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Introduction

he development of theories to predict the rheological
(i.e., flow) properties of densely packed polymers in

the melt or solution state is important because such the-
ories might enable rational design of polymer processing
methods for shaping polymers into products, and because they
can be used in rheological characterization of polymer molec-
ular weight and long-chain branching. These are important
topics, given the enormous volume of polymers produced
each year (100’s of billions of pounds).The seminal work of
de Gennes' and Doi and Edwards®>™ in the late 1970s estab-
lished their “tube model” as the standard theory for predicting
polymer rheological properties. The “tube” idea arises from
the notion that entanglements of a long polymer with its neigh-
bors in a dense melt restrict motion of the polymer to a “tube-
like” region — see Figure la. Until very recently, the “entan-
glements” between densely packed long chains that produce a
phenomenological “tube” constraining the motion of each
chain could not be experimentally imaged or simulated, nor
could their existence be rigorously derived from microscopic
physics, and so acceptance of the tube model has not come
without controversy. In addition, most predictions of the tube
model in the early years were hardly better than qualitative.
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Still, it was generally recognized early on that, despite its
limitations, the Doi-Edwards “tube” provides a plausible
ansatz for understanding qualitatively how linear polymers in
the entangled state relax, namely, they relax by “reptation” or
sliding of the chain along its tube axis, and by retraction
within the tube. Moreover, the tube model offered the greatest
hope for eventually attaining a quantitative understanding of
polymer melt rheology.

In the years since 1978, many efforts have been made to
improve upon the Doi-Edwards model. Broadly speaking, the
1980s witnessed a sustained attack on the problems of “prim-
itive-path fluctuations” — that is, changes in the length of the
tube due to accordion-like motions of the chain in the tube,’
and of “constraint release” — that is, loss of entanglements
due to motions of the surrounding chains that define the tube.®’
It was found that as long as the chain “feels” the existence of
the tube before the entanglements are lost, one can describe the
chain’s relaxation as reptation in a tube, where the tube itself is
moving through space due to loss, and recreation of entangle-
ments with surrounding mobile chains. This tube movement
(now called “constraint release Rouse motion”) is especially
significant for polydisperse polymers, where the entanglements
imposed on long chains by surrounding short chains can relax
quite rapidly, and, hence, enhance the mobility of the tube
containing the long chain. Finally, in some cases, one can
regard the tube diameter to be continuously expanding or
“dilating,” if the surrounding chains are so much more mobile
than the chain in the tube that they act as “solvent” that
“dynamically dilutes” the entanglement density.8 These ways
of incorporating constraint release into tube models have
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Figure 1. Depictions of (A) the tube model for entangled polymer melts, (B), the slip link model, (C) the bond fluctuation

model, and (D) the pearl necklace model.

allowed at least semiquantitative predictions to be made of the
linear viscoelastic properties, not only of monodisperse linear
and star-shaped polymers, but also of “binary” blends of two
different molecular weights of linear polymer, or even mixtures
of star and linear polymers.”'°

These improvements did little to help overcome major short-
comings in the ability of the Doi-Edwards theory to predict the
nonlinear rheology of entangled polymers. However, in the mid-
1990’s Marrucci'' introduced into the tube model a process of
“convective constraint release” (“CCR”), that has greatly im-
proved the predictions of the model in fast flows, bringing the
tube model to the verge of quantitative accuracy, at least for
simple cases of linear monodisperse or bidisperse entangled
polymers.lo’12

While these developments represented huge strides, major
gaps in understanding continue to exist, especially in three
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areas. One is in determining the correct form of the “primitive
path potential” governing the fluctuations mentioned previ-
ously. This potential represents the statistical unlikelihood of
large excursions of the primitive path length from its average
length. The potential assumed initially by Kuzuu and Doi'?
has the form U/kgT = vZ(L—LO)z/Lo, where v = 3/2 is a con-
stant prefactor, L is the fluctuating primitive path length, and
Ly is the average value of L. The distribution of primitive paths
is then given by (L) ocexp(—U(L)/kgT). The Kuzuu-Doi form
of the potential has never been rigorously justified. This primi-
tive-path potential is especially important for relaxation of
branched polymers, which cannot relax by reptation because of
the anchoring effect of the branch point. A second gap is in the
details of the “dilution” process, typically subsumed into a
“dilution exponent” « that determines how rapidly relaxation
of surrounding molecules widens the tube. A third problem is
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to determine how rapidly branch points move in response to
relaxation of the attached branches. Besides these problems
with the physics of polymer relaxation, there is the logistical
problem of incorporating all relevant phenomena into equations
or algorithms that can predict accurately the linear and/or non-
linear rheology of commercial melts with broad distributions of
molecular weight and of branch structure.

