

(B) If i responds to some ongoing proposal (T, z) after a history with set of players
S € &, he accepts the proposal if z; = m;(S, 6) forall je T who are yet to respond (including
i), and rejects it otherwise.

Let 2=[[icn 2%

It is easy to see that if any strategy vector o € X is an equilibrium, then there is no
delay in equilibrium nor in any subgame, and the initial proposer gets m;( N, §)/ 8. Indeed,
by Lemma 1 and Proposition 1 (the uniqueness of m(S, §)), the converse is also true.
This is easily seen for part (A), using the results just cited.

To see part (B), we will use part (A). Assume that for some proposal (7, z), i is the
last respondent. Then clearly (B) is true.® Now proceed by induction. Fix an integer
k=0. Suppose that (B) is true for all proposals (T, z) and respondents j with m more
respondents to follow, where 0 = m = k. Now consider a proposal (T, z) and a respondent
i with k+1 respondents to follow. If z;= m;(S, 6) for all j who are yet to respond
(including i), it follows easily from the induction hypothesis and Part (A) that i should
accept. If not, then either z;, <m;(S, 8) or z;<m;(S, 8) for some j to follow i In the
former case, i is better off by rejecting because he can get m;(S, §)/6 in the next period.
In the latter case, too, he is better off by rejecting! For if he accepts, then a later respondent
will reject and offer i m;(S, 8). If i seizes the initative by rejecting the proposal, he can
get m;(S, §)/ 68, which is larger.

These observations are collected together in

Proposition 2. Let o be a stationary equilbrium. Then o is a no-delay equilibrium if
and only if o€ X.

We have already seen in Example 1 that o € 3 need not be an equilibrium. We now
provide a sufficient condition under which the set of stationary equilibria is exactly Z.

Condition M. For all S, Te ¥ and 6§ €(0,1), if T< S, then m;(S, §) = m,(T, §) for
ieT.

The reader should observe that (M) is quite independent of superadditivity condi-
tions. It neither implies nor is implied by superadditivity.

7. X, contains more than one element if and only if for some player set S there is more than one T< S
that solves the maximization problem in (2).
8. For the purpose of ensuring an equilibrium, equality must imply acceptance.
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Proposition 3. Suppose that condition M holds for the bargaining game(N, v). Then
the set of stationary equilibria is exactly 2. That is, no stationary equilibrium involves delay
in equilibrium in any subgame.

Proof. We first check that any strategy o € X is indeed an equilibrium. Pick ie N
and let all players in je€ N —i use the strategies prescribed by 2/. Consider a subgame
with player set S with i as the proposer. Note that by playing according to ', player i
can guarantee himself a payoff of m;(S, §)/8. If he makes an unacceptable offer today,
he will receive a present value of m;(T, §), for some T<S. Since § <1, by Condition
(M), this payoff is strictly less. Thus i will make an acceptable offer, which, given the
strategies of the other players, must agree with . To check responses, proceed exactly
as in the discussion preceding Proposition 2.

Next, we show that every stationary equilibrium belongs to =. Consider a stationary
equilibrium. Consider a history ending with player set S. Let y(S, 8) be the equilibrium
response vector. It will suffice to show that y(s, 8) = m(S, 8). This is clearly true if | S| =1.
Suppose, for some integer 1= K <n, that this is true for all S with |S|= K. Now if the
hypothesis is false for some S with |S|=K+1, then, using Lemma 1, J=
{je S\my(S, 8) <y;(S, 6)} must be non empty. Pick i*€J such that mi«(S, 8) = m,(S, §)
for all je J.

By condition (M), we have m;«(S, §) = m;«(S’, 8) for all S’ < S such that i*€ S’. Thus
by the induction hypothesis, at the player set S, i* must be making an acceptable proposal
(T, z), where z; = y;(S, 8) for je T—i* and zx= y;«(S, 8)/8. Now, T=(TnJ)u(T-T'),
where J'={je S\m;(S, 6) > m;x(S, §)}. By Lemma 2, we have for all je T—J',

¥;(S, 8) = yi«(S, 8) > mi(S, §) = m(S, §). (8)

Now consider je J'. Let T’ be a set that attains the maximum in (2) (for i =j). Then, by
Lemma 2 and the fact that jeJ', m(S, )= m;(S, 8) > m;(S, §) for all ke T'. Using (1)
for i =j, we have, therefore,

¥i(8, 8) 2 8[v(T') = Xker—; ¥i(S, )12 8[o(T") — Lke—; mi(S, )]
= mj(S, 6)

On the other hand, since m;(S, 8) > mix(S, 8), we have from the definition of i* that
¥;(S, 8) =m;(S, 8). Combining, we see that y;(S, 8) = m;(S, §) for all jeJ'. Putting this
information together with (8), we have

Yir=8[0(T) = Xier-i» yic] = 8[0(T) = Lk 1v M ] =

contradicting our supposition that i* is in J. ||

4. STATIONARY EQUILIBRIUM AND EFFICIENCY

An allocation xe &" is feasible for (N, v) if there is a partition of N into coalitions
(S1,-..,8) such that ¥, x; = 0(S;) for all j=1,..., k.
An equilibrium is efficient if there is no feasible allocation for (N, v) such that every
agent receives a higher utility (relative to the equilibrium payoff) in that allocation.
Our interest in this section is to try to characterize the set of bargaining games for
which the resulting bargaining equilibrium is efficient (for high enough discount factors).
It should be recalled that an important element of our bargaining game was the
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specification of the protocol. Consequently, one is also interested in knowing how our
efficiency results are related to this particular aspect of the game.

4.1. Efficiency of stationary equilibria for all protocols

We start with a definition. Say that a game (N, v) is dominated by its grand coalition if
for all S= N, we have

o(N) _ o(S)
IN| ~ S| °

Remark. Note that the bargaining game analysed by Rubinstein (1982) and its
n-person generalization by Herrero (1985), Shaked (1986) and others fall in this category.

We may now state

Proposition 4. The following statements are equivalent:’

(a) (N, v) has the property that for every protocol, there is a sequence of discount factors
tending to one and a corresponding sequence of efficient stationary equilibria.
(b) (N, v) is dominated by its grand coalition.

Remark. For these games, the limit equilibrium payoff vector is the allocation
obtained by equal division of v(N) (see proof below).

Proof. We first show that (b) implies (a). Assume (b). Consider any stationary
equilibrium. Let x; be the payoff to player i from this equilibrium, for any history where
N is the player set and i has to propose. For i to obtain this payoff, there must be a
history with player set S and i as the proposer with i making an acceptable proposal
(T, z), where z;=v(T)—Y,cr-; z;Z x;. By stationarity, the equilibrium response vector
at S must be 8z; for i and z; for j # i. Applying Lemma 2, we have z; = 6z; forall j€ T. Thus,

v(T) v(N)
1+8(|T|-1) " 1+8(n—1)

IA
IA
lIA

Xi=z;
with the last inequality holding strictly whenever T # N (use (b)).

Thus, i’s payoff from any stationary equilibrium is bounded above by v(N)/[1+
8(n—1)], and this is true of every i€ N. So any proposer i at the player set N can make
the acceptable proposal (N, z'), where z;=8v(N)/[1+8(n—1)] for j#i and obtain
v(N)/[1+8(n—1)]. So the infimum of player i’s equilibrium payoffs is dv(N)/[1+
8(n—1)]. This implies that the equilibrium response vector y at the player set N is
y;=6v(N)/[1+8(n—1)]. Given (b), it then follows that every player makes an acceptable
offer forming the grand coalition at the player set N.