Increasingly, progress in all these areas has come from compu-
tational methods. As we will describe later, fine-grained compu-
tations are now beginning to allow us to show in detail how the
elusive “entanglements,” “tubes” and “primitive paths” assumed
by the tube model arise from the local polymer structure and dy-
namics. In addition, algorithmic advances are enabling tube-
model computations to cope with polydispersity by tracking the
simultaneous relaxations of large ensembles of molecules.'

In the following, we briefly review microscopic models,
namely the pearl necklace, lattice, and slip link models — see
Figure 1b—d, that have shown the most promise for exposing
the detailed physics underlying the tube model, and correcting
its deficiencies. Then, we discuss the extent to which the tube
model has been improved and exploited in recent years to pre-
dict the linear and nonlinear rheology of the polydisperse lin-
ear and branched melts used commercially.

Pearl Necklace Simulations

15,1 . . .
Kremer and Grest'>'® analyzed the microscopic basis of

entanglement dynamics by applying molecular dynamics (MD)
simulations to the “pearl-necklace” model (see Figure 1d).
This model represents a polymer molecule as a string of repul-
sive Lennard-Jones beads linked together by the finitely-exten-
sible nonlinear elastic (FENE) springs that are short and stiff
enough to keep beads on surrounding chains from passing
between them. Entanglements between chains, are, therefore,
enforced, and each bead is a coarse-grained monomer corre-
sponding roughly to a “Kuhn” random-walk step length. MD
simulations of the pearl-necklace chain can predict some rheo-
logical properties of entangled polymer melts that would be
computationally too demanding to capture in atomistic simula-
tions. While the resolution of the pearl necklace model is fine
enough that chain configurations are realistically captured, sim-
ulating densely entangled chains (more than around 10 entan-
glements) out to their longest relaxation time is only possible
with months-long simulations on supercomputers. Hence, such
simulations focus on mildly entangled systems or shorter-time
behavior of long chains. Simulations of slow dynamics of de-
nsely entangled linear or branched chains require models that
are less detailed, such as the lattice or the slip-link models dis-
cussed in the next sections.

Over the last couple of decades, MD pearl-necklace simula-
tions have progressed from verifying that the basic reptation
picture is qualitatively accurate, to more recent work that
attempts to resolve the microscopic basis of entanglement dy-
namics. In the early work, the signature of reptation along a
“tube” was found in the transition of the mean-squared mono-
mer diffusion from t'/ scaling at early times t corresponding to
an unentangled three-dimensional (3-D) Rouse regime, where
beads have not moved far enough to “feel” the tube, to il
scaling at longer times where the bead motion is dominated by
1-D Rouse diffusion along the tube.'” This transition had been
predicted by the tube theory.!” The transition of the zero-shear
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viscosity as a function of molecular weight from a linear re-
gime to a 3.4-power-law regime, which is taken to be evidence
of the entanglement effects, was also captured in MD simula-
tions by Kroger and Hess.'®

More recently, in a major breakthrough, Everaers et al.'? iden-
tified primitive paths of the tubes directly through a self-consist-
ent “cooling” procedure in which all chains are “tightened” by
simultaneously removing their slack without allowing them to
pass through each other. This process yields a network of taut,
interlacing, primitive paths, such as that shown on the cover of
this journal. Since the primitive path is the key theoretical entity
underlying all tube theories, an ability to determine it directly
from the microscopic molecular configurations means that, for
the first time, coarse-grained quantities related to the tube can be
derived from atomic-scale physics. For example, Everaers et al.
showed that the average primitive path length derived from
their method yields an estimate of N, the number of beads (or
“Kuhn steps”) per entanglement, that is consistent with the esti-
mate derived from the plateau modulus (a readily measured
rheological property) using the tube model. Thus, the work of
Everaers et al., published in Science, triggered intensive efforts
by multiple groups to analyze the primitive paths from micro-
scopic simulations.