Now we show that (a) implies (b). If (a) is true, then (using the finiteness of protocols)
there exists %€ (0, 1) such that for all §€(6*, 1) and all protocols, each person who
starts makes a proposal to the grand coalition which is accepted. For 8 = §*, using Lemma

9. The equivalence holds in the space of games that admit a stationary equilibrium. We conjecture,
though, that for every game, a stationary equilibrium exists.
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1 and 2, the equilibrium response vector y(N,8) is then given by y;(N,8)=
6v(N)/[1+8(n—1)] and the equilibrium payoff to the proposer is simply v(N)/[1+
8(n—1)]. Since in equilibrium no proposer wants to pick a subcoalition S, we must have
o(N)  _ 8v(N)
———z=v(S)————— (S| -1).
1+o(n—1- ") T s(m—1) 157V
Therefore, for every Se ¥,
o(N) __ v(S)
1+86(n—1) 1+8(S|-1)

Passing to the limit as > 1 in the above expression, we get (b). ||

Proposition 4 thus shows that the requirement of efficiency for all protocols is
extremely demanding. According to our definition, a game is dominated by its grand
coalition if the average worth of N is no less than the average worth of any subcoalition.
Such games are obviously not ones where subcoalitions matter in any real sense. What
happens if we do not insist on such a strong requirement?

4.2. Efficiency for some protocol

The negative result of the previous section motivates a weaker inquiry: is it possible to
obtain efficiency for at least one protocol? We start our analysis by noting a strong
property of efficient stationary equilibria.

Proposition 5. Let (N, v) be strictly superadditive. Suppose that for some protocol,
there is a sequence 8" > 1 and a corresponding sequence of efficient stationary equilibrium
payoff vectors z2(8) = (z;(8))icn, converging to z* as > 1. Then z* is in the core of the
characteristic function (N, v).'°

Proof. Since the equilibrium is efficient, it must be that along the equilibrium path,
no player makes an unacceptable offer, i.e., there is no delay along the equilibrium path.
Moreover, since (N, v) is strictly superadditive, the first proposer (say player 1) must
make a proposal to the grand coalition. Therefore, if the equilibrium response vector is
Y(N, 8), the equilibrium allocation is given by z;(8§)=y;(N, §) for j#1 and z,(8)=
y1(N, 8)/ 8. The result now follows by applying Lemma 1, replacing S by N and taking
dtol. |

Remark. Proposition 4 does not assert the existence of the limit vector of payoffs,
though we conjecture that this limit is always well-defined. For the case of no-delay
stationary equilibria, the existence of this limit follows trivially from Lemma 3 below.

An immediate corollary of Proposition 4 is that for high enough discount factors,
games with empty cores will never possess efficient stationary equilibrium for any protocol.
Indeed, more is true. We now present an example which shows that even for games with
nonempty cores, stationary equilibria are inefficient for every protocol.

Example 2 (The employer-employee game). N ={1,2,3}, v({i})=0 for all i
v({1,2)=v({1,3}) =1, v(N)=1+u, 0= u<0-5, v(23) =¢, positive but “small”. This
game is strictly superadditive, and it has a nonempty core.

10. This result is not true if the game is just superadditive. See Example 2.
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It is possible to check the following:

-

€6 .

1+8’ S_{2’3}’l€{293}9
2 icS, Se({1,2},{1,3})
1+8’ lED, s s s s

m;(S, 8)=16(1+wu) . ) )
—_ 7 p— _—
1425 ° S—N,lGNWlth1 5 o,

é
—_— S = ie N with ——> pu.
Y N, i€ w1th1+8 M

‘0, S ={i}.

Using this list, one can observe that condition M is satisfied for & sufficiently small.
Consequently all stationary equilibria are no-delay.

Now we discuss efficiency.'’ If & is “small”, i.e. u>8/(1+§), the grand coalition
always forms in stationary equilibrium with the proposer receiving (1+ u)/(1+28). The
outcome is efficient. However, with u <8/(1+8), (as it will be for & close to 1), the
opposite happens. In no stationary equilibrium does the grand coalition form: either
coalition {1, 2}, or {1, 3} forms with the the coalition splitting the surplus 1 equally as
8- 1. The remaining person receives zero. These equilibria are inefficient, though the
game has a nonempty core.'?

The example can be generalized to yield a weaker sufficient condition for inefficiency.
The following lemma, which we also use later, will be needed:

Lemma 3. m*(N)=Ilim;_,, m(N, 8) is well-defined, and for each i€ N,
m¥(N)=maX;cscn [U(S)_Zjesﬂ' m;*(N)], )
with the property that for every set S* that attains the maximum in (9),

mfz=m¥ forall je S*. (10)

The proof of this lemma uses the following two steps. First, one shows that there
is a unique vector m*(N) satisfying (9) and (10). The proof mimics that of Proposition
1. Second, one can easily check that every limit point of m(N, §) (as & goes to 1) must
satisfy (9) and (10). We omit the formal details.

An earlier version of our paper (Chatterjee, Dutta, Ray and Sengupta (1987)) shows
how the limit vector m*(N) may be explicitly computed from the parameters of the

11. In a quite different game in which only bilateral trade is allowed, Hendon and Tranaes (1990) find
that their equilibrium could involve trading inefficiencies.

12. It might be of independent interest to note that if u =0, the set of all perfect equilibria in this game
coincides with the set of stationary equilibria. For this case, Player 1 cannot get more than 1/(1+8) in any
subgame perfect equilibrium, however much he (she) wishes to “teach” Players 2 and 3 and they seek to “learn”.
Of course, in this case there is no inefficiency, but the limit outcome is not in the core of the game. This shows,
by the way, that strict superadditivity is essential for Proposition 5.
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model. We use this limit vector to provide a sufficient condition for inefficiency under
every protocol:

Proposition 6. Let (N, v) be a strictly superadditive game such that for every &, the
set of stationary equtltbrta is exactly 3. If Y., m¥(N)> v(N), then there exists 8 <1 such
that for each 6 € (8, 1) and any protocol, each stationary equilibrium is inefficient.

The proof follows immediately from Lemma 3 and the definition of X.

Proposition 6 raises an interesting question: if },; m¥(N) = v(N) for a strictly super-
additive game, is it true that for some protocol, some stationary equilibria is efficient ‘in
the limit’? This would yield a complete characterization. Unfortunately, the answer is
no, as the following example demonstrates:

Example 3. N={1,2,3}, v(1)=1, v(2)=v(3)=0, v({1,2})=1-8, v({1,3}=1-6,
v({2,3})=0-1, and v(N)=24.

This is a strictly superadditive game and condition M holds. Thus all stationary
equilibria are no-delay, and by Proposition 2 belong to 2. Moreover, it is possible to
check that

m(N, §)=(58,1-86—68%,1-656 — &%)

Thus Y, m¥(N)=2-4=0v(N). However, it can be checked that as - 1, for no player is
m;(N, 8) attained at the grand coalition N. So we have inefficiency for large discount
factors, under every protocol.

In the next section, we continue our search for an interesting class of games which
display efficiency for some protocol.

5. EFFICIENCY OF STATIONARY EQUILIBRIA:
STRICTLY CONVEX GAMES

In this section, we intend to show that there exists a class of games for which the following
holds: for & close to 1, (i) all stationary equilibria are no-delay and (ii) there exists a
protocol for which some stationary equilibrium is efficient.

A game (n, v) is strictly convex if for all S, T< N, with S— T and T — S non-empty,
one has

v(SUT)>v(S)+v(T)—v(SNT). (11)

Proposition 7. Let (N, v) be strictly convex. Then there exists 6% (0, 1) such that
for 8 = 8%, every stationary equilibrium involves no delay. Moreover, there is a protocol and
a stationary equilibrium relative to that protocol which is efficient.

Remarks.