While it predicts a reasonable value for the average primi-
tive-path length, the method of Everaers et al. yields a narrower
distribution of primitive-path lengths than the Doi-Kuzuu'? dis-
tribution.?” That is, with the method of Everaers et al., the dis-
tribution is characterized by a potential U/kgT = VZ(L—Lo)*/Ly
in which the prefactor v is around 3.0, twice the Doi-Kuzuu
value of 1.5. Zhou and Larson® showed that Everaers’ cooling
method is equivalent to minimizing a total quadratic spring
energy of the polymer sample. Switching to linear potential
during the cooling procedure, which corresponds to minimizing
the total length of primitive paths, yields a distribution with a
broader width (corresponding to v = 1.5), in agreement with
the Doi-Kuzuu distribution. The values of N, estimated from
the two methods are surprisingly almost the same, however.
Thus, it appears that a reasonable method of identifying the
primitive paths, namely minimizing total primitive path length
by slow “cooling,” subject to fixed chain ends and noncross-
ability of chains, confirms the correctness of the original primi-
tive path potential assumed by the tube model.

Although it represents a conceptual breakthrough, the
“cooling” method of identifying primitive paths is not free
from difficulties. First, the primitive path has a finite tension
that deforms the entanglement network. Second, the primitive
path has a finite thickness, addressed by Tzoumanekas and
Theodorou,?! which leads to overly long primitive paths due
to the extra length one path takes to wrap around another.
Lastly, cooling methods are very computation-intensive. For-
tunately, Kroger’s shortest path method,*” based on pure ge-
ometry, is much faster, especially if coupled with the fast-
melt equilibration method known “double-bridging Monte
Carlo,” allowing Kroger and coworkers to obtain much better
statistics of primitive paths, and study a wider parameter
range” than possible with other methods. They found that the
relative width of the distribution of the primitive path length
is chain-length dependent, that is, the longer the polymer
chain, the wider the distribution of primitive path lengths,
with the longest chain lengths (with 16 entanglements) yield-
ing a primitive path width corresponding to around v = 1.1.
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Figure 2. (A) After applying the primitive-path identification algorithm to a system of chains equilibrated using the lattice
bond-fluctuation model, a particular primitive chain (red) constrained by matrix chains (transparent white) is shown;
(B) using geometrical arguments, positions of topological constraints or entanglement points (blue spheres) encoun-
tered by the primitive chain can be identified. There appears to be a one-to-one correspondence between these
entanglement points and constraining matrix chains and (C) one could in principle derive a slip link model from a
coarse-grained representation of the system depicted in (B).
Each slip link (golden ring) constrains two chains, although allowing them to slide through it. Note that, for clarity, the
number of slip links in C is fewer than the number of entanglement points identified in B.

This chain-length dependence is quite close to that predicted
theoretically by Schieber.**

Which of the various definitions for the “primitive path” is clos-
est to the ideal “primitive path” conjectured by the tube model is
still an open question. In the near future, we hope to compare the
primitive paths from different methods and determine either that
all reasonable methods of minimizing overall primitive path
length give the same distribution, or, if not, identify the most
nearly “correct” method for determining primitive paths.

Lattice Models

Polymer chains on a lattice have for many years been used
to explain static properties such as the “random walk” or
“swollen” configurations of polymer chains in melts and dilute
solutions, respectively. The bond-fluctuation model (BFM),25 26
depicted in Figure lc, represents the state-of-the-art in lattice
models, and is more realistic than previous lattice models.
The BFM approximates continuum MD simulations while
preserving the computational efficiency associated with integer
operations. In the BFM, the length of the “coarse-grained”
bond connecting consecutive “effective monomers” varies
somewhat to allow bond angles to vary over a wider range than
in a conventional cubic lattice. By restricting the number of
allowable bond vectors connecting adjacent monomers to 108,
the BFM can enforce chain noncrossability, allowing reptation-
like behavior to be modeled. Shanbhag and Larson®’ adapted
the primitive path identification algorithm of Everaers et al. to
Shaffer’s version of the BEM?® to obtain the primitive paths
via a “cooling” method (see the section titled Pearl Necklace
Simulations). Figure 2a depicts a particular primitive chain sur-
rounded by other “matrix” primitive chains. These lattice sim-
ulations, with subsequent corroboration by off-lattice molecular
dynamics simulations (discussed in the section titled Pearl
Necklace Similations), support the originally proposed quad-
ratic form of the fluctuation potential, in good agreement with
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the Doi-Kuzuu distribution (with v = 1.5), although for longer
chains (with Z = 16 entanglements) the distribution was a little
wider (corresponding to v = 1.36).

The motion of a polymer chain residing in a concentrated
solution or melt is substantially accelerated due to the simulta-
neous motion of surrounding chains, and the bare-tube fluctua-
tion potential is softened or “dynamically diluted”.® Whether
this dynamically diluted fluctuation potential can be derived
using lattice or molecular-dynamics simulations remains an
open question. However, by appealing to a simple geometrical
argument within the framework of the BFM, Shanbhag and
Larson®® constructed an algorithm to locate the positions of
topological constraints or “entanglements” encountered by
the primitive paths. Figure 2b shows the locations of the topo-
logical constraints encountered by the primitive path depicted
in Figure 2a due to the surrounding chains. Counting the num-
ber of these “entanglement” points removed when single
chains were removed from the lattice yields an estimate that
the value of the dilution exponent o is close to unity. This
implies that, on average, only two chains participate in the
creation of each entanglement, which is consistent with the
idea that entanglements arise due to binary interactions
between chains, and is a core assumption of slip link models
described in the next section.

Slip Link Models

In order of increasing degree of coarse-graining, slip link
models follow after first pearl necklace models and lattice mod-
els, both of which are resolved at the level of the Kuhn step
length. In slip link models, molecular details at the monomer or
Kuhn step level are obscured; however, among microscopic
simulations, slip links models are of the greatest relevance to
rheology, precisely because coarse-graining allows timescales
of the order of the longest-polymer relaxation time to be
accessed, which is not possible for finer grained models, except
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Figure 3. Conceptualization of algorithm for computing hier-
archical relaxation of a comb-branched polymer.
Note that on relaxation, the comb molecule effec-
tively becomes an “H,” molecule, then a star, and
then a linear molecule, as the arms progressively
relax, and at long times behave as frictional sites.>*

for rather short chains that are only weakly entangled. In slip
link models, a polymer melt is modeled in a manner analogous
to a crosslinked network, where instead of being permanent as
crosslinks are, the slip links are temporary and allow monomers
on each chain constrained by them to slide through the slip link
constraint. As shown in Figure 1b and 2c, each slip link con-
strains two chains, and is a proxy for an entanglement. Chains
wiggle around via Brownian motion, and the slip links can
themselves be either fixed in space or mobile, depending on
how they are modeled. When either of the constrained chains
slithers out of a slip link, the slip link is destroyed. Similarly,
the end of one chain (the “test” chain) can hop toward another
chain (the “matrix” chain), and, thereby, create a new slip link
or entanglement. Microscopic information, such as the order-
ing, spatial location, and age of surviving slip links can be re-
lated mathematically to macroscopic properties, such as stress
and dielectric relaxation functions.

Since the first slip link model of Hua and Schieber®® was in-
troduced, several other models differing in the level of resolution
and algorithmic detail have emerged. The simplest of these is
the “virtual space” slip link model of Shanbhag et al.,** which
has been helpful in understanding the conditions under which
the dynamic dilution theory for branched polymers is valid.
Quantitative predictions of the nonlinear rheology of linear
polymers, including strain hardening in extensional flows in
polystyrene samples, have been made using the slip link
model of Doi and Takimoto.*' While rheology has been the
primary focus of slip link models, the model of Likhtman®?
has been used to describe complementary experimental data
on monodisperse-linear polymers, such as neutron spin-echo,
and diffusion, simultaneously with rheology. Currently one of
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the most detailed slip link models is “NAPLES,” developed
by Masubuchi et al.,**> which is essentially a Brownian-dy-
namics simulation of a network of primitive paths. The motion
of the slip links is governed through a force balance on entan-
glement nodes, while the sliding motion of monomers along
the chain contour is regulated by the distribution of tension in
the chain. Extensions of NAPLES have been used to study
branched polymers, nonlinear rheology, phase separation dy-
namics in polymer blends, and to address important questions
regarding entanglement spacing and the plateau modulus. To
date, neither finer-grained pearl necklace nor lattice simula-
tions have been directly mapped onto a slip link model, using
the finer-grained model to identify explicitly the spatial loca-
tions of the entanglement points that are modeled as slip links.
Such an exercise could help determine which of the various
slip link models proposed so far is the most realistic.