1. Proposition 7 cannot be extended to the class of all convex games (where (11)
holds with weak inequality). It can be checked that the game considered in
example 3 is convex, but no stationary equilibrium is efficient for high enough
discount factors.

2. Even for strictly convex games, the result is not true for all discount factors. In
Example 3, the game can be made strictly convex by making v(N)=2-4+¢, for
€>0. But as long as ¢ is not too large, it can be shown that there are intermediate
ranges of & such that efficiency is not obtained for any protocol.



474 REVIEW OF ECONOMIC STUDIES

In preparation for the proof of Proposition 7, we define the threshold discount factor &*.
By (11), there exists £ > 0 such that for all S, Te & with S— T and T —S non-empty, we
have v(SUT)>v(S)+v(T)—v(SNT)+e Now define §*€(0,1) by the condition
(1—-8*)v(N)=¢/2. The proof of the proposition will use the following lemmas.

Lemma 4. Suppose 8<(6%,1). Fix any player set S and let m(S, 8) be attained at
S’ forie S. Then for allj, ke S (not necessarily distinct), we have either S’ = SkorSkc S/,

Proof. For notational convenience, m; will denote m;(S, §). Now, if the lemma is
false, S’ — S and S* — S’ are both non-empty. Let $°= S’ U S* and S,= S’ N S*. We have
m; = 3[”(50) _Ziesu—j m;]

= 5[U(Sj) _Ziesf—j m;]+ S[U(Sk) —Yicsk m;]1—8[v(So) —Zieso m]+e

=m;+ m(1—8)—8[v(S,) _Zieso m;]+e.
Now if S, is empty, 8[v(So) —Yics, m:]=0 and is non-empty, by the definition of m;, we
have, for some l€ S,,

8[v(8o) = Yics, mi]=m(1-8)=v(N)(1-9).

Combining all this information and using the fact that §=6% we have m;>
m; — v(N)(1—8)+ &> m;, which is a contradiction. ||

By Lemma 4, for each S, each i€ S, and each & € (6%, 1), there is a unique maximal
set S'(8) that attains the value m;(S, 8).

Lemma 5. For §= 8%, m(S, 8) = m;(s, 8) if and only if S'(8) = S7(8).

Proof. Drop arguments within parentheses for exposition. The “if” part follows
from Lemma 2. To prove “only if”, suppose on the contrary that m; = m; but that S’ < S’
(this is the only possibility, by Lemma 4). Then by Lemma 2, m; = m; and so m; = m;.
Now m; = 8[v(S’) = Yxes'—: m]. Using m;=m; and the fact that j€ S, this implies that
m; = 8[v(S ") =Y kesi—j my]. Butthis contradicts the fact that S’ is the maximal set attaining
m;. ||

Lemma 6. For 8= 6*, the condition (M) holds for the bargaining game (N, v).

Proof. Fix S, choose any ke S, and let m,(S, 8) be attained at its maximal set
S¥(8)=S*. For any T < S, let m,(T, §) be attained at its maximal set T*(8)= T*. Write
S A T*=A and T*-S*=B.

Using the strict convexity of (n, v), and writing m;(S) (resp. m;(T)) for m;(S, 8)
(resp. m(T, 5)), we get

mi () = 8[v(T* U S*) = Ljcrt stk m;(S)]
> 8[o(T*)+v(s*) = v(A) =Ly m(T)]
+8[Ljen M(T)+Ljca—k m(T) = Ljcst—k m(S) =Ljep m(S)]
=8[v(T*) = Ljert—i m(T)1+8 Ljc (m(T) — my(S))
+8[v(S*) = Yjest—k m(8)1—8[v(A) — Ljea—k m(T)] (12)
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Now
8[0(8%) = Yjest—i my(s, 8)]= my (S, 8) (13)
and, because k€ A,

8[v(A)—Yjeai m(T)]=m(T) (14)

Now for j€ B, by Lemma 2, we have m;(T)= m,(T). Also, since BN Sk=@ and & = 6%,
we have by lemma 5, m;(S) <m,(S) for all je B. Therefore