Tube Model — Linear Viscoelasticity

The ideas of reptation, primitive path fluctuations, and con-
straint release by “constraint release Rouse motion” and
dynamic dilution are able, when combined, to predict the lin-
ear rheological properties of linear, star-branched, and more
complex branched structures, such as “H” and “comb” struc-
tures (see Figure 3) that are specially made to be nearly mono-
disperse. To describe commercial branched polymer melts,
these molecular theories must be generalized so that they
can be applied to polymers that are not only polydisperse in
molecular weight,but also in branch length and branch place-
ment. Larson'* developed an algorithm that generalized the
Milner-McLeish theories to allow prediction of the relaxation
of general mixtures of branched polymers. He called this the
“hierarchical model” because it is based on hierarchical relax-
ation in branched polymers, in which relaxation starts at the
tips of arms and proceeds inwards. A key aspect of this
approach is that it represents polydisperse melts by a large set
(up to 10,000 or so) of molecular structures that are generated
stochastically on the computer, and are used to represent the
range of molecular weights and branching structures of poly-
mers in the real melt. The algorithm then tracks the relaxation
of each of these molecules and how this contributes to the
dynamic dilution that affects the relaxation of the other mole-
cules in the ensemble. Park et al.>* modified this algorithm to
allow for more quantitative predictions, in part by including
the “early time fluctuations.” Figure 3 illustrates how the
model treats the hierarchical relaxation of a comb-branched
polymer, which is composed of arms and backbone segments.
Park et al.** showed that the modified hierarchical model suc-
cessfully predicts linear viscoelastic data for various model
branched polymers and branched/linear mixtures, and thus
might be a promising algorithm for predicting the relaxation
of general mixtures of branched polymers.

Since the hierarchical model is quite general, it could be
applied to commercial long-chain branched polymers, such as
single-site metallocene polyethylenes, as long as the branch-
ing density is small (less than an average of 1 branch per 10
molecules), so that branches on branches can be ignored. The
development of single-site “constrained geometry” metallo-
cene catalysts has made it possible to introduce controlled lev-
els of long-chain branching (LCB) into commercial linear
polyethylenes. Controlled levels of LCB in metalocene-cata-
lyzed polyethylenes (mPE’s) now allow one to carry out sys-
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tematic studies of the effect of LCB on the rheological proper-
ties of polyethylenes keeping the MW and MWD almost
unchanged, as has been done by Wood-Adams and co-
workers.”> From a single-site model, a complete statistical
description of the branching characteristics of metallocene-
catalyzed high-density polyethylenes (m-HDPE) can be gener-
ated, including the distribution of branching locations, and
lengths using only two independent parameters that control all
characteristics of the distribution.*® Using the statistical model
for these polyethylenes, Park and Larson®* predicted accu-
rately the linear viscoelasticity of m-HDPE having different
degrees of the long-chain branching using the hierarchical
model with the parameters determined a priori.

The hierarchical model developed by Park and Larson did
not permit consideration of branches on branches, which are
produced at appreciable concentration (>1%) by constrained
geometry catalysts once the branching density exceeds around
0.1 long branches per molecule. However, recently Das et al.*’
extended the approach to allow prediction of polymers with
branch-on-branch structures. Their model predictions are in
quantitative agreement with linear rheological data for single-site
m-HDPE over a wide range of branching densities, up to 0.5
long branches per molecule. While the experimental data for
LCB m-HDPE are not extensive enough to test them com-
pletely, if these models prove to be robust, then, when com-
bined with other characterization techniques such as gel per-
meation chromatography, they could be used to infer branch-
ing levels from measurements of the linear viscoelastic
properties of LCB mHDPE.

Tube Model — Nonlinear Viscoelasticity

The modeling of nonlinear viscoelasticity of polymer melts,
especially melts that are polydisperse and/or have long-chain
branching, is vastly more complicated than is the prediction of
linear-viscoelastic properties. While one can characterize fully
the linear viscoelastic response of a material by its relaxation
after a small step-shear strain, nonlinear viscoelasticity is sensi-
tive to changes in both time history and flow type. In addition,
theories for nonlinear viscoelasticity are difficult to test rigor-
ously, since accurate rheological data are difficult to obtain in
the strongly nonlinear regime.

As a result of these difficulties, modeling of nonlinear rheol-
ogy, and testing of these models, has for the most part been
limited to concentrated solutions, and to a lesser extent, melts
of linear (i.e., unbranched) polymers. As alluded to earlier,
accurate predictions of nonlinear rheology using the tube
model requires incorporation of “convective constraint release”
(CCR), which is the release of entanglement constraints by
convective flow.!" The inclusion of CCR has yielded constitu-
tive equations that qualitatively match the shear-flow rheology
of monodisperse and bidisperse linear polymers.38 A recent
milestone is the successful prediction of both birefringence pat-
terns and neutron scattering patterns of a nearly monodisperse
polymer melt flowing through a contraction flow, using a non-
linear constitutive equation, based on the tube model that in-
cludes reptation, chain stretch, and CCR.* The development
and testing of constitutive models, based on the tube model for
polydisperse linear polymers is a top priority, and there is likely
to be significant progress along these lines in the near future.

For long-chain branched polymers, the only available non-
linear constitutive equations based on the tube model apply
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only to ideal molecular architectures, and even then are only
qualitative.40 There are indications that stochastic models,
such as slip link models, might be able to cope with the com-
plexity of the nonlinear rheology of polydisperse polymers,*'
and possibly eventually with long-chain branching as well.

Summary and Prognosis

These are exciting times in the field of polymer rheology.
Computational power is finally reaching the point that entan-
glement interactions that occur on the microsecond timescale
or longer can be directly tracked by fine-grained simulations
resolved at the level of the monomer or “Kuhn step length.”
These simulations have generally supported the notion of a
tube, and the traditionally accepted mechanisms of relaxation
in the tube, and have allowed the heretofore elusive entities
assumed by the tube model — that is, the primitive-path
length, tube diameter, fluctuation potential, and even individ-
ual “entanglement points” — to be determined directly from
the fine-grained model. Fine-grained simulations are also be-
ginning to suggest corrections or reinterpretations that might
be needed in the theory. To bring this promising work to con-
summation, agreed-upon methods of obtaining primitive paths
must be established, or it must be shown that results are insen-
sitive to them. Another important remaining task for fine-
grained simulations is the analysis of branch-point motion.

Increased computational power has also permitted the suc-
cessful application of the coarse-grained tube or slip link models
to prediction of the linear rheology of very complex polydisperse
melts, or melts with irregular long-chain branching. This success
has come at a good time, as novel commercial catalysts that pro-
vide unprecedented control over molecular weight and branch-
ing distributions can only be exploited fully if theory is devel-
oped that will allow determination of the structures that give the
best rheological properties. Successful initial work predicting the
linear rheology of commercial-branched polymers must be fol-
lowed up with predictions of rheological properties of commer-
cial melts across a range of molecular weights and branching
distributions to determine the robustness of the methods.

Finally, while progress has been made analyzing and pre-
dicting the nonlinear rheological properties of the simplest lin-
ear-polymer chains that are monodisperse or bidisperse, pre-
dictions of nonlinear properties for more complex melts,
including commercial melts, continues to lag. Achieving pre-
dictions of nonlinear properties with accuracy and versatility
comparable to that already achieved for linear properties will
take considerable effort. However, it is a much needed effort,
since it is the nonlinear rheology that controls processing.
Hence, accurate and versatile nonlinear rheological models
must be included in the suite of modeling tools that will ulti-
mately allow polymerization reactions to be designed to pro-
duce polymers with optimal processing characteristics.
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