Y (mi(T)—m;(S))=|B|(m(T)—m(S)) (15)

jeB
Using (13), (14) and (15) in (12), we obtain for 6 = 6*,
m;(S)> m(T)

which completes the verification of Condition (M). ||

Proof of Proposition 7. Take &€ (8% 1). By Lemma 6 and Proposition 3, every
stationary equilibria is no-delay and belongs to o. Using Lemma 5, there exists a partition
(81,85,....,Sk) of N such that the following holds: if player j belongs to S, then
m;(N, 8) is attained at |_;<; S;. In particular, if j€ Sk, then m;(N, 8) is attained at N.
So any protocol that has any member of Sk as first proposer will yield an efficient,
no-delay stationary equilibrium. ||

Given this positive efficiency result for strictly convex games, one is naturally led to
ask: what does the limit equilibrium payoff vector look like? We already know that a
limit payoff vector is well defined and given by m*(N).

To characterize this limit, it will be necessary to introduce the concept of Lorenz
domination. Consider two allocations x and y. We will say that x Lorenz dominates y if
Y K=Yi_, 7 for all ke N with strict inequality holding for some k, where £ and 7
are permutations of x and y in decreasing order.

Lorenz domination represents a partial ordering which has a well known identification
with the notion of “greater equality” in payoff distribution.'?

We can now state our final result.

Proposition 8. Let (N, v) be a strictly convex game. Suppose that for some protocol,
there is a sequence 8 >1 and a corresponding sequence of no-delay stationary equilibria
o, such that o* is efficient for all k. Then the equilibrium payoff vector converges to a core
allocation which Lorenz dominates every other core allocation.

Remarks.

1. Of course, Proposition 7 ensures that there exists at least one protocol for which
the condition of Proposition 8 is met.

2. Using Dasgupta, Sen and Starrett (1973), one can check that this limit equilibrium
allocation also maximizes the symmetric Nash product [];_, x; subject to the core
constraints v(S)=Y,.sx; for all Se .

13. See for instance Kolm (1969), Sen (1969), and Dasgupta, Sen and Starrett (1973).
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The proposition (and indeed, its proof below) presumes that there exists such a core
allocation that Lorenz-dominates every other core allocation. For this we appeal to the
following

Fact (Dutta and Ray (1989)). In convex games, there is a core allocation that Lorenz
dominates every other core allocation.

Proof of Proposition 8. Given the Fact and Propositions 2 and 5, it is sufficient to
prove that the limit equilibrium vector m*(N) is Lorenz undominated by any core
allocation. Suppose, contrary to our claim, there exists x in the core of v(N) such that
x Lorenz dominates m*(N). Without loss of generality, write m*(N) in decreasing order:
m¥z=zm¥ - -=m¥.

Consider the first index i such that x; # m¥. Using the definition of Lorenz domina-
tion, one can show that x} <m¥, and, moreover, that x; = m} for all j such that m¥ = m}
(verification of this is straightforward but tedious).

By Lemma 3, we know that there exists S' such that m¥ = v(S') —Y,;cs'_; m§, with
m}=m} for all je S But from the previous observation on x, we therefore have
x; <v(S")=Y,csi_i x;. This contradicts our supposition that x is a core allocation. ||

6. CONCLUSION

The paper has sought to construct a non-cooperative model of coalitional bargaining
under complete information. We have shown that inefficiencies could arise in the form
of delay and non-formation of the grand coalition. Moreover, the order in which players
move turns out to make a significant difference to the efficiency of the equilibrium.

The limitations of this analysis have to do with the particular extensive form used
(a curse common to many bargaining models!) and the use of stationary equilibria. While
we personally do not find stationarity unpalatable, we are aware that there is a difference
of opinion about this. Further research is needed to determine how this assumption bears
up experimentally and also to investigate alternative extensive forms. An extension to
NTU games is left for a future paper.
